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ON REPRESENTING SYSTEMS
FOR FUNCTIONS OF SEVERAL VARIABLES

LE HAYI KHOI

§I. INTRODODCTION

1.1. During the last two decades the problems of representation of analytic
functions by means of series of exponentials or by more general functional
series have been extensively investigated (see, e.g., [1], {2]). This interest stems
from the fact that these representations allow us to study rather deep funecti-
onal properties of analytic functions and, furthermore, 'have important appli-

cations to functional equatlons Results in this subject were obtained .first by
Leont’ev [1} and later on, by Korobeinik and his school, who developed syste-
maticaily a theory of representing systems [2].

[t should be noted that at present, while the theory of representing systems

for analytic Tunctions of one complex variable has reached a sufficiently mature
stage of development, the theory for several complex variables is only in itg
initial stage. In this field many open problems still call for investigations,

In a previous work [3]} we have proved that the notion of absolute represent-

_ing systems is invariant with respect to projective topological tensor product

in Fréchet spaces. This resull has allowed us to obtain a useful criterion of

absolute representation for a multidimensional system of amalytic functions m
polycylmdrlcal domains. _

In the present paper, using the same idea of invariantness we shallestablish
eriteria of absolute representation for multi-dimensional systems in some spaces
of entire and analytic functions of several complex variables. We shall also
discuss properties of inwa'rd-continuabilily of representing systems of exponen-
tials in convex domains of several variables.

1. 2. Let us recall some definitions and notati-onsx which will be used
throughout this paper.
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[2:6] (0 >0,0 6 <+ m)ﬂwill denote the class of all entire fgnctions y(z)
cj;; C such that

fim P ln A(r, y) < O
. r—>o° .
where AJl(r, y) = sup { i y(z) {:12 | = r};
[p, =] (p > 0) is the class of all entire functions on C of order at most p;
V(W) (W being a domain in C® ) is the space of analytic functions in W,
with the topology of uniform convergence on compacta;
V(&) (% being a compact set in C7 ) is the space of germs of functions ana-
lytic on compact set, with the topology of inductive limit: V(&) = lim ind
V(w)yaisa neighbourhood of oo D&
' | z /2 .
If z, £ ¢ C"then we denote fzl=1(z; z; + ...+ zu Zp) 2 .
hzl=12; |+ 12, 1;<z,§>=21§1+m+znrén_
 The support function of a convex set G in C(n 3> 1)is defined asfollows:

for n = 1: h(—¢) = SupP Re(ze_iq’),o < o< 2wy
reeG

. .:‘h :SUPRB<Z!E>’E€CR'
forn >» 2 G(E) e - {

' : H is said
A sequence {x} of nonzero elements of a locally convex space H is sa

'fo be a represeniing system (an absolute representing system) in H or, hriefly, RS
(respectively, ARS) in H if any element x of H can be represented as the sum

of a convergent (respectively, absolute convergent) series in H:

T = E c'ka:k

§ 2, CRITERIA OF ABSOLUTE REPRESENTATION
FOR MULTI-DIMENSIONAL SYSTEMS
; | .
9. 1. Let p= 0, 0 < o < + o= As is wellknown, [p, cland [p, o] are nu--

. ) R -~ . \ )
clear Fréchet spaces with bases iz }k=a whose topologies are defined, res

pectively, by the countable scts of norms

-*mp% ly(Z)'i-exp[-—(6+em)iz|P]i<+m,
C . -

pte ‘ .
| y(2) |- exp [—-IZ' ’“”< + oo

sup
d C
where ¢ | 0(n=1,2.)

104

f



N

Now let n be a nataral number and p, ¢, r be non-negative integer numbers
such that p 4~ q 4+ r = a. Let

u(z,a)—SEIZIP’+ 2:(6+a)1z191+ T igfs Yo,

j=pti s=p+agti

'}vherea§0,0<aj < (j=p-+1, .., p+9q), pk = 0ik=1, 2, .., n)

df
We introdace » Fréchet space H = lim pr Hm where
: ’ m .
5 e S ny - i f(2) |
Hm::" f(‘)ecfé(c).SUPW$lEfiirn<+m
C" exp u (-, “m)

is a Banach space with a norm folly ey, 4 0 (=1, 2.0

We note the clementary formula:

- v . ut\’ =1, . k L .
sup t£ e He (inf e ik ) = ( - )" ,
1=¢ S =0 _ elv s :
>0,v>0k>0 (1)
LEMMA 1. The moromials { z° } form an absolute basis in the Fréchet

space H.
Proof. Take an arbitrary fuction f from H. It can be represented uniquely
by a Taylor’s series about =z = 0:

(@) = — q
D e o

where k= (k; 5wy b Wby 00 =1iw ,m), F =50 g™y

ty
-

Fix an arbitrary natural number m > 1. Then

f— Y= | = v sl < YT g 0,
” I=n * : e (TN "
We will show that the series IIZI: la, |- ek |, converges. Indeed, using (1)
kjl=0 ’
we have _
k.
: P i ptg k. -
R AL N S SRR k7 P
=1 \e € P J=pt1 E\O'j—|—sm)p A /
y
X IET ( e )ks/ps+3m @
p+q+1 e (ps + gm ) '
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Furthermore, for every ¢ > 0 we can write

AAfs D < sup [f il

R e €09 EE R
reRe P!—L » ZECH xp Z, u) .

whaere f =(t1,'..., ty e B, A (fiy=sup{lf@ )5 1=1t,]= L n}.

Therefore, for every { ¢ B : A (f, ) <Ifl .exp H (/, &), and by Cauchy’s

inequality for the cocfficients a, we get

expH (1, ¢ . ) ’
1ak1g||f||€.—1’ﬁi—? ¥1;>0,%k50 (j=1, . n). Hence by (1),

Jij

/

P ep.c \kf p+ e (6.4 e) p, k;/
la | <IEl, . I (___‘._;_)‘Pi_ I _(__J__pf)
' =1 k; Je=ptd ch

n efp_ + ) \k. /
x I (—f———~)s Pste 3)

- s=ptqt k,

" ombining (2) and (3) yields

D kg 1" ‘. P+q 6‘+ g k. / .

la, 25l <If U, ( : ) e, (Mi__)f Pi %

. i=1 gm ’ j“——-p+1 6.]"1_ Em

X 1{11 ( ks )ks/Ps T (e(ps + e))ks /Ps+s

s=gtptrt \ elos+c) 7 kg
It is clear that the series X (—~e—) ot (i=1, ... p)
k=0 \&p
oo 6]-“— & kj/s. o,
and X (6 : ) J(j=p"41,.., p+ q) converge for = < e _,

kj=0 ¥ em .
Moreover, if p = 0, then -—--——A— >~ 1for all k > k,. Consequently, since

e(p + ¢p) , _

€<g ., We Can write

(- k )"’m'-am e(p-i—_e))kfp"ﬂqg
b Nelp+e ) ( k

—

- '- klote ' kf,.d ‘ kloye
o I R e

Hence, the series -

5 (_ ko kdpgre (B(ps + ¢) )kS/Pers
k=0\ 2oyt ,) k,

(s==p + g + 1, .., n) converge too,

-t
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It follows that the series : fay, 1.4 z* Il converges, That is
| klj=0

nf—-”zF %th_umswq«4m=zﬁwJQEn
k€N

Remark. When two of the numbers p, ¢, F are equal to zero, [the space H
was already considered by Rolewicz [4}.

Now let Vi"—"[Pi'O] =1 ., ph VjZ[Pj: Gj](j=P—|- 1, e p 1 GQ)s
Vg logs =l (s=p+qg+1, .., 0 with the sets of norms || . [}:n, i o ﬂ;, . f[fn
m = 1, 2, ...} respectively. :

It is clear that if f(z) € H,.then f & V, with respect to the variable z, when

the values of the remaining variables are fixed, [ = 1. .., n. Further, if
)“&)g L V=1, '
it is easy to see that

n daf (n)} E
H@:?CP (24 )0e 0y, (2)2_ — A.
=g b ky RUTESR A

As in the case of analytic functions in domains (see [3]), it is not hard to

n
verify that if I1 @, is ARS in H, then each component @, is ARS in V,
=1 .

(1 =1, ..., ). Moreover, *ym 2> 1

), = sup [ =='ﬁ Nk b kel =0, 1, 2, o
n CII exp U(Z,Em) =1 { m re i

On the other hand, for ?m = @' i . [[in, we have
R f&:_[<n

T @ @) =r (K1 @.. ®n)=
m* ¥ n m* 1 ’ n

= ket o= 12 s k) =0, 1, 2,00,
Selting
A L(}Eczﬂ:& c, 71 @.. @z
7= isn=o L T T
it can easily be verifiel in the same way as in the case of apalytic functions,

thai L is an isomorpbism of II oato RV

1SIr<in :
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We thas obtain the following result.

rugorEy 1. Lel &, = {¢(z, )}y © ¥V, (1 < 1 < n). The system

A

HI (D is ARS in H If and on!g if each componen! @; is ARS in Vt , I L <.
=

2, 2. Now let G, be a domain in the w; -plane such that there exists a basis

3 (i](wl)i inV (G ), 1 < N (this will be the case if, for exampie G

Jis a finitely connected domain inthe plane of the complex variable w, 3. Denote

by (HG) ..y ibe space of all functions f(z, w) € V(C?' X G), 7= (Z; seems % Y

w=(w,,.., N) G=G; XX G,\, , which satis{y the following conditions:
a) f(z, w) G*H with respect to when_w ig lixed

b) f(z, w) e V() with respect to w when zis fixed;

c)Sup% f(z, w) .eixp[—-M(z,ev)]:z:e(‘,‘n swek, | =

= (fll, < 4 e, where K, =Ky 1G, 5, } 0 (v = 1, 2,..)

LEMMA 2. The system
k (1) (N)
’ oLaLE CARE (w,\,)z

forms an absolute basis in the Fréchet space (HGY, x _

ki’ sl\ sm1 3° smNﬁf)

Proof. The proof is similar to that of Lemma 1. -
Let us expand the function f(z, w) from (HG), - in a series with respect

o0

fo the basis ; I % :
Hilli=0 -

oo

f(z! lU) 2, (HJ) Zk *
k= .

This series converges absolulely n H. Itis easﬂy checked that g, () & V(&)
forall (k| =0, 1, 2,... '

Using the compactness principle for functions of several complex variables
and the regelarity (or equicontinuity following the terminology of Pietsch [5])
of an absolute basis in a Fréchet space we get that the above mentioned series

converges absolutely in (HG), -

On the other hand, g, (w) can be devélopped ina series in V (G) with

' . 1
respe.t to the basis § ;r:sn)l (W) a:g:r\) (w,) s .
. { N !
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Consequently,

f(f,w _ i’ :-2‘:.‘ :k {1) w \)'“ :L'(JV) w:,).
T yilme Umio o T T (0 Pmg (0

‘Using the regalarity of the hasis & we then establish that the laiter double
series converges absolutely in (HG) ..
. >

The auniqueness of the expansion can be verified easily Q. E. D.
Establishing an isomorphism between the completion of the tensor product
of the spaces Vo (@ = 1, ..., n), V(G¢) (8 = 1,..., N) and the space (HG),
yields the following generalization of Theorem 1. .
THEOREM 2. Let fI be the space in Theorem 1, and let GB be a domain in the
wp -plane such that there exists a basis in V ((1‘3 ), 1 < p < N. Further, let

df {er) oo . (B) ‘
Qu _— (P ]\. (ZC{ ) fk:f r_: ‘fa 3 d, <H U‘,ﬁ ] ; ’lpm (Wg) é 1 C V (Gp) »
<B<N o

Then the sysiem

dr § D () @D (&) e
DY = ? (1 )eee Pr, (_zn? ‘Pmi (@g)er me (wN)(ki seensky

My gy My = 1.
is ARS in (HG)n I if and only if each «one-dimensional» system is ARS in
«its» space. '
2.3. Theorem 2 from [3] on the absolute represenfation property for

sysiems of anmalytic functions in polycylindrical domains can be generalized
(in some sensc) to the case of multi-dimensional domains as follows.

THEOREM 3. Let 'VV}. (1< j< n) be a domain in €™ such that there exists

df

a basis in V (W) Lei«ij = g (J)(’ )i C V(Wj), where z; =

k=1
— (z(j_), . z(”;_f)), j= 1, .., n. Then the sysiem IBI Qj is ARS in
VW, X .. XW_ ) if and only if each component ij 113 ARS in V(Wj )
j=1,.,n ’

The proof issimilar\to that of Theorem 2 from [3}:

Remark. As ie known (see [6]), if WJ. is a bounded convex domain im
C™j, then there exists a basisin V (Wj). Therefore, Theorem 3 is valid fer

bounded convex domains Wj inC®Rj{j=1,.., n)



§3. PROPERTY OF INWARD GOIINUABILITY OF MULTI-DIMENSIUNAL.
REPRESENTING SYSTEMS OF EXPONENTIALS

3.1. We recall some definitions from [7].

An RS (ABRS) in V((J) where G is a domain in ¢t n = 1), is said to be
inward continuable from G to the snbdomain W < G if it is BS (ARS)
in V(W).

Without loss of generality, we may suppose 0 € G.

Further, a subdomain W of the convex domain G in C®(n > 1) is said to
be convex-complementable in G if there exists a convex compact set Ky in

C" such that W+ Ky = G.

It is not hard to see that the domain W is convex-complementable in G
if and only if the function A(f)} = h o (8) — hyy(E) is- convex and finite. In

particular, if ¢ is a bounded convex domain then dG (0 < d <{ 1) is convex-

compliementable in G,

Finally, it should also be mentioned that there exist different definitions
for the notion of functions of completely regular growth (c.r.g.) of several
variables, The ¢ strong » definition belongs to Gruman (see, e.g., [8]), while the
¢« weak » belongs to Azarin and Agranovic (see, e.g, [9]. It is known that:

a) if F(z) is a function of c.r.g. (iﬁ the astrong» "sense), then the following
.¢addition theorem of indicators» holds: Given any entire function of
.exponential type S§(z), the equality ) '

ﬁ*' B = g* @) + ﬁ*(z) YzeCn,

is eatlsi"led where £ (f;) is a regularized radial indicator of the entire function
f(2) (see, e.g., [8]).

b) the ¢ addition theorem of indicators» is eguivalent to the « weaky»
definition but the two above mentioned definitions are not equivalent (sce [9]).

3.2, Now let A; = {?\.(J) } =1 I < n) be finite nonzero complex numbers
in the z;— plane. Denote »
A@Dyz n
By, = e ¥ 7 (I\<\j\.<\n),sA= I'Ie:,l_
J k=1 =1

FHEOREM 4. If G is afinite convex domain in C*, and W is as nbdomuin convex-
complementable in G, then ¢ , Is inward continuable from G o W, :
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Proof. There exists a convexz compact set K w in C" such that W -} I&VV_
For the sake of simplicity let us write K for Kyr.

According to a resalt of Slgurdsson (see [10}) There is a funchon of ¢. . g.

a(A) (in the « weak » sense) such that £7(0) = A, (D), L€ C" . Moreover, by the
above mentioned remarks the « addition theorem of indicators » hold.

We consider a functional T' ¢ V'(K) corresponding to a(}) and introduce 2
convolution operator T' by the formula

(Ty) (@) =<yl +8), Tr >, ¥ y e V(W + K),
where for each fized x e W, the functional T acts at y(x + &) as an element of
the space V(K).

As shown in [8], the operator T is an epimorphism of V(W 4 K) onto
V{W). Therefore, for any function f(z)¢ V(W), there is a fonction ye V(&)

such that (I‘y) (z) = f(z) for all z e W
Let s, be a BS in V(G). In that case,

- <7 >‘--N ‘
y(5) = > dy v, e K27 (?,m 1‘“’).

kyvons k= 1 ky n s M Ky seus ™k

n

Furthermore, the series on the right hand side .converges to y(z) in V(G). By

| < o o=k
the continuity of the operator T, ihe series z dk,, kT (¢ "k )
- k -4

Kyeee *n=1 J
converges in V(W) to (E‘/y) (z) = f(2).

On the othker hand,

So, ¢, is RS in V(W). '

Repeating ihe same arguments and noting that the continuous o_perator\f
maps Jany absolutely convergent series in the topology of V.() into an
absolulety convergent series in the topology of V (W), we see that ifc 418

ARS in V (G), then ¢, is ARS in V(W). Q.ED,

REMARKS. 1) Theorem 4 was proved first for a less general case in our
paper {11].
111



2. The pr-oof of Theorem 4 is based on the onedimensional scheme used
in [7].

3. In the case when G is a bounded convex domain in C", while W is -

a convex-complementable subdomain in G, we have G = W Ky - Az shown

in (8], the operator T is an cpimorphism of V (G) onto V(W).
Using the same method as that used for the proof of Theorem 4 we obtain
the following result. -

THEOREM 5. If G is a bounded convex domain in C", and W s a convexr-conm-

plementable subdomain in G, then the sysleme , Is imward continuable from z to w.

t
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