4

ON STATISTICS ANALOGOUS TO PEARSON'S CHI-SQUARE IN TESTING THE NULL HYPOTHESIS INCLUDING UNKNOWN PARAMETERS

NGUYEN VAN HO and NGUYEN DANG HANH

I INTRODUCTION

E. Csáki and I. Vincze [2] investigated the test (1.4) which is analogous to Pearson's Chi-square, utilizing, apart from the sample frequencies lying in the partition intervals, the sample positions too. We consider here the similar test (1.11) under the null hypothesis \mathcal{H}_0 depending on s unknown parameters.

Let $X_1, ..., X_n$ be independent and have the common distribution function F(x). Let $-\infty = x_0 < x_1 < x_2 < ... < x_r = \infty$ be a given partition of R^1 such that

 $\begin{aligned} p_i &= P\left\{X_1 \in \Delta_i = (x_{i-1}, x_i)\right\} = F(x_i) - F(x_{i-1}) > 0, \ i = 1, ..., \ r, \\ \text{and let } v_i &= \operatorname{card}_i\left\{j \colon X_j \in \Delta_i \right., \ j = 1, ..., \ n\right\}, \ i = 1, ..., \ r. \end{aligned}$

It is well-known that

$$\chi^{2} = \sum_{i=1}^{r} \frac{(v_{i} - np_{i})^{2}}{np_{i}} \stackrel{\mathcal{L}}{\to} \chi^{2}(r - 1)$$
 (1.1)

as $n \to \infty$, where \mathcal{L} de otes the convergence in law.

Let

$$\begin{cases} e_i = E(X_1 | X_i \in \Delta_i), \\ \delta_i^2 = V(X_1 | X_1 \in \Delta_i), \end{cases}$$
 (1.2)

and

$$\overline{X}_i = \frac{1}{v_i} \sum_{X_j \in \Delta_i} X_j, i = 1, \dots, r.$$
(1.3)

Csáki and Vincze [2] investigated the test

$$\overline{\chi}^2 = \sum_{i=I}^r \left(\frac{\overline{X}_i - e_i}{6_i} \right)^2 \cdot v_i \qquad (1.4)$$

and showed that under R

$$\frac{-2}{\chi^2} \stackrel{\mathcal{L}}{\to} \chi^2(r) \quad \text{as} \quad n \to \infty,$$
(1.5)

 \mathbf{and}

$$\frac{\overline{\chi}^2 - r}{\sqrt[4]{2r}} \stackrel{\mathcal{L}}{\to} N(0,1) \tag{1.6}$$

 $n \to \infty$ and $r = \theta(n^{\alpha}), 0 < \alpha < 1$, (cf. Th. 3.1[2]).

Now suppose that the common d. f. of X; s is

$$F(x, \theta) = F(x, \theta_1, \dots, \theta_s), \tag{1.7}$$

where $\theta = (\theta_1, \dots, \theta_s)^T$, s < r, is a vector of unknown parameters taking **values** in an open set $\Theta \subset \mathbb{R}^s$. Then

$$p_i = p_i(\theta) = P_{\theta}\{X_1 \in \Delta_i\} = F(x_i, \theta) - F(x_{i-1}, \theta), i = 1, ..., r.$$

It is well-known that (see [1], [3]) under suitable assumptions the equations

$$\sum_{i=1}^{r} \frac{v_i}{p_i(\theta)} \cdot \frac{\partial p_i}{\partial \theta_j} = 0, j = 1, ..., s$$
 (1.8)

have a uniquely consistent solution $\widetilde{\theta} = (\widetilde{\theta}_1, ..., \widetilde{\theta}_s)^T$ and

$$\widetilde{\chi}^{2} = \sum_{i=1}^{r} \frac{(v_{i} - np_{i}(\widetilde{\theta}))^{2}}{np_{i}(\widetilde{\theta})} \stackrel{\mathcal{L}}{\to} \chi^{2}(r-s-l), \tag{1.9}$$

as $n \to \infty$.

The aim of this paper is to study the asymptotic behaviour of the test similar to (1.4) with F given by (1.7).

Let

$$\begin{cases} p_{i} = p_{i}(\theta) = F(x_{i}, \theta) - F(x_{i-1}, \theta), \\ e_{i} = e_{i}(\theta) = E_{\theta} \{X_{1} \mid X_{1} \in \Delta_{i} \}, \\ \delta_{i}^{2} = \delta_{i}^{2}(\theta) = V_{\theta} \{X_{1} \mid X_{1} \in \Delta_{i} \}, i = 1, ..., r \end{cases}$$
(1.10)

Then the test under consideration is of the form

$$\overline{\chi}^{2}(\widehat{\theta}) = \sum_{i=1}^{r} \left(\frac{\overline{X}_{i} - e_{i}(\widehat{\theta})}{\sigma_{i}(\widehat{\theta})} \right)^{2} \cdot v_{i}$$
(1.11)

where $\widehat{\theta}$ is an estimator of θ . It will be show that $\widehat{x}^2(\widehat{\theta}) \to \chi^2(r-s)$ as $n \to \infty$ and r is fixed (Th. 2.1), and $(\overline{\chi}^2(\widehat{\theta}) - r) / \sqrt{2r} \stackrel{\mathcal{L}}{\to} N(0, 1)$ as $n \to \infty$ and $r = 0(n^{\alpha})$, $0 < \alpha < 1$ (Th. 2.2).

For any function $f(\theta)$ let us adopt the following notations

$$\begin{aligned} \partial_i f &= \frac{\partial f(\theta)}{\partial \theta_i} , \ \partial_{ij} f &= \frac{\partial^2 f(\theta)}{\partial \theta_i \ \partial \theta_j} , \\ \partial_i^0 f &= \partial_i f \Big|_{\theta = \theta_0} , \ \partial_{ij}^0 f &= \partial_{ij} f \Big|_{\theta = \theta_0} , \ i, j = 1, ..., s, \\ f^0 &= f(\theta_0), \ \widehat{f} &= f(\widehat{\theta}). \end{aligned}$$

When r is fixed and n tends to infinite we can state

THEOREM 2.1: Let Θ be an open set in R^s . Let $\theta_0 = (\theta_1^0, ..., \theta_s^0)^T$ be a fixed point in Θ and let \mathcal{H}_0 denote the null hypothesis: $\theta = \theta_0$. Assume that for i = 1, ..., r, j, k = 1, ..., s:

(i)
$$p_i^0 = p_i(\theta_0) > 0$$
,

- (ii) $\delta_i^2(\theta) \geqslant C^2$ for some constant C > 0, and $\delta_i^2(\theta)$ and $\delta_i \delta_i^2(\theta)$ are continuous in Θ ,
 - (iii) $e_i(\theta)$, $\partial_i e_i(\theta)$, $\partial_{jk} e_i(\theta)$ are continuous in Θ ,
- (iv) The rank of the matrix $E = (E_{ij}) = (\bar{\mathfrak{d}}_{j}^{0}e_{i})$ equals s: rank (E) = s. Then
 - (a) There exists a solution $\widehat{\theta} = \widehat{\theta}_n$ of

$$\sum_{i=1}^{r} \frac{X_{i} - e_{i}(\theta)}{\delta_{i}^{2}(\theta)} v_{i} \, \delta_{j} \, e_{i} = 0, \, j = 1, \dots, s$$
 (2.1)

such that under Ho

$$P_{\theta_0} - \lim_{n \to \infty} \widehat{\theta} = \theta_0, i.e. \quad \widehat{\theta} \longrightarrow \theta_0.$$
 (2.2)

The solution $\widehat{\theta}$ is unique in the sense that if $\widehat{\theta}$ is any other solution of (2.1) $P_{\widehat{\theta}_0}$

and $\theta \longrightarrow \theta_0$ then

$$P_{\theta_0}(\widehat{\theta} = \widetilde{\theta}) \to 1 \text{ as } n \to \infty.$$

(b) Under \mathcal{H}_0

$$. \quad \overline{\chi}^{2}(\widehat{\theta}) = \sum_{i=1}^{r} \left\{ \frac{\overline{X}_{i} - \widehat{e}_{i}}{\widehat{o}_{i}} \right\}^{2} \cdot v_{i} \xrightarrow{\mathcal{L}} \chi^{2}(r-s)$$
 (2.3)

as $n \to \infty$.

Proof. Put

$$X_{0n} = \left(\frac{\bar{X}_I - e_I^0}{\sigma_I^0} \sqrt{v_I}, \dots, \frac{\bar{X}_I - e_I^0}{\sigma_I^0} \sqrt{v_I} \right)^T$$
 (2.4)

$$X_{n} = \left(\frac{\overline{X}_{I} - \widehat{e}_{I}}{\widehat{6}_{I}} \sqrt{v_{I}}, \dots, \frac{\overline{X}_{r} - \widehat{e}_{r}}{\widehat{6}_{r}} \sqrt{v_{r}}\right)^{T}$$
(2.5)

$$B_{n} = (B_{ij}^{7}) = \left(\frac{\sqrt[3]{v_{i}/n}}{\delta_{i}^{0}} \delta_{j}^{0} e_{i}\right), i = 1, ..., r, j = 1, ..., s$$

$$B = (B_{ij}) = \left(\frac{\sqrt[3]{p_{i}^{0}}}{\delta_{i}^{0}} \delta_{j}^{0} e_{i}\right), i = 1, ..., r, j = 1, ..., s.$$

$$(2.6)$$

By the Chebyshev inequality:

$$P_{\theta_0}\left(\left|\mathbf{v}_i-np_i^0\right|\leqslant \frac{np_i^0}{2},\ 1\leqslant i\leqslant r\right)>1-\frac{\alpha}{n},$$

where $a = \sum_{i=1}^{r} (4q_i^0/p_i^0), q_i^0 = 1 - p_i^0$.

Therefore, from (i) it follows that under \mathcal{H}_0 :

$$v_i / n \geqslant p_i^0 / 2, \ i = 1, ..., r$$
 (2.7)

٦٨.

with probability larger than $Q = 1 - \frac{a}{n}$ for each $n \ge 1$ (abbr.: with $Q \mid \mathcal{B}_0$ for n > 1).

Put

$$D_{n} = \operatorname{diag}\left\{\frac{\sqrt{v_{I}/n}}{6_{I}^{0}}, \dots, \frac{\sqrt{v_{r}/n}}{6_{r}^{0}}\right\}$$

$$D = \operatorname{diag}\left\{\frac{\sqrt{p_{I}^{0}}}{6_{I}^{0}}, \dots, \frac{-\overline{p_{r}^{0}}}{6_{r}^{0}}\right\}.$$

Then

$$B_{n} = D_{n}E, B = DE, \operatorname{rank}(B) = \operatorname{rank}(E) = s,$$

$$\operatorname{rank}(B^{T}B) = s, |B^{T}B| \neq 0,$$

$$D_{n} \xrightarrow{\theta_{0}} D, B_{n} \xrightarrow{P} \theta_{0} B,$$
(2.8)

and

$$\operatorname{rank}(B_n) = s, \operatorname{rank}(B_n^T B_n) = s, \mid B_n^T B_n \mid \neq 0$$
with $Q \mid \mathcal{H}_0$ for $n \geqslant 1$.

Let us rewrite (2.1) as

$$\sum_{k=1}^{3} (\theta_{k} - \theta_{k}^{0}) \sum_{i=1}^{r} \frac{v_{i}/n}{\sigma_{i}^{02}} \, \vartheta_{j}^{0} e_{i} \vartheta_{k}^{0} e_{i} =$$

$$= n^{-1/2} \sum_{i=1}^{r} \frac{\sqrt{v_{i}/n}}{\sigma_{j}^{0}} \, \vartheta_{j}^{0} e_{i} \, \frac{\overline{X}_{i} - e_{i}^{0}}{\sigma_{j}^{0}} \, \sqrt{v_{i}} + w_{j}(\theta), \, l \leq j \leq s , \qquad (2.10)$$

where

$$\begin{split} w_{j}(\theta) &= \sum_{i=1}^{r} \left(\overline{X}_{i} - e_{i}^{0} \right) \frac{v_{i}}{n} \left(\frac{1}{6_{i}^{2}} \ \eth_{j} e_{i} - \frac{1}{6_{i}^{02}} \ \eth_{j}^{0} e_{i} \right) + \\ &- \sum_{i=1}^{r} \frac{v_{i}}{n} \left(e_{i} - e_{i}^{0} \right) \left(\frac{1}{6_{i}^{2}} \ \eth_{j} e_{i} - \frac{1}{6_{i}^{02}} \ \eth_{j}^{0} e_{i} \right) + \\ &- \sum_{i=1}^{r} \frac{v_{i}/n}{6_{i}^{02}} \ \eth_{j}^{0} e_{i} \left[\ e_{i} - e_{i}^{0} - \sum_{k=1}^{s} \left(\theta_{k} - \theta_{k}^{0} \right) \ \eth_{k}^{0} e_{i} \right], \end{split}$$

or in matrix form

$$B_n^T B_n(\theta - \theta_0) = n^{-1/2} B_n^T X_{on} + w(\theta)$$
 (2.11)

where $w(\theta) = (w_1(\theta), ..., w_s(\theta))^T$.

Then, by (2.9), the equations (2.1) are equivalent to

$$\theta = \theta_0 + n^{-1/2} (B_n^T B_n)^{-1} B_n^T X_{nn} + (B_n^T B_n)^{-1} w(\theta)$$
 (2.12)

with $Q \mid \mathcal{H}_0 \text{ for } n \geqslant 1$.

Now construct a sequence $\{\theta_m\}$ such that

$$\theta_{m} = \theta_{0} + n^{-1/2} (B_{n}^{T} B_{n})^{-1} B_{n}^{T} X_{on} + (B_{n}^{T} B_{n})^{-1} w(\theta_{m-1}), m \geqslant 1, \qquad (2.13)$$

Noting that $w(\theta_0) = 0$, it follows from (2.13) that

$$\begin{cases} \theta_{1} - \theta_{0} = n^{-1/2} (B_{n}^{T} B_{n})^{-1} B_{n}^{T} X_{on} \\ \theta_{m+1} - \theta_{m} = B_{n}^{T} B_{n})^{-1} [w(\theta_{m}) - w(\theta_{m-1})], m \geqslant 1. \end{cases}$$
2.14)

Let $\{\lambda = \lambda(n, \alpha)\}$ be a sequence of constants satisfying

$$\lambda \to \infty$$
 and $\lambda / n^{\overline{4}} \to 0$ (2.15)

for some α , $0 < \alpha < 1$, as $n \to \infty$.

By the Chebyshev inequality one obtains from (2.7)

$$P_{\theta_{o}}(|\overline{X}_{i} - e_{i}^{o}| < \frac{\lambda}{\sqrt[n]{n}}, \frac{v_{i}}{n} > \frac{p_{i}^{o}}{2}, v_{i} > 1, i = 1, ..., r)$$

$$\geq 1 - \lambda^{-2} \sum_{i=1}^{r} \frac{6_{i}^{o2}}{v_{i}/n} - \frac{a}{n}$$

$$\geq 1 - 2 \lambda^{-2} \sum_{i=1}^{r} \frac{6_{i}^{o2}}{p_{i}^{o}} - \frac{a}{n} = 1 - b\lambda^{-2} - \frac{a}{n}$$

$$\geq 1 d\lambda^{-2} := Q_{\lambda}$$

$$(2.16)$$

for $n > N_I > 1$, where $b = 2\sum_{i=1}^r \frac{\delta_i^{o2}}{p_i^o}$, and d > b is given, while $N_I > 1$ can be

chosen such that

$$b\lambda^{-2} + \frac{a}{n} \leqslant d\lambda^{-2}, \text{ for } n \geqslant N_1, \text{ e. g. } N_1 = \max \left\{ 1, \left[\frac{\lambda^2 a}{d-b} + 1 \right] \right\}.$$

Therefore, by (ii), for $n \gg N_1$

$$P_{\theta_o}\left(\left|\frac{\overline{X}_i - e_i^o}{6_i^o} \sqrt[4]{v_i}\right| < \frac{\lambda}{C}, i = 1, \dots, r\right) > Q_{\lambda}.$$
 (2.17)

It follows from (i), (2.14), (2.4), (2.6), (2.8), (2.9), (2.16) and (2.17) that $\|\theta_1 - \theta_o\| \leqslant K_I \lambda / \sqrt{n} \text{ with } Q_\lambda \mid \mathcal{H}_o \text{ for } n \geqslant N_I, \tag{2.18}$

where K_1 is a positive constant independent of n.

Now using the Taylor expansion for each $w_j(\theta') - w_j(\theta'')$, θ' , $\theta'' \in U(\theta_o)$ a closed ball of centre θ_o , one obtains from (ii), (iii), (2.16)

$$|w_{j}(\theta') - w_{j}(\theta'')| \leq \|\theta' - \theta''\| K_{2}(\|\theta' - \theta_{o}\| + \|\theta'' - \theta_{o}\| + \lambda/\sqrt{n})$$
 with $Q_{\lambda} | \mathcal{H}_{o}$ for $n \geq N_{1}$, where K_{2} is independent of n . Therefore

$$\|w(\theta') - w(\theta'')\| \leqslant \sqrt{s} K_2 \|\theta'' - \theta''\| (\|\theta'' - \theta_o\| + \|\theta''' - \theta_o\| + \lambda/\sqrt{n}), \quad (2.19)$$
with $Q_{\lambda} | \mathcal{H}_o \text{ for } n \geqslant N_1.$

From (2.14) one has, assuming that θ_m , $\theta_{m-1} \in U(\theta_o)$, $\|\theta_{m+1} - \theta_m\| \le K_3 \|\theta_m - \theta_{m-1}\| (\|\theta_m - \theta_o\| + \|\theta_{m-1} - \theta_o\| + \lambda/\sqrt{n})$, (2.20) $m \ge 1$, with $Q_{\lambda} | \mathcal{H}_o$ for $n \ge N_1$, where K_3 is independent of n.

However from (2.18), (2.19) and (2.20) one can choose $N_2 \geqslant N_1$ such that for $n \geqslant N_2$ the sequence $\{\theta_m\}$ belongs to $U(\theta_o)$ with $Q_{\lambda} \mid \mathcal{H}_o$. Then (2.20) is satisfied with $Q_{\lambda} \mid \mathcal{H}_o$ for $n \geqslant N_2$.

By induction one can verify that

$$\|\theta_{m+1} - \theta_{M}\| \leqslant K_{1}[(4K_{1} + 1)K_{3}]^{m} [\lambda/\sqrt{n}]^{m+1}, m = 0, 1,2,...$$
and
$$(2.11)$$

$$\|\theta_m - \theta_0\| \le 2K_1 \lambda / \sqrt{n}, m = 1, 2, \dots$$
 (2.22)

with $Q_{\lambda} \mid \mathcal{H}_o$ for $n \gg N_g$, where $N_g \gg N_g$ is chosen such that $(4K_I + 1) K_3 = \lambda/\sqrt{N_3} < 1/2$.

Hence

$$\theta_{m} = \theta_{o} + \sum_{i=0}^{m} (\theta_{i+1} - \theta_{i}) \rightarrow \hat{\theta} := \theta_{o} + \sum_{i=1}^{\infty} (\theta_{i+1} - \theta_{i})$$
 (2.23)

as
$$m \to \infty$$
, and $\| \stackrel{\wedge}{\theta} - \stackrel{\circ}{\theta}_0 \| \leqslant 2K_I \lambda/\sqrt{n}$ with $Q_{\lambda} \mid \mathcal{G}_0$, $n \gg N_3$.

From (2.12), (2.13), (2.23) one can conclude that $\hat{\theta}$ is a solution of (2.1) and $\hat{\theta} \in U(\theta_0)$ with $Q_{\lambda} \mid \mathcal{H}_0$, $n \geqslant N_3$.

Since Q_{λ} , as defined in (2.16), converges to 1 as $n \to \infty$, (2.23) implies (2.2).

Suppose there is another solution θ of (2.1) such that $\widetilde{\theta} \stackrel{P_{\theta_0}}{\longrightarrow} \theta_0$. Then $\widetilde{\theta} \in U(\theta_0)$ with $1-\varepsilon$ | \mathcal{H}_0 for $n > N_{\varepsilon} > 1$, where N_{ε} can be chosen for a given $\varepsilon > 0$. It follows from (2.12) and (2.19) that

 $\|\widehat{\theta} - \widehat{\theta}\| = \|(B_n^T B_n)^{-1} [w(\widehat{\theta}) - w(\widehat{\theta})]\| \leqslant K \|\widehat{\theta} - \widehat{\theta}\| (\|\widehat{\theta} - \theta_0\| + \|\widehat{\theta} - \theta_0\| + \lambda/\sqrt{n}), \text{ with } Q_{\lambda} - \varepsilon \|\mathscr{H}_0 \text{ for } n > N^* = \max(N_{\varepsilon}, N_{\varepsilon}), \text{ where } K = \sqrt{S} K_2. \text{ [Since } \widehat{\theta} \text{ and } \widehat{\theta} \text{ both tend to } \theta_0 \text{ in probability under } \mathscr{H}_0 \text{ and } \lambda/\sqrt{n} \text{ tends to O as } n \to \infty, \text{ the above inequality is valid iff } \|\widehat{\theta} - \widehat{\theta}\| = 0 \text{ for sufficiently large } n. \text{ Thus } P_{\theta_0}(\widehat{\theta} - \widehat{\theta}) > Q_{\lambda} - \varepsilon \text{ for } n > N^*.$

This proves the uniqueness of the solution.

From (2.14), (2.21), and (2.23) one can write

$$\|\sqrt{n}(\widehat{\theta}-\theta_0)-(B_n^{\dagger}B_n)^{-1}B_n^{\dagger}X_{0n}\|=\sqrt{n}\|\sum_{m=1}^{\infty}(\theta_m+\overline{1}\theta_m)\|\leqslant K^{\bullet}\lambda^{2}/\sqrt{n}$$

with $Q_{\lambda} \mid \mathcal{H}_0$ for $n \gg N_3$, where K^* is some constant independent of n. Then

$$\sqrt[P]{n} (\widehat{\theta} - \theta_{\bullet}) \approx (B_n^{\dagger} B_n)^{-1} B_n^{\dagger} X_{on}, \qquad (2.24)$$

where $A \approx B$ stands for $P_{\theta_0} - \lim_{R \to \infty} (A - B) = 0$.

Let us now examine the asymptotic behaviour of X_n . We can write

$$\frac{\overline{X} - \widehat{e}_{i}}{\widehat{\delta}_{i}} \sqrt{\overline{v}_{i}} = \frac{\delta_{i}^{o}}{\widehat{\delta}_{i}} \left[\frac{\overline{X}_{i} - e_{i}^{o}}{\delta_{i}^{o}} \sqrt{\overline{v}_{i}} - \sqrt{\overline{n}} \frac{\sqrt{\overline{v}_{i}/n}}{\delta_{i}^{o}} (\widehat{e}_{i} - e_{i}^{o}) \right], i = 1,...,r.$$

By (iii), using the Taylor expansion, one can write

$$\widehat{e}_{i} - e_{i}^{o} = \sum_{j=1}^{s} \delta_{j}^{o} e_{i} (\widehat{\theta}_{j} - \theta_{j}^{o}) + 0 (\|\widehat{\theta} - \theta_{0}\|^{2}), i = 1,...r.$$

Therefore

$$\frac{\overline{X}_i - \widehat{e}_i}{\widehat{G}_i} \sqrt{\overline{v}_i} =$$

$$=\frac{\mathbf{G}_{i}^{o}}{\widehat{\mathbf{G}}_{i}}\left|\frac{\overline{X}_{i}-e_{i}^{o}}{\mathbf{G}_{i}^{o}}\sqrt{\mathbf{v}_{i}}-\sqrt{\mathbf{n}}\,b_{i}\left(\widehat{\boldsymbol{\theta}}-\mathbf{\theta}_{o}\right)+\sqrt{\mathbf{n}}.\boldsymbol{\theta}\left(\|\widehat{\boldsymbol{\theta}}-\mathbf{\theta}_{o}\|^{2}\right)\right|,\,i=1,\ldots,R$$

where b_i is the i-th row of B_n .

From (ii) and (2.2) it follows that

$$\widehat{\delta}_{i} = \delta_{i}(\widehat{\theta}) \stackrel{P_{\theta_{0}}}{\rightarrow} \delta_{i}(\theta_{0}) = \delta_{i}^{0}, i = 1, ..., r.$$

Further, by (2.23), one has

$$\sqrt{n}$$
. 0 ($\|\widehat{\theta} - \theta_o\|^2$) ≤ 0 (λ^2 / \sqrt{n}) with $Q_{\lambda} | \mathcal{H}_o$, $n \geq N_s$.

Hence

$$\frac{\overline{X}_{i} - \widehat{e}_{i}}{\widehat{6}_{i}} \sqrt{v_{i}} \approx \frac{P_{\theta_{0}}}{\widetilde{S}_{i}} \frac{\overline{X}_{i} - e_{i}^{o}}{\widetilde{e}_{i}^{o}} \sqrt{v_{i}} - \sqrt{n} b_{i} (\widehat{\theta} - \theta_{o}), i = 1, ..., r,$$

or, in matric form, by taking account of (2. 24) and (2. 8),

$$X_{n} \stackrel{P_{\theta_{0}}}{\approx} X_{on} - \sqrt{n} B_{n} (\widehat{\theta} - \theta_{o})$$

$$\stackrel{P_{\theta_{0}}}{\approx} X_{on} - B_{n} (B_{n}^{T} B_{n})^{-1} B_{n}^{T} X_{on} = [I_{r} - B_{n} (B_{n}^{T} B_{n})^{-1} B_{n}^{T}] X_{on}$$

$$\stackrel{P_{\theta_{0}}}{\approx} [I_{r} - B (B^{T} B)^{-1} B^{T}] X_{on}, \qquad (2.25)$$

where I_r is the unit matrix of order r.

It follows from the proof of Th. 2.1 in [2] that

$$X_{op} \xrightarrow{\mathcal{L}} Y = (Y_1, ..., Y_r)^T,$$
 (2.26)

where $Y_1, ..., Y_r$ are mutually independent and have the common distribution N(0, 1).

Since $A = I_r - B(B^TB)^{-1}B^T$ is idempotent and hence $rank(A) = trace(A) = r - trace[B(B^TB)^{-1}B^T] = r - trace[B^TB(B^TB)^{-1}] = r - trace(I_s) = r - s$, one can conclude from (2.5), (2.25) and (2.26):

$$\overline{\chi_{2}}(\widehat{\theta}) = X_{n}^{T} X_{n} \underset{n}{\overset{\mathcal{L}}{\approx}} X_{on}^{T} AX_{on} \overset{\mathcal{L}}{\longrightarrow} Y^{T}AY \mathcal{L}^{\chi_{2}} (r - s),$$

where \approx means chaving the same limit law. We have thus established (2.3). Q. E. D.

THEOREM 2.2 Let $r = r_n = O(n^{\alpha})$, where $0 < \alpha < 1$. Let the assumptions (i) — (iv) of Theorem 2. 1 hold for every sufficiently large n and for $r = r_n$.

Assume further

(v) $c_1 \mid r \leqslant p_i \leqslant c_2 \mid r$, i=1,..., r, where c_1 and c_2 are constants, $0 < c_1 \leqslant 1 \leqslant c_2 < \infty$,

(vi)
$$\frac{1}{r} \sum_{i=1}^{r} \left[\mu_{i}^{(k)} / (\delta_{i}^{0})^{k} \right] < c_{3}$$
, for $k=4$ and 6, where c_{3} is constant and

$$\mu_{i}^{(k)} = E_{\theta_{0}} \left\{ \left| X_{1} - e_{i}^{o} \right|^{k} \mid X_{1} \in \Delta_{i} \right. \right\}, \quad i = 1, ..., r.$$

Then under \mathcal{H}_0

$$\frac{\overline{\chi}^{2} \ \widehat{(\theta)} - r}{\sqrt{2r}} \xrightarrow{\mathcal{L}} N \ (0,1) \ \text{as } n \to \infty \ . \tag{2.27}$$

Proof. From (2.25) one has

$$\frac{\overline{\chi^2} \ \widehat{(\theta)} - r}{\sqrt{2r}} = (1/\sqrt[4]{2r}) (X_n^T X_n - r)$$

$$\mathcal{L}_{\approx}(1/\sqrt{2r})\left(X_{on}^{T}[I_{r}-B(B^{T}B)^{-1}B^{T}]X_{on}-r\right)=T_{1}-T_{2},$$

where

$$T_1 = (1/\sqrt{2r}) (X_{on}^T X_{on} - r),$$

$$T_{o} = (1/\sqrt{2r})X_{on}^{T}B(B^{T}B)^{-1}B^{T}X_{on} = (1/\sqrt{2r})\|B(B^{T}B)^{-1}B^{T}X_{on}\|^{2}.$$

By Th. 3. 1 in [2] one obtains under \mathcal{H}_0

$$T_1 \stackrel{\mathcal{L}}{\rightarrow} N(0, 1) \text{ as } n \rightarrow \infty.$$
 (2.28).

Since (i), (ii), (iii), and (2.17) one can write

$$T_{2} = 0 \ (\lambda^{2}/\sqrt[n]{r}) = 0 \ (\lambda^{2}/n^{\frac{\alpha}{2}}) \text{ with } Q_{\lambda} \mid \mathcal{H}_{0}, \ n \geqslant N_{I}.$$

Hence, noting that $Q_{\lambda} \to l$ as $n \to \infty$, one can conclude by (2.15)

$$T_2 = \frac{P_0}{0} 0.$$
 (2.29)

Clearly (2.27) now follows from (2.28) and (2.29). Q.E.D.

REFÉRENCES

- [1] H.CRAMÉR, Mathematical Methods of Statistics. Princeton, 1946.
- [2] E.CSAKI and I. VINCZE, On Limiting Distribution Laws of Statistics Analogous to Pearson's Chi-Square, Statistics, 9 (1978), 531-548.
 - [3] C. R. RAO, Linear Statistical Inference and Its Applications, New York, 1965.

Received September 21, 1985.

DEPARTMENT OF MATHEMATICS, POLYTECHNIC INSTITUTE, HANOI