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EXACT BOUNDS FOR DERIVATIVES OF CLASSICAL SOLUTION
OF CAUCHY'S PROBLEM FOR A QUASILINEAR EQUATION

HOANG VAN LAI

- . 1. INTRODUCTION

‘1. It has been proved in [1] that in general the following Cauchy'’s problem

@B\ ey WX E) _ 0 oo ooyt >0, (1)
ot or ‘ '
uz, 0) = u, (2), @

has mo classical solution (€. s.) for large f. Here u(z, ) is the unkpown function
of two variables, a(z) and u(z) are given smooth functions of one variable. On
the other hand, for small f c. s. always exists. This solution may be implicitly
determined by the formula (see [2]. p. 18) - _

u(z, ty = u_(x — ta()) S )

Tt =0
) i=0" o
such that in each segment [f,, ¢, ;] = 0, 1,. ac.s ux [)is implicitly
determined by formulas of the form (3) with exact bounds for the derivatives
3 :

ax
the existence interval for c. s. of problem (1), (2). Finally, we shall show that

In this paper we shall construct an increasing sequence [t ]

u(x, ) and 2 u(x, 1). We shall prove that the interval (0, T), T' = lim {,, is
at - + [=roa !
in the ease T = oo, a—a— u(z, 1) uniformly converges to zero as t -» o=, while in the
ax .

case T < o the derivative converges to o as { — T—0 at some point x, i.e. there
is no ¢.s, for f 2> T. The results in this paper may be used to study the conver- -
gence of the method of splines for solving the prokblem (1); (2) (see [5]).

g i \ . . .
2. EXISTENCE INTERVAL FOR CLASSICAL SOLUTION

Let us first deal with the question im which interval 0 < <'j:T ac.s, of
the problem (1) (2) can be determined by formula (3)? '
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Let @ = &(_ w, o) be the Banach space of bounded and continudus
functions f{x), — o < T < ‘=0, With the norm (see {3], p. 29)
If@ i = sup P 1.

— OO 2 50
Now suppose that the values of the unknown function u(z, {) are contained
in the segment [u,, u,], ‘ -

u, < wz, t)g u, : ‘ 3]

and that the functions. u)(x) and a(§) have the continuons derivatives

(%) & €,, Define

K= omax |a®!|, - . ®)
lll"‘<~.§“<~..u2 .
. 1 ' .
Ky = su tai(@) |, t, = ———, B> 1% (6)

We begin with proving that in the segment [0,{,] a c.s. u(z, 1) of the pro-
blem (1),(2)is implicitly determined by (3). In fact, let €, = C ([0, 1, } &) denote

the Banach space of continuous functions flz, H = f(., 1), defined on the
segment [0, {,] and taking values in €. C; is endowed with the norm (see

‘M.p1y _
if@ Bl g, = max If(,H]= max  sup { f(z, B |
' 0 <ty 0ty —eocar<ioe

Then the map .

. u(z, ) — u, (x — ta(u))
is a contraction inC,. Hence the equation (3) has a unique solation in C, . More-
over if a(u) and u, (x) have continuous derivatives, then u(x, f) has continuous

partial derivatives and

@ ) _ .0 e .o '
- a(u) e @ E z—taf) G
au(x! i) — H’(E) } (8)

T 14w @@ _
" From (7) and (8) it follows that u(x, 1) satisfies (1). It is easy to show that
u(x,!) satisfies (2) too. Hence, the function u(z, 1), determined by(3), is the ¢.s.
of the problem (1), 2) for 0 S E<C ;. '

We now extend this solution for ¢ > t,. To this end define (see[5])

o {x) = ulz, ti |18 'Ki = sup © | @@) |,
) 7 L e
‘ 1 :
ti+1:ti+m'a>f’toﬂo' . {g}

*) We shall suppose that Kg 7 0. The case Ky = 0 is trivial because u(zr, £ is then

constant.
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From the formulas for K, tobe esiablished later (15) it will foliows that
ifKo = 0 then K[.#O. '

For t; \<\-i-,<\ t, 14 We impiicitly determine the solution u(x, {) of equation
(1) by , ) ; ,
ulz, 1) = u (x — (t—t;) alu)) ' (10}

Let Gi r = C([t!. , € ) be the Banach space of bounded and continu-

i-+11

ous functions f(x, 1) = f(., #), defined on the segment Ly tyg ], and taking

valueain €. C,, , is endowed with the norm

NG Hyy = max |If. =~ -  max ~ sup | flt) |

As shown above in the case 0 <{{ < {;, the m‘ap
Wz, H)— u, (x —@—1;) a@))
is a contraction in C, , ;. Therefore, (10)has unique solution #(z, t)in C,yq0nd if

u, (x) has a continaous derivative, then

ou(x, 1) _ _w(E) ' — i ( — 11
—a ~"TTaT) v e Lk Gt TG AN
wu(z,t) 1 ; (12)

. w1 (—1,) w (B)a(w)
i.e. u(x, t) satisfies (1) for #, <I<CE . '

Let '

, N jrco

PROPOSITION 1. The function u(z, t), determined by (3) and (10), s the
c.s. of problem (1), (2) for 0 <t < T:

Proof. It is easy to see that u(z, f) is a continuous function of ‘two
yariables — oo < T < o, 0L ¢ <<T. For g > 1 the denominators in (), (8)
and (11), (12) are alwaya positive, i. e. _

14 (-t w, (E)a(u):rO&—-z:—-(i—t )a(u) (14)

and from (8) and (12) it follows that

Kopy < 2= Ky 5 i= 0,1 | OF

Later we shall see that the equality is possible in (15).

If @ (x) € € then the' function u(w, {) has continuous derivatives at \
t=1.. Now we prove that they are continuous at every t, 0 <t <T. ladeed,
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oufz,b) _— 2y (&) ;
oz =i T4 — 4y ) () @'(z, @) .
= T — (f - tl-___l ) a(ai (CB)).

1

4
) |
On .the other hand, since w’ () = -E—?—— u(z, t;) we can write
i x
du(x,t) . w_ € )
= ) = ) = i -
0z t=t; + 0 ! i2g VT T — (801 (3)

_ au(zx,t)
ox |t=f,.-.- 0

i. e. the function du(z,t) is continuous at point { =i, '

or -
Further, for ¢ II.- we have
u(a,t) = — a(u) u(x,i)'
of x

The continuity of the function%?—g- at { = {; then follows from that-of a(u)

andgﬁg—vi)-. Hemee the fupction a(z,) is the c.s. of problem (D (2) for
: xz

0t < T. Proposition 1 is proved. -
Since each £ depends on B, one might think that T itself- depends on .

However, we have:

PROPOSITION 2. The value T in (13) is independent of B.

Proof We first observe that if the problem (1), (2) has a.c.s. u(x,t) for
0 <t T, 1<CT, then this solution is unigue. This fact can be derived from the
uniqueness theorem for the general solulion of problem (1), (2) for £ 2> 0 (see
for example [10]). But herﬁit can also be easily proved by the method of cha-

racteristics. In fact, let u(x,i) be a c.s. of the problem (1), (2) for 0 <! T,

Then we determine the functions x(1) and “#(1) by means of the system of ordi-

L

nary differential equations (see for example [6], p.71)

.‘;i_—, a(a(z.t)),  T0)= B (16)
& @@, 0=y an

Here y is 8 parameter — e < . < o, Becanse the function a (¢) has a continu-

) E(a:, t)

- . ow (z, 1) .
ous_ derivative on {uy, upjand - eC {_[O. Ty ) 6), o €
e C ([0, T;,], €), the problems (16), (17) have unique sotutions 2(f) and ; ()

0 < t < T and these solutions satisfy the following integrat equalities

fid

.r.‘



t .
o) =y + [ atu(z(s).s)ds, ;(U ey + [au(z(s) s}
0 0 ,

Now define the functions v({), ;(t) by
o(t) =u(a(i), 1), (1) =u@® D0KILT, .
Then ' ‘

t t
w() =y + {a (o)), T () my+{a@ () s €s)
0 0 )
Noting that u (x, f)and U (z, t) satisfy (1) and (2), we have
do (b '
T—x: 0, v(0) = ua(y)

do (1)

==$0,N0 = u (Y
3 v (@) o

From these equalities it follows that v(f) r==; (0 0 <t Tand us'mg‘ (18) we

obtain u(x, t}=3(x, ), --:o<;f;< w, 0 < I K T1 .

This being so, from (3) and (10) we bave for the unique solutlon u(z, f) of

the problem (1), {2):

inf u,(x) < ulx, H <  sop u, =)
—_— e =0 . oo K T O

Hence, if uy anduy, in (4) satisfy

Uy < inl - u, (.z:), sup u, (x) < tiy

— oo pice = Co ey < 00
ilen the c.s. of the problem (1), (2), determined by (3) and (10). satisfies the
bounding conditions ). -

Now let us prove that the value T from (13) is independent of B. Take any

E> 1 such thatgyé B, and let?; be the value- obtained from (9) 'when B is

replaced by p and let T = lim T, We shall show that T =T. In fact, first

| 1

- note that (ii) T=0 and (ti)I = are increasing sequences. Consider now any

i== 0

fived {, . Since for 0« 1< ; the problem (1), (2) has a umique ¢. 8. u(z, f) -

with a_u(a_a:,_i_)_ & C([0, t}, €) we bave
T
|

aua:'t)'gk=}(f1)<“n”°°<$<°°’0<t<fi'

u




Therefore, for ¢ < f; we have

JKn J— sup M! % _}:"
— . or
oo =t =l To
T':e equality -
. w ~ o~ 1
v ntl = h + ~
b KH K
then implies
- ) o 1
! tn-H 2 tn -+ ~ -
. B KK

Hence, there must exist a j such that?. > 1. This being true for any i, we

have T < % In the same manner, T T and therefore T'= T, PrOposltton 2.

is proved.
~ From now on we shall suppose that p > 2 and be fized. Then for every iy
i =0, 1,.., the equatlon

xz a(@,, ; @) =y, —o= T Yy =o°

S .

| pE, K

has a unique solution. In fact, for p > 2, from (15) we see ihat the niap
1 .

X = mﬂ(ai_l_l(x))

is a contrachon
Remark 1. In the case WheLe the condition
u(a, t) Yy =u, (@), 1, %0 . {29
bold instead of (2), we can substitute © = — to , (@, T) = u(z £

and obtain the following problem

G v(:r 1) dofx, T) _ X . .
aT +a) oz =0 : ‘(1)
v(x, 0) = uy(x). (27)

So, if the problem (1%, (2°) has a ¢ s. v(, 1) for 0 < T < T, then the
prob'em(1’), {2) hasac.s. a(x, 1) for 1) <it<iy + T.

3. ESTIMATES FORT..

Let us now estimate a bound for 7. For that we have to estimate a bound

for u;(x).
First consider the case (sce (7], p. 354)
a(1) =u (19)
Then K =1, where K is determined from (5). From now on, den fe - :
Ky = inf  uy(x), Ky = sup  uy(x) (20)

— D0 - = 00 . O - 20

4
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' CHEOREM1. Let a(u) = u, w'(x) & € and ES >0, Then T = o, and for any I,

0 < ! < oo we have —a[;—(x-'!—tise and
x
lim “ au(m. t) [l - 0 @y
t—-koa )
Froof. Denote |
-, . ’

K™= iof wi(z), K, =  sup u(x ) (22)

— ool o0 O - 3

By induction we can show that

K;‘} 0, (23)'
(B i p*
=) K

In fact, for i = 0 (23) holds by assumplion and (24) is trivial. Now suppose
that (23) and (24) hold :_for i = j. Then K;‘ = Kj_. From (8) and (12) we have

| . ;) '
Bppy (7) = 1( 8=z “““‘[1?‘ "y (2) )
1+ EE— ”} (§j) BLI

Since uj,. (x) > K; > 0, it follows from (14) that

Kj—:1 > 0.

But clearly, the function

".-%‘75—*-}—
ol -4

increases with a for each fixed x. Therefore, from (25) it follows that
u}+1 (x) =g ¢ ("1} (3)8
and hence, taking account of the inductidn assumption,

gy (Z) =

-+

+ :
. K, 5 i+1
K+ = / =y B ’-i:-‘ -——B——J
s o L 1 _(B+1) :
iy
Thus, (23) and (24) hold for every i. Further
1 B+1 1 B+ 1 B
t ’—'—‘—"=t —— —_— ==
M 1+BK - +Ku( B )‘KO[H’( B )+ +( B )]

-1



Hence

For

: J +1.
t; ﬂé [(&131)’ - 1] LI 4y, EALD[(BF#)J _ 1],.

we get from (8), (12) and (23)

ou (x, 1)
‘ dx
whence (21) follows, Theorem 1 is proved.

0<

<Kl =k, (Bi 1)-" ’ - (26)

Remark 2. In view of (1) and (4), we have
du (x, )
at

Lmax (luz],]usl)

ou (x, t) ‘

* ., ou (i)
So under the hypotheses of Theorem 1, for every fixed {, ot e €

and

{im
| Gl ==

@ Doo.
ot

Turning to ghe case K, < 0, we can prove the following

-

THEOREM 2. Le! a(u)=u, u}) (x)e € and Ko_< (. Then
| 1

Pm—— <o .
N ‘ . —-I,xo o
- and for every fixed {, 01 <T, ou a(x’ D¢ ¢ and
X
lim [ 220 “ £=co . (27)
t—7—0 ox

The equality (27) shows that, for ¢ > T the problem (1), (2) bas no ¢. s, for
these { only a general solution can be constructed (see [1].

Proof. We first show that for fixed B, there is a numb.r j such that

1

K, = —K , . (28)
wkhere K;._ and K:- are determined by {22). In fact, if —KO— > K then j = 0.
Now suppose
' 0J~K <k 6 .
Assume the cqntf'ary to (28}, i.e.

K, =K > K], ©9)



for ali 1 i =0, 1,.. Then from (14} and (25) we have

_l__
* K. - 1 i+17
K., =K1 = : I AN (_B,) '8
o 14 L+ B+I B+1 o
pic, ! : :

Hence , o .

- lim I(l. :0. ' - N (30)

I.—)ba——l
On the other hand, (14) and (25) imply
—K _ _
> — K oo —K >0 (31)

Kip;2—King = 1 -
. 1———(— K,
BK, t
The relation (31) C(')Ilﬂict with (30). Therelore, there must -be a number j
such that ' '

Kl' :KT> _—f\-?,l’: 0,1,y [—_‘1’

T

\ K== — K > KT, : ,
.’ J j

We now-.prove Theorem 2 by induction on this number j,

‘For j=0wehave K = — K7 . For simplicity, let

a
K,=— w (z,)
From (8) it follows that
y e (&)1 B . 1
@] < 2 =K t=c—gp w@
' ol 0 -
BK )
\Let &y be the solutioﬁ of the equationx, — B_AO_ u, (331):,3:0 .
Then . e )
— u(z,)
’ 0 B
-— 1(331 ) B 1 ) — ‘"B—IF\O
1 — —u (x) p—
BKo oo
&a ..
_ 3] - .
Fr=—ty = (3—1 (“1‘0;)° (32)

Further, from (12) and (32),

K =K =(-E£-I—)‘ (_- KO_) - (ﬁ?)fxo . 133)



Therefore

ti+1,nii+-é%_—. . ty- T 3;1{ (BEI)EIA% [IH(B; )!H]"

i

and hence,
1

_"—'--'-"—',

—-— K~
[

~ Prm lim { om
i—roo

4]

From (33) then deduce (27). Thus, if j = 0 then (27) holds.

Suppose now that (27) holds for k = O,1,...,, j—1, j >» 1, and let us prove
it for k = j. For this purpose, consider the Cauchy’s problem for equation (1}
(t > i,), 'with the initial condition

ulz, t;) = u, (). 34)

Then Kj—r ™ — K;—I' Using Remark 1 we obtain the c. s. of the problem (1)

and (34) for _ .

with
1
T L .
1 — K~
1
Since I = , we get from (31) and (35)
° '
BK +K-— 1 .
+ T, w — + ° — ® - — . (36)
BK —K"BE, “‘Ko '
Foi every 1, t, <t <ty o we have au(azl) ¢ Cand K} < || =l a”(x D K,
where 4 )
) f + - B i .+ . :
Kizmm (Kf‘ Ki+1) . Ki (m) KO" 150,1,...‘]-— 1
;i . \
~ - Ko i>]
K;’ == IAAX (KI‘ Ki+1) N - !\i _— 1 i ]
14— K._1
Ky

Bul, for i > j’



Hence

iim

H ou(a, by '1 .
i—>T—0 I

and using (a?) we can calculate ali Ix ,i==0, 1,.. Theorem 2 Is proved.

Ramark 3. From Theorers 1 and 2 we see that on the segment [4;, i+1} the

au(x,
bounds for L—)- are X, and K.+ sand wuen! = f,and f= 1., these bounds
oz i i-+1 i i1
are exact.

Now consider the case a(u) == u. Suppose thai the equatlon (1) is strictly
hyperbolic (see [1}), i.e. ‘
@E) = 0, u <E< U, @8
Let us set o . .
vz, 1) = a’ulz, D).
Then v(x, t) is the solution of the following Cauchy's problem

dv(x,h) 1o av(x,1)
ot dx

o{z, 1) = vy (),

where v, (x) = ﬁ(u(x, 0)) = a(u,, (x)). Therefore using Theorems 1 and 2 we can

=0, — o<k << 0,0,

determine the interval in which the c¢. s. of the plohlem (1), (2) ex’st . In
fact, when

< Ta(uy @) > 0, .(9)

the ¢. s. u{, t) exists for all £, 0 C { < co. In the case when (39) does not held,
the e. s. u(x, 1) exists only on tbe finite interval [0, 7]. This ecriterion fo: the
existence of ¢, s. of (1), (2) has been s:a'ed in [8].

Remark 4. In [9], the case
’ c{u) = ou
 has been vonsidered for all f, — s < [ < =, V\u nole that if w(x) < 0
(or w{x) ™= 0), the c. s.” u{x. 1) exists for ii t »0 ( < 0 1.,<;pect1vely)

Finally if the equfmon (1) is not strictly h}p‘rhohc then from (8)
and (12) we get '

K, B g it
K., < &= K, <o s (‘_‘) Ko «
M1 T p—1 ’ _
B
Faruner,
1 1 B_"] t":—‘lk ' 1 B_l i+2
&ﬂ=%+ﬁ§r>ﬁ+a%K(s) %%Khh(ﬁ) }
. Hence - ; ‘
T = Lim t, S ‘K“I‘K



For { < I, we have

aulx, 1)
o
[Towever, we are not.able to find the exact bounds in this case.

g!(ig(%)iKo. |
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