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SEMIMARTINGALES AND THE STANDARD BROWNIAN MOTION

NGUYEN MINH DUC

INTRODUCTION

Let (W_,z & Ri) be a Brownian sheet and let (b,, t > 0) be a standard
Brownian motion. It was shown in our previous work [3b] that (f(W ),z < 2o)
is a weak submartingale (resp. a planar semimartingale) if a_nc_l only if (if b, )

of

[~

0 << t < slp) is 2 submartingale (resp. S
.0

. »-Q]r—i

Varg (if"(b? M d-q is.finite), where

£,== (5, 1) is a point of R‘zwith Sofo > 0 and f a function belonging to a dense

subspace of CZ(R’), called K(R')in {3b].

However one expects the above mentioned probabilistic characterizations
~ could be expressed iatrinsically as’a geometrical property of the given
function f. - o S ST ‘
The purpose of this note is to ‘characterize all functions ¢ such that
(o (b, Kt > 0) is a submartingale (resp. a semimartingale). Such a function ¢
tarns out to be a non-negative convex function (resp. & difference of two
convex funciions). ‘These results are closely connected with those of Cinlar —
Jacod — Protter — Sharpe ([2]), and they are used here to give geometrical
interpretations of certain results in [3b]. '

I. BASIC DEFINITIONS AND PRELIMINARY RESULTS
Let (Q, %, P) be- a- complete pfobabilit‘y space equipped- with- a filter
(F,.,t>0), i. e, a family of o-algebras (¥, ! > 0) satisfying the following
conditions ; I o
1) ¥, contains all nuli sets of Fs

2 If t<<1then ¥, C F,, C F;
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%)Foreachi‘: S —"t' —-A‘?,.
{'=1

" Let T be a subsst of (0, +e) and X = (X,» te T) an adapted process
contained in L! (P). Suppose that [a, b] ¢ 7' with a < b is a compact interval
and A = (a = Pp =< Py <« < p, = D) is a partition of [a, b]. Put

(a)[A[:max _ (pi'i'l_-pi);
0sSisin-1
R n_ :
(b) Var,\(X) =2 E[E{X P —X !?F }-I
i=1 .
(the variation of the process X on the partltlon A),

(¢} Var’ o (X)=Supp (VarA(X)) where the supremum is taken over all

partitions of [a, b} (Var (X) is called the variation of the process X on the
mterval [a, &]).

DEFINITION 1.1. (14]) Let T be a subset of [0, +o=] and X = (X,, teT)an
ada’pied‘ process contained in L1 (P). Then X is said to be '

1) a submartingale if for allt > s with t, s € T we have

E{X, —X_| %f'}> 0 Pa.s;
2) a semzmarttnga!e if for all .a < b such that [a b] ¢ T we have
Remark. The above concept of semimartingale is weaker than that presented

in [7], wheve a semimartingale is defined as the sum of a local martingale
and a process of local bounded variation. - :

The followmcr lemma will be used in the sequel to approxlmate ‘the varia-
tion of a one-parametfer semimartingale, Since it is a simple application of
the Lehesgue bounded convergence theorem, its proof is omitted,

. LEMMA 1. 2. Let [a, b] be a compact interval and X = (Xt, te [a,b]) an adap-‘

ted process conlained in L1 (P) For every t € (a,b), define

b(t)=Tm (E|E{X, —X, ¥ E|E{X, =X |F }|—"
M, Ttlt[ul { L3I+ ELE{X =X, | :1}|
?,_‘_?{sz ERCRACEAES
Then,
1) Var (X)— hmA , VarA(X)IfS(t)_.Oforallie(a b)
| —-0 . _
In particular if Xis contmuoas in L' (P) then . .
b . ;
Var (X) = lim Vara (X).
NI



(2) & (t) = 0 for all i e (a,b) if
VarZ(X) = lim A 0 Varp (X) < 4 oa.

[A]—
Throughout this note it is assumed that (2, F, 7, b,1>0, PT z eR1) is

a linear Brownian motion (see for instance [5]). We denote by EZ the expecta-~

tion of the probability measure P* and for convenience we write E and P in-
stead of E? and P9, respectively. :

For every probability measure i on ( R% @), where ®7 is the Borel
g-algebra of RI , the Iaw r¥on (Q F) is defined as follows.
: = [ (dx) P,
PROPOSITION 1.3. Suppose that the process (¢, (b Y, t >> 0) where ¢ is a real

function, is continuous in Lfr (P) and le! T be an arbilrary positive number, Then

T
T - T ~
| Vari(to (e D=1 Var] @E) e I<T. Cupgicr Ele @) 1 )
«_provided one of the fwo ferms in the left hand side is finite.

Proof. Let & = (0 =.p; <py <on < p, = T) be a partition of [0, T

Denote

n
Ia=3 o B1E{o(bgy ) =00 | Fotl.

=0

Then
lVarA (tcp(b )) IA l
<z _ (p 1 = )Elfp(bp,ﬂ)l : @
™ -(S“Pogzgr EI(P(b)I
Now put '

Ai = (pi‘<pi+1<'" < p ), i =01,.., n,
Var A, (p(Db)= 0,

Then I, = Zl_ 0P, (VafA (CP(b)) Var,, (o))

Bit1
= ._- Var 5, (@(®)- (o; — p;—1)-
By Lemma 1.2, it follows from the contmulty in I (P) of the process
4\(:;.(1; ), t >0) that |
VarA (cp(b))-»Var (p(b)) as |A[—>0

furthermore, the convergence is uniform when p; beloncs to an arbitrary closed
subset of [0, T o] or of [T T}, where

T,=inf {s: 0{s < <T, Varf(f?(.b)) <+ oof

0 —_—
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Therefors, e 1T

N

ftm T, S Var? (p(b)) de. | @)

|A]—0 > . o -
On the other kand, since (ip(d, ), t = 0) is also continuous in LY(P), we have -
| Jim Var, (t(b, ) = Vary (9(b,)) | )
|A] — 0 o ’ T

Thus-if-one of the two terms in the léft-hand side of (1) is finite then
lim (Var A(t‘cp(b )) —_ I A) = VarT (f(P(b »— S Var (ﬁp(b))dé'.
18]~ 0 R |

From 2), (3), (4) We ohtam (1) Q E. D.

. II. M-IN BESULTS. -

THEOREM 2.1. Let @ be a real function :such that ‘((P(br Y t>0) is' continueus
in L1 (P). EIRANE AN
(@) If (i(p(b ).t>0) is a P—samzmartmgale then cp zs a dszerence of two
convex functzons )

(by Conversely if ¢ =@, — ¢y, where ¢;, ¢y are convexr functzans and (¢,(b, Y
t>0), (@,b,) 13>0)are contamed m LI, then (ch(b } 1>0) is a
P-semimartingale, : : o :

Proof, (a) Since (icp(b ), t>0) is a P-semlmartmgale, by Propomtlon 13
it follows that (p(b, ), £ 2> 1) is also a P-sem1martmgale.

Thus, if we denote by } the Gaussian law with zero mean and covariance one

then (QP('b pt>0)isa Pp’-semlmartmgale

Now, frOm Theorem 5.5 of [2], it follows that @is a dlfference of two convex
functions.

b) From the assumphons that ((p (b ) t>0), i=1,2, are P-sunmartmga-
les, it follows immediately that (tp(b ), t > 0)isa difference of two P-sub.
martmgales Therefore,

1 (cp(b Y, t > 0)is a P-sem:martmgale -
) Supyccr Elo) 1 < E o0 [+ EloCpl < + e
Thus, by Proposition L 3. '
“Var? (o, N KT . (Var T(@(b)) + Supycicr E 1ol )l) <t

for all T' = O.
In other words (lp(d,), t > 0) is a P-semimartingale. Q.E.D.

-
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| PROPOSITION 2.3, Let ¢ be a real function. If (o(b,), £>0) is a P*-snbmar-
tingale for all * € R then ¢ is a convex function. More sirongly, if (@b, )
{ > 0) is a P-submartingale, then ¢ is a convex function.
Proof, (a) First, from Theorem 5. 5. of [2], we know that 9 is a difference
. of two convex functions. In particular ¢ is a contintous function,
| Since (cp(bt ), t > 0) is a P®-submartingale for all x € R*, by an argament
similar to that used in [2], it follows that there exists a convex function & such
that (p(b,) — &(b;), { > 0) is a P*-local martingale for all z s RL
For a > 0 and x € R!, we put
’r.:-:inf{t: b, — 2| = a}.
Since ¢ ané h are bounded over [ x — @, ¢ 4 a ], the process ((P(b'tin\l) —_

—_ h(bt;cm), t > 0) is a P*-bounded martit_lgale. Hence
a
E¥(plb,2) — bibye) = E(e(@,) = hidy )
Bat the left-hand side can be written as
1 . 1
@ + )+ 9@ — @) — 4 (he + @ + h@ — d)

and the right-hand side equals {p(x) — A(x)).
Therefore Az QP = Aﬁ h, where

A": k=%—(k(m {—la)—{-k(.r—a))—-k(x)

“for any real function k. Hence, AT ¢ > 0 for any = € R' and any a > 0. The
a

continuity of ¢ then implies its convexity.
(b) Suppose now that ¢ is areal function such that (¢ (b,), ! > 0)isa

P—snbmartingale.
For t>s > 1, we have ' .
E{o®)—9 b)I1F } >0 . P-a.s

On the other hand, by the Markov property of the Brownian motion
(see [5]) :
P (b cdx|b=q}=Pl{b cdz} forallT >1,x ¢ R,

Therefore,

B {o®, ) —e® _)IF

<. 1
. 8_1}>0 Pr.as. for all ze R,

In other words,
(rp(bt), t > 0)is a P*-submartingale for all x & R’

Hence, from the proof (a), ¢ is a convex function. Q.E,D,
7—461 97



EOROLLARY 2.3, Lat P be a real f unction. If ((p(b ) 1>0) is'a P-marlingale
then ¢ is an af fine function, ie, p(z) = ax -{- b, where. a, b are constants.
THEOREM 2.4. Le! ¢ be a real function. Then (t ¢ (b, ), I > O) is aP-submar-
tingale if and only if ¢.is-a non—negatwe convex f unction suchthat E l (p( b, )<+
forallt > 0.. o .
* Proof, Suppoie that ¢ is a non-negative convex function such that
E|g(,)| <+ o forallt >0 B
By the Jensen inequality we have
E{tog®)i %=}>E {se®)1F, }>s¢(b) P-as
‘ for all t > s >0
.Therefore (to (b ) t > 0) is a P-suhmartlngale _
Conversely suppose that (t e NWt> 0) is a P-submarhngale It is clear
thatE[qa(b)i<+aoforallt>0 Fort>s>0wehave .
E{tcp(b)—-scp(b)l"a"} | o
=s. E {o)-90b)IF }+(f-—$) E{e®) ¥}

=s,( Ss @4ty R Ay -e@)+{—0..§ g+ HEn>0
— . . —0o .
forallzeR!, = = bs . Here 1 denotes the . Gausgian law with zero mean and
covariance ( — s).
" Lets 14 oo, let (t — 8) be. constant Then
s "o @+ y)u(dy)—cp<x)>ﬂtor all © € R

—_—0

In other words, (p (b,), t > 0)is a P—submartmgale, hence by Propoaxhon

2.2 ¢ is a convex funetion.

Furthermore, letting s | 0 yields

f (p(x+y)u(dy)>0for anmeR1

——:ﬂ‘

Since f cp(;v + y) 28 (dy) converges umformly to g(x)as ¢ {, s in any bounded
subset of Rr! , it follows that ¢ is a non-negative function, ' QED

COROLLARY:2 5. 'LEi 0] b;‘i a real” function. "If (t P (bt‘)’ 12>0) is a P-mar-
tingale then ¢ = 0.

 Proof. By Theorem 2.4. both- functions ¢ and — — ¢ are. non- negatwe Hence
(P e 00 Q E D' . .
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Recall (see [2b]) that a twice continuously differentiable function f:R'—=R:
belongs to the class K (Rl) provided the following conditions are satisfied:
ot 9 .
1) [ EFG ) )ds <o - forall t>05

(¢}

2) the process (f"(b, ), 1 > 0) is continuous in LY{P).

Note that if (¢(b,)s 1 >>0) is continuous in LY(P), then
1) Sup, <IST Elcp(b N <Aoo for allT >0,
9) the process (i@ (b, ), { > 0) is continuous in P~

PROPOSITION 2.6. Lel ¢ = ¢, — @q5 where @, ¢, are Convex fanctions such

that the processes (cplfb Wiz O) ((pz(b »i > O) are contamea’ in IN(P)., Then

we have

Oy

1
—é- q(tcp ‘))dq<+ceforallT>0

A

. Proof. Fdr T 0and 0 <g< T, we have by Proposition 1.3: .

Var3(t ¢(b, ) < ¢- (Var (@) + Sup, <1 < Ejo(d, Y)-
< q.(VarT (b)) + Sup,  ; < 7 Elleb)D
< 2. (Elo, (0P + E o (b )i+ [05 @1 + 2@
Therefore, RN Ce C e e

) T . Y ‘ ’
> ) _ .S‘%Varq(icp(b ))dq
0

3 (E10;(bp) |4 E19y(bp) 1 £1 0,0 1+|cp2<0)|)<+oa QED.

Combining known results in [3b] with Theorem 2.1, Theorem 2.4 and Pro-
position 26 we obtain the followmg characterlzanon of ‘the elements in the

space K (R y that transfiorm the Browman sheet 1nto Weak submartmgales and
planar sem1mart1nga1es

COROLLARY 2.7 (a) Let f be a functzon of the élass K (B,i) T}mn (f(W, ),
A ze R+) is a weak submartmgale 1f and only if £~ is a non-negaiwe convex func-
tion, i.e, f and f" are convex funclions; :
by Iffisa funetion of the class K (R1 ) such that (F(W, ) ze R+) zsapla.-
nar semimartingale, then > is a difference of two convex functions..

9



Conversely, if f can be expressed as:
= P; — ©,,whereq,, p, are convex functions such that (¢, (b)) 1> 0)

and  (py(b ), t > 0) are contained in L(P), then (f(W,), z ¢ RZ‘L) is a planar

semimartingale,

II. APPLICATIONS

It is a2 well-known fact that, for all = & (0,1) ( bi |* ¢ = 0) is not a
P-semimartingale. We showed in [3b] that for all « > 3,

(1 W, ]% z€R2) is a weak submartingale. For « ¢ (2,3) let us consider the

funetion f(x) = [ [* for 2 ¢ R.. Then f ¢ K (RY) and
f(x) = a(a—1) | = ]* ?is not a difference of two conYex functions.
Therefore, by Corollary 2.7 (b):

(1W,]% z e Ri ) is not a planar semimartingale for all « € (2,3).
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