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1. INTRODUCTION AND NOTATION

Let E be a locally convex (L. ¢.) topological vector space (TVS) with the
dual E'. Throughout this paper (a,), (bk) and (nk), also with other subscripts

or indexes, will denote a sequence of positive real numbers tending to zero, a
sequence of elements from E, and a strictly increasing sequence of positive
integers, respectively. If p and ¢ are the laws of independent random vectors
(r. v. 's) X and Y, n is a natural number and a # 0, then pg denotes the law

of 1. v. X - ¥, a-p denotes the law of aX, and p" is defined recursively bz
pt = p"~! p. Futhermore, if pis infinitely divisible (inf, div.) then following
Siebert ([9]), p. 243), we can define p' for all # > 0.

Let o> denote the weak convergence of laws and 8b; denote the law
concentrated at the point b ¢ E. If

Rk . .

(a,.p") &) = ¢ ° ' (A
when k — e, then we say that p belongs to the domain of purtial aftraction
of g, (DPA(q)). If we assume in addtion that

‘ r,/ my > r> 0, o @
when k — oo, then we say that q is semistable and p belongs to the domain’
of semi-atfraction of g, (DSA(g)), or more exactly, p belongs to the domuain

of r-semi-attraction of g, (DSA(r, q)). Further, we say that ¢ is stable and p
belongs to the domain of attraction of q. (D V(q)), ¥ in (1), (n) coincides

with the sequence of a}ll matural numbers, 1L e.

(ak . pk) B(bk) = .
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For a real sequence {¢, ) tet LIM(c, ) denole the set of wfl Miit peints of
(e, ). Then it is easy (o sez that

() (1Y holdsfor so ¢ seq.ences (4, )y (b)) and (n, ), then there cxist

sequences (a’,), (b}, ) and (n}) satisfying (7)and such that (1)eLIM(R, / &) 14 )-

Let p and ¢ be Radon laws on E, let ¢ be convexly light and let
H={t>0: p eDSA(t, g)}. By virtue of Theorem 3 and Lemma 4 in [13,if H# O
then H is a closed multiplicative subgroup of R+ = {r:r>0¢{. Thus either
H = R+ (and then g is stable) or H is generated by s, the largest element in
H less than 1, In the latter case we say that q is (s)—semistable and p belongs
to the domain of (s) — semi - atiraction of g, (DSA((s), q))

The concept of semistable laws was introduced by Lévy [7] in 1937. The
characterization of semistable laws on the real line was first given hy Kruglov [3]
in 1972. The characterization of semistable laws on a Hilbert space was studied
in [4), [5] and [6]. Recently, in 1982, the problem for semistable laws om al.c.
TVS has been solved by D. M. Chung, B. S. Rajput and A. Tortrat [1]. In this
paper we shall study the relationship between p and ¢ satisfying (1) and (2).
We shall also show that in the definitions of gemistability and of domains of.
semi — attraction, condition (2) can be replaced by weaker ones.

2. RESULT3 AND PROOFS

Let p and ¢ be infinitely divisible laws. We say that p and ¢ are equivalent,
(P ~ q), if there exist numbers a > 0, { > 0 and an element be E such that

p=(a.q" )3(b) _
THEOREM 1. Lef p. ¢, and g, 'be Radon laws on E, q, and g, be convexly
tight. Assume that p& DPA(q, ) and there exist, sequences (a, ), (b, )and (n, )
such that '

' (ak'-Pnk ).6(bk)' = 45 . (3)
and , .
(n,[N.q) >¢€ (%)
for all k, where ¢ is a positive number, Then
' q1 -~ qz .

Preof. By assumption we can find sequences (a3 ), (b,) and (n; ) such that

: ] n, 3 )
(@, .p*) &b ) =g | (5)
‘Without loss of generality one can suppose that there exists a subsequence of
positive—_integers (k ¢m)) such that

Berm)-1 S T S Pitay
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Then for all m =1, 2,._:. we have

- 1
< Mmy— g M) S B ! Py < 1
Hence, one ean assume moreover that
n’/n](.)-—>sasm—>oe. Ki)!

wthes gL
Lety ¢ F'.If pis the law of ther v. X, then 2 denotes the law of the

random- variable y,X. From (3) we have

H
¥ m *
(@, . p, )W) = (g0, (73
On the other hand, the left side of (7) can be written as

(@ ] ) (g By ™) 8 G By ) "l ()

Hence and by the type convergence theorem on the real line we have
a, [ Qpey—> a> 0,y (b —a, m /e Yoo, bg which together with
(3}, (6), (7) imply the equ tion

(4, ), = (@ (g) P& ®
From this and Corollary 1 of Lemma 2 in [10] we  con-lude that there exists

b ¢ E such that y(b) Hb foralye E and ¢, = (a. qz) 8(1)), LLeiq, ~ 45,
The theorem is proved.

THEOREM 2. Let p, q, and q, be as in Theorem 1 and let p e DSA(r, q,) with

“ref{0, 1]. Then q; ~ q, if and 0 Iy if p e DSA(r, q4).

Proof. The q if » part follows from Theorem 1, so we need only prove the
conly if » part. Assume that (2) and (3) hold and ¢, ~ ¢,, i.e. g, =(a.q25) & (b)

with @ > 0, s > 0 and b ¢ E. Put

a =a.a,
k -k

Y
bk =b - asbk,

n —= .8
k [nk J

where [{] means the integer part of real number {. Then by (2) we have

lim (n;cjn;cH) =klim ([nk.s}/[n L8 =

=] —»oo k+l

= lm (o, /0, ) =", - . (9,
h=—roo . . .
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and

n/n, =[n, .s)/n, s,
as k —» oo, Therefore, it is easy to verily that (5) holds, Hence irom (9) one has
p € DSA(r, q,). The proof is complete. .

From the above theorems we infer that the r-semistability is imvariant
under the equivalence relation ~. On the other hand, the DSA’s of r-semistable
and — semistable laws are disjoint provided v- 3 s. Moreover, we get the
following theorem :

THEOREM 3. Lef p and ¢ be Radon laws on E, q be convexly tight. Assume
that (1) holds and the following condition is satisfied .
LI‘II(n V nk p N0, 1)=¢ . M
Then gq is semistable.

Proof.” By virtue of (10) we can find a number ¢ & (0, 1) and a sequence
{k{(m)) of natural numbers such that

On the other hand, we have the equality

”k(:n)+az) 5(b

(ak(m)+1 ' k(m)+1) =

_ T e(m)+1 /" ilm)
—((ak(m)+1/ ak(m))' {2y emy- P Sé(bk(m))) T, 6(bk(m)+1 -

@ar+17 Ym)) * Pmyrs ” P Opend)
Then nsing the same technique as in the proof of Theorem ! we can show
by (1) that there exist a>0and beE §uci1 that
n.
(ak(m)H P k(m)+1) 5(b
Hence from {I) we have

w41 > (@ige) db.

. g = (a.q%) &),
which together with Theorem 3 of [1] lmphes the semistability of q The
theorem is proved.

It should be noted thatin the one-dimensional case this theorem was
proved by F. \rllshelkls {{8, Theorem 12]) In view of this theorem, one can ask
the following.

Qaestion. Assume that p and ¢ satisfy the conditions in Theorem 3. Does
p belong to the DSA of ¢?
- ‘A partial answer to this question is contained in the following ¢

THEOREM 4. Let p and ¢ be as in Theorem 3, Then (1) tagether with (4) implies
(a) IT qis (r) —semistable then p € DSA ((r). q),
(b) If q is stable then p e DA (q).

" . To establish The rem 4 we neel two lemmas,
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LEMMA 1. L#t 0 <r <= 1 and q be an (r) —semistable law. Suppose that there
exist sequences (a;.), (by), (np) and a real number ¢, 0 < ¢ < 1 satisfying (1) «

and (4). Then there exist sequences (a) ), (b, ) and (n) such that

(a- P ) S =g 1
and -~ . ’
LIM (ny/nm; ) = {r, 1}. (2%

Proof. Let « be the semistability-exponent of ¢, y =1/= and N be a natural
number satisfying

- N ses N+
Let sequences (a(m}) (b‘m)) and (n(m pm=1, 2; «e s N+ 1, be defined by

ag{m) =a,. r(m~1)’y.

-.b(m)=b ) (r(m—UY [nk/r(m—-l)]/nk)'
(m)_[nk/ {m— 1)]

Then for m = 1,2,.... N 4- 1 there is an element b(m) € E such that
(m)
@™ p*) & (™) > 4 8 6™, (1)
Indeed, the left side of (11) can be wriiten as |

- n, n ™ (m~1)
r(m 1)7((%.? L) 6(bk)) k k_”(m 1)7' qI/r -

when k —» o=, because of (1) &nd
In ‘,rfjr(""'f)]j.njf — 1/1'('“‘”1) as 1, —> ce.
But q being (r) — semistable; by virtue of Lemma 4 in {1], we have
- im0y g™ g satmy
with b ¢ E, Thus (11} is true.
Let h(k), k = 1,2,..., be patural numbers such that

nrhO9=8 oy < g, - (12)
Then from (4) we have for ali -k - '
1< h(k) <N +1. - ' 13)
- We shgil show that ,
HM(ngh(k)) My = {r 1}, (14)
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Indeed, (11) implics f
ﬂ(m) .

(ai_m).p ko 5(1)2’”)— b(m)) = q as k >oo

for m= 1,2,..., N -4 1. Therefore, by seiting
(h(»’-'))
p2k~—1 - (a(h A)) ) 6(b]({h(k))_ b(h(}:)) ,
Do = ey P ¥ i Sy
for k= 1, 2,..., we have from (1)
P, =g as k — oo,

If s ¢ LIM (n(h(k))/nk_[_l) s &= 1, then (12) implies r < s < 1,
On the other hand, frem {4) and the definition of p,, by just the same way as
in the proof Theorem 3 we can see that g is s-semistable, But ¢ is(r)-scmistable.
Consequently, s=r, proving (14).

The sequences (a}), (b)) and (n‘,\) are constructed as follows:

s __ (m)
ak_. aj 3

E (m) (m)
by = b o,

r)
e =1
fhk=RhD+HD+ . +F(j—-—D+m1<<m<h(Q),j=23...Thenby

virtue of (11) and (13) we can easily verify that (1 )holds Besides, for k= h(1)-+-
+ B(@) - + G — 1)+ m,

(a)if 1 < m < h(jy then -
(m), (m-!—f) fm—1) m ‘
k/nk+1 = n_, in I [" A I [‘n AT }—3»1" . (15)
as j— oo
(b) If Jt = 11(1’) 4 B(2) + v + B() then
mr, = n(h(.!))/n . -

This together with (14) and (15) yields (2). The proof is complete

LEMMA 2. Let p and ¢ be lawson E, q be convexly fzqht and 0 < I < 1
" (i) If there exist sequences (a, ), (b,)and (n, ) satisfying (1) and (2), then

Lﬁe can find sequences (a, ), (b, )'and (n') such that (1°) and (2') hold.

(ii) Conversely, if there exist sequences (a )y (b;‘_ ) and ( n;{)'suc_h that (1°)
and {2°) hold with q non-stable, then we can construct sequences ( a, ) (bk) and

(n,.) satisfying (1) and \2).
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Proof . (i) Let us put for m =1, 2,...

s S T
Yom-1= Y9 = %y
) ’ 9 — B
b2m = bm _"bm'
n =n_, n'zm =n, - 1.

2m—1

Then n, /n

2m 2m—1 -1 and by the assumptlon’ n2 / Imn+1 — P ThEI'efor@

om | Bop g = I+ Gousequently we have 2.
On the other hand, (a).p) = 6 (0) because a; — 0, Then (1’) holds by
virtue of (1). .

(ii} Now suppose that (1’) and (2’) are satisfied. By an argument analogous
to that used for the proof of Theorem 3 we see that ¢ is r-semistablé. Then,
since g is non-stable, by virtue 0" Lemma 4 in [1] there exists a positive number

< 1 such that ¢ is (r, ) — semistable and r = r)' for some natural m.

Ty 0

Under these conditions:

(@) If m = 1 then ¢ is (r )—semistable. Let « be the semistability exponent
of ¢ and y = Ije. For every k=1, 2,... let 2(k) be a natural number
such that '

T e Ther S TP Mg (16)
Then by virtue of (1') and Lemma 6 in [1] we see that -
. e s
im (a )6(b /r) =
k—~> o0

= tim (), . p") 800 ) 7 =

k—>ca
= Pl =(rv.q) 8)

with bg e E, Hence

(@ r ) p[“k/ ])S(b;c.r'\’ -1 b'j'{) = q. a7
We now show that o
LIM([r / 7]/ ty,) = {r, 1} B

Indeed, it follows from (16) that

Lo (1 rY My 2 Mgy = 1/ Bhgn)



and by virtue of (2°)
: LIM(R;!(A,)_I/ ";;(k)) - {I‘, 1}‘
Consequently, ' -
LIM ([n},/ 11/ Ry ) s 1)

Thus, if s s LIM ([}, / ]/ R}, )) and s 7 1 then by virtae of (1) and (17), just as

in the proof Lemma 1 we have s = r, proving (18).
Define

_'Ki = {k" [n}l/"]/n;,(k)>(1+r)/2},

K, = {k: [n}c/r]/n;l(k) <(14-r)/2}.
Then (18) implies '

lim  ([n/r]/ n"h(k)) =1,

k=voo, k€K1
o (19)
lim (nyr]/n, ) = I .
k—>ce, k€K, W/ ey
Moreover, it is obvious that
[Ryr] - r, a8 k — o= (20)

We shall construct the sequences (a,), (b,) and (1) by induction:

Let a, = a’j; by = b},ni = n;. Further we s.el

ay = @y, by = by 3y Ry = Rpy
“‘if 1€ KI, and
a, = a,r, by = byr -1 b:, ny = [ry/r}
@y = dyq, by = gy By = Myy |
if 1 K2. | . 3

S“PPOSé that a,, b, n. have been constructed for i =1, 2,..., k and

b, = b}

a4 = ";;(j)- Ry P < “;.(r)

for some natural j. Then we set

Ur1 = G Vet = Opaiy Phr1 = PN
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if h(j) € K, and
: o 3 . - B -7 0 __ ]
Gog =T by =0y = b =1y rl;

Urs = BGay Pere = Phainy Mkre = M)
if (P e KA, ete, '

It follows from (1) and (17) that (1) is true for the new sequences {q,)
(b, ), and (n,). Moreover (2) follows immediately from (19) and (20).

(b)In the case m>>1, by virtue of (). we can suppose that »’, >

> rMm11 > g for all k. Then the conditions of Lemma 1 are satisfied with r,
o ‘

in place of » and (a’k) s (b’k)', (n ;{) playing the role of (ak) . (bk) , (nk) respec -

tively. Thus, with the new sequences constructed by using Lemma 1, we are redu-
ced to the case m = 1 and can apply the above part to complete the proof.

Proof of Theorem 4.

(a) Let ¢ be (r} —semlstable with 0 < r<'1. Then we can suppose in 2ddi-
tion that 0 <~ ¢ < rand by applying Lemma 1 reduce the sitmation to the case
when LIM (r, /gy } = {r, 1}. Thus, by virtue of Lemma 2 we have p¢ DSA

), 9). _
@ (ti?) Let ¢ be stable of exponent « and let ¥ = %ja. Define B (s} s £ for
g (0,1 hy the equality _

7. 5@ = | @D
(sec Lemma 4 and Lemma 6 of [1]) Then is is ciear that fors, i € (0,7] the follow '
ing is true

B(s) >B(i)ass— L . (22) '
Let sequences' (af:l) and (b;’n) be defined as follows:’
=(n; /mY .a, (23)

o T —1 |
’ _(Hjjﬂ'!) -bj’!‘ﬁ(njfm):
for n; =m< Ry J=1, 2 ... We shall show that,

0 4] .
, (@ PO ) = g ‘ @24

when m —» oo, -

Indeed, let (m’) be any subsequence of natural numbers, Then forali m'e (’)
one can find a natoral number j(m®) such that

1

L m<<n

Rime) Ho')+1°
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 Hence, from (4),
i~ ”j(m’;/ m’ = ‘r:jr'm’)/”j(m’) + 1 = C,
One can pick from (i’ ) another subsequence (m”) such that
nj(m”) / m P — 5, (25)
with 1 > s > 0. Now, from (1), (21}, (22),(23), and (25), we have
0 m’” 0 — :
(am” * P )6(bm”) -

= )Y . . m’’

] ” ’Y-j ° b - 11
6((11_7(!11")/”1 ) j(HI”) B (nj(m”)lm ))
= ((Rjpym™)Y . (@) p 57,
R 6( bj(m’s)))m /ﬂj(m”)) & (B (nf(m” m”))
= (7. ¢%) 8(B(s)) = q.

TFhus (23) holds, i. e. p e DA(q), completing the proof,
As an immediate consequence of Theorem 4, we have

COROLLARY. If q is a stable law then DA(q) == DS‘A(r, q) for every r e (0,1),

- It is worth noticing that conditions (4) and (10) are waaker than condition(2)
and that (10) is the weakest of these conditions. Thus, Theorem 3 gives a mew
characterization for gemistability while Theorem 4, gives new characterizations
for domains of attraction and domains of semi-attraction,

Finally, the following example will explain why in Theorem 4 we can
not replace (4) by (10):

Example.-Let E be a separable Fréchet space a.nd q be an r-semistable law
on £ with 0 < r < 1. By virtue of Theorem 1 in [2] there exists an universal
law p on E which belongs to DPA’s of ail inf. div. laws. Thus, we can

find sequences (a)), (b)), and (n)) satisfying (1’), Then, by taking a subse-
guence if necessary, we can assume in addition that
< g srl<m . (26)
Let « be the semistability exponent of q and y =1 /.« Then; in follows
from:Lemma 6 in {1] and (1°) that .

lim (a}{ . p[nk/r

k—oa )

hsw, =

— lim ((av. n}c (Sb’ !1/.!"=
Jm (@ p ) (f‘_))

i
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with bg e £. Therefore

.(a;{_,ﬁf).p[n}/ri)‘ st 11— 1) - a | o
Now we aefine séqugnces (@), (b, ) and (n,) by .
' Gy =, ay =0 Y,

by _g= b, by =1b"" r7t - b0,

Rommit = T+ Ry = [Rp/7)
Then, by virtue of (26), (n,)is a strictly !increa'éing sequence and (1’) logether
with (27) implies (1). Besides, |

Ropy ! "ékr-"n,; 1}/ r]—ras k-

Thus, we have (10).

On the other hand, if p € DSA(g) then, according to Theorem 1, every inf.
div. law is equivalent to g, because g is an universal law, This is not true since
the class of all inf. div. law. is evidently larger than the class of all semis-
table laws. Thus, p ¢ DSA (g) although (I) and (10) bold for g.

BIBLIOGRAPHY

{1] D-M. Chung; B. S. Rajput, and A. Tortrat, Semistable Laws on Topologlcal Vector Spa=
cese Z. Wahrsch. Verw. Gebiete, 60 (1982), 209 — 218. ‘

[2] Ho Dang Phuc, Universal Distribution for Infinitely Divisible Distributions on Fréchel
Space, Ann, Inst. Henri Poincaré, Section B, 17 (1981), 219-227.

[3} B.M. Kpyrnos, 06 0dnom pacutupenuy Kaacca yemolsuswe pacnpedescnuil Teophs BoPoAT. B
mpexem., 17 (1972), 723-732.

[4] B.M. Kpyemos 06 odnom raacce npedesvrns pacnpgaeserr;ud ¢ euablepmosox RPOCMPAHCMAe,
‘ ~HAgros, uar. cGopmmr, 17 {1972), 85— 88,

{\ {5] A. Kumar, Semistable Measures on a Hilbert Space, J. Multivariate Analysis, 6 (1975),
309— 318. .

[61 R.G. Laha and V. K. Rohatgi, Semistable Measures on @ "ilbert Space. J. Multivariate
Analysis, 10 (1980), 88-- 94.

[7] P. M. Levy, Theoric de I’Addition des Variables Aleatoires, Gauthler — Villars 1937.

4 — 786 ) ‘ - 49



[8] .G, Mumeiirnc, Hewomopus pactiupenlis Bageca yemolinnays 3axonos, JIuToR. MaTe cOopauil,
12 (1972), 89— 99, )
{9] E. Siebert, Einbetiung Unendlichteitbarer Wahrscheinlichkeitsmasse auf Topologischen
; Gruppen, Z. Wahrsch. Verw. Gebiete 28 (1974), 237~ 247.
[10] A. Tortrat. Structure des lois indéfiniment divisibles dans opn E. V. T.. Leetare
(1867), Berlin — Heidelberg — New York, 229 — 238. . .
S \

i

Notes,

~ Recetved February 1, 1986
Revised June 3, 1987

INSTITUTE OF MATHEMATIGS, p. 0. BOX 631 BO HO, BA RO}
f o

'

p—
-

uﬁ“



