REMARKS ON MEASURABLE FUNCTION SPACES

NGUYEN TO NHU

Let X be a metrizable space. By M(X) we denote the space of all measurable functions from [0, 1] into X equipped with the topology of convergence in measure. We identify $f \equiv g$ iff

$$|\{t \in [0, 1]: f(t) \neq g(t)\}| = 0.$$

Here |A| denotes the Lebesgue measure of A in [0, 1].

In this note we investigate the AR-property of certain subsets of M(X). As shown by Torunczyk [5] the AR-property of a metrizable space is closely related to its topological structure. Therefore the study of the AR-property of metrizable spaces is of great importance. Our results in the sequel are similar to those in [2]—[4].

We shall say that a subset $D \subset M(X)$ is convex iff for any f, $g \in D$, for any $\alpha \in [0,1]$ and for any partition $\pi : a_0 = 0 < a_1 < ... < a_n = 1$ of [0, 1] we have $\alpha_{\pi}(f, g) \in D$, $\alpha_{\pi}(f, g)$ is defined as follows

$$\alpha_{\pi}(f, g)(t) = \begin{cases} f & \text{if } t \in [a_i, a_i + \alpha(a_{i+1} - a_i)), \\ g & \text{if } t \in [a_i + \alpha(a_{i+1} - a_i), a_{i+1}). \end{cases}$$

We also use the following notation:

 l_9 = the Hilbert space of all square summable sequences.

 $l_2^f = \{x = (x_n) \in l_2 : x_n = 0 \text{ for almost all } n\}$. Recall that a function $f : [0, 1] \to X$ is simple iff there exists a partition of [0, 1] into subintervals such that the restriction of f to any subinterval is constant.

$$M_s(X) = \{ f \in M(X) : f \text{ is a simple function } \}$$

For other notions we refer the reader to [1].

We shall establish the following results.

THEOREM 1. Let D be a subset of M(X). If there exists a convex set $C \subset D$ consisting of simple functions such that C is dense in D then D is an absolute retract.

THEOREM 2. Let X be a separable complete metrizable space having more than one point. Then for any countable dense subset $X_0 \subset X$ we have $(M(X), M_s(X_0)) \cong (l_2, l_2^f)$.

We note the following special case of Theorem 1.

COROLLARY 1 [2], M(X) and $M_s(X)$ are absolute retracts for any metric space X.

1. Proof of Theorem 1.

Let $\{\mathcal{U}_n\}$ be a sequence of open covers of a metric space X. By $\mathcal{N}(\mathcal{U})$ we denote the nerve of $\mathcal{U}=\overset{\sim}{\bigcup}\mathcal{U}_n$. We write $K<\{\mathcal{U}_n\}$ iff K is a subcomplex of $\mathcal{N}(\mathcal{U})$ and each simplex σ of K is contained in $\mathcal{U}_n\cup\mathcal{U}_{n+1}$ for some $n\in N$. We let

$$n(\sigma) = \max \{ n : \sigma \in \mathcal{U}_n \cup \mathcal{U}_{n+1} \}.$$

Let K° denote the O-skeleton of K, that is the set of all vertices of K and let K denote the simplex K with Whitehead topology. Our proof of Theorem 1 is based on the following

1-1. THEOREM [2] A metric space $X \in ANR$ iff there exists a sequence of open covers $\{\mathcal{U}_n\}$ of X such that for each $K < \{\mathcal{U}_n\}$ and for each selection $f: K^o \to X$ there exists a map $g: |K| \to X$ such that for any sequence σ_k with $n(\sigma_k) \to \infty$ we have

$$\delta(\sigma_k) = \sup \left\{ d(f(V), g(x)) \colon V \in \sigma_k^0, x \in \sigma_k \right\} \to 0.$$

We shall show that D satisfies the characterization condition of Theorem 1-1.

Without loss of generality we may assume that the topology of X is induced by a metric d bounded by 1. We put

$$\Delta(k, i) = [i2^{-k}, (i + 1) 2^{-k})$$
 for $i = 0, ..., 2^{k} - 1$.

For each $f, g \in M(X)$, write

$$\omega(k, i)(f, g) = \sup_{x \in X} \left| \int_{\Delta(k, i)} d(f(t), x) dt - \int_{\Delta(k, i)} d(g(t), x) dt \right|,$$

$$d_k(f, g) = \sum_{i=0}^{2^k-1} \omega k, i) (f, g),$$

$$d(f, g) = \sum_{k=1}^{\infty} 2^{-k} d_k(f, g).$$

It is easy to see that d is a compatible metric on M(X).

Take a sequence of open covers $\{\mathcal{U}_n\}$ of D such that diam $U<2^{-n}$ for each $U\in\mathcal{U}_n$.

Let $K < \{\mathcal{U}_n\}$ and let $f: K^0 \to D$ be a selection. Take a map $g_0: K^0 \to C \subset D$ such that

$$d(f(V), g_0(V)) < 2^{-n(V)}$$
 for each $V \in K^0$

where

$$n(V) = \sup \{n : V \in \mathcal{U}_n\}.$$

Let $K^{(n)}$ denote the *n*-skeleton of K. We shall define inductively a sequentee of maps $g_n: K^{(n)} \to M(X)$ with the following properties

- (2) $g_n \mid K^{(n-1)} = g_{(n-1)}$ for each n > 1,
- (3) For each $\sigma \in K^{(n)}$ there exists an $m(\sigma) \in N$ such that for each $x \in \sigma$ there exist intervals A_j ,..., A_k , $k \leqslant m(\sigma)$ such that $\bigcup_{i=1}^k A_i = [0,1]$, $A_i^0 \cap A_j^0 = \emptyset$ for $i \neq j$ and $g_n(x) \mid_{A_i} = \text{const for each } i = 1,..., k$.
- (4) For each $\sigma \in K^{(n)}$, for each $x \in \sigma$ and for each $h \in M(X)$ we have $d(h, g_n(x)) \leqslant \max \left\{ d(h, g_o(V)) : V \in \sigma^o + (1-2^{-n}) \text{ diam } g_o(\sigma^o) \right\}.$

Obviously g_0 satisfies the conditions (3), (4). Assume that g_{n-1} has been defined with the properties (2) - (4). Let us define $g_n: K^{(n)} \to C$. For each $\sigma \in K^{(n)}$ take $K(\sigma) \in N$ such that

(5)
$$K(\sigma) > n + 3 + \log_2 \frac{\max\{m(\sigma'): \sigma' \text{ is a face of } \sigma\}}{\operatorname{diam } g_0(\sigma^0)}$$

Let c be an interior point of the simplex o and put

$$g_{n}(c) = g_{n-1}(V_{o}) = g_{o}(V_{o})$$

where V is any vertex of o.

Identifying each simplex $\sigma \in K$ with its associated geometric simplex we see that for each $x \in \sigma$ there exist unique $s \in [0,1]$ and $y \in \sigma$ (the boundary of σ) such that x = sc + (1-s)y. We define $g_n(x)$ as follows: If $g_n(c)|_{\Delta(k(\sigma), i)}$ and $g_{n-1}(y)|_{\Delta(k(\sigma), i)}$ are constant then we put

(6)
$$g_n(x)(t) = \begin{cases} g_n(c) & (t) & \text{if } t \in [i2^{-k(\sigma)}, (i+s)2^{-k(\sigma)}), \\ g_{n-1}(y) & (t) & \text{if } t \in [(i+s)2^{-k(\sigma)}, (i+1)2^{-k(\sigma)}). \end{cases}$$

Otherwise we subdivide $\Delta(k(\sigma), i)$ into subintervals so that $g_n(c)|_{\Delta}$ and $g_{n-1}(y)|_{\Delta}$ are constant and that each $\Delta \in \{\Delta\}$ is maximal, (that is, if $\Delta' \stackrel{\frown}{\neq} \Delta$ then either $g_n(c)|_{\Delta'}$ or $g_{n-1}(y)|_{\Delta'}$ is not constant). We define $g_n(x)|_{\Delta'}$ by the formula (6), where $\Delta(k(\sigma), i)$ is replaced by Δ . Obviously g_n satisfies the conditions (2) (3). Let us check (4).

Consider $x \in \sigma$ with x = sc + (1 - s)y for some $s \in [0,1]$ and $y \in \dot{\sigma}$. For each $k \leq k(\sigma)$, put

$$\overline{\Delta}(k,i) = \bigcup \left\{ \Delta(k(\sigma),i) \subset \Delta(k,i) : g_{n-1}(z) \mid \Delta(k(\sigma),i) \right\}$$
 is not constant for some $z \in \{c, y\}\}$

$$\widetilde{\Delta}(k,i) = \Delta(k,i) \setminus \overline{\Delta}(k,i).$$

Note that $\overline{\Delta}(k,i)$ and $\widetilde{\Delta}(k,i)$ depend on σ and y. For each $k \leq k$ (s) we subdivide $\widetilde{\Delta}(k,i) = \Delta^*(k,i) \cup \Delta^{**}(k,i)$ so that $g^n(x) |_{\Delta^*(k,i)} = g_n(c)$ and $g_n(x) |_{\Delta^{**}(k,i)} = g_{n-1}(y)$.

Then for each $k \leqslant k(\sigma)$ and $z \in X$ we have

$$\int_{\Delta(k, i)} d(g_n(x)(t), z)dt = \int_{\Delta^*(k, i)} d(g_n(x)(t), z)dt + \\
+ \int_{\Delta^{**}(k, i)} d(g_n(x)(t), z)dt + \int_{\overline{\triangle}(k, i)} d(g_n(x)(t), z)dt = \\
= s \int_{\overline{\triangle}(k, i)} d(g_n(c)(t), z)dt + (1-s) \int_{\overline{\triangle}(k, i)} d(g_{n-1}(y)(t), z)dt \\
+ \int_{\overline{\triangle}(k, i)} d(g_n(x)(t), z)dt = \\
= s \int_{\Delta(k, i)} d(g_n(c)(t), z)dt + (1-s) \int_{\Delta(k, i)} d(g_{n-1}(y)(t), z)dt \\
+ \int_{\Delta(k, i)} d(g_n(x)(t), z) - sd(g_n(c)(t), z) - (1-s) d(g_{n-1}(y)(t), z) dt.$$

Therefore for each $k \leqslant k(\sigma)$, $z \in X$ and $h \in M(X)$ we have

$$\left|\int_{\Delta(k,i)} d(g_n(x)(t),z)dt - \int_{\Delta(k,i)} d(h(t),z)dt\right|$$

$$\leq s \left|\int_{\Delta(k,i)} d(g_n(c)(t),z)dt - \int_{\Delta(k,i)} d(h(t),z)dt\right| +$$

$$+(1-s)\left|\int_{\Delta(k,i)} d(g_{n-i}(y)(t),z)dt - \int_{\Delta(k,i)} d(h(t),z)dt\right| + 2|\overline{\Delta}(k,i)|.$$

Let $m(k,i)(\varphi)$ denote the number of intervals \triangle $(k (\varphi),i) \subset \triangle$ (k,i) on which φ is not constant, where $\varphi \in \{g_n(c), g_{n-1}(y)\}$. Then

 $|\overline{\Delta}(k,i)| \leqslant 2^{-k(\sigma)} (m(k,i) (g_n(c)) + m (k,i) (g_{n-1}(y))).$ Consequently, for each $k \leqslant k(\sigma)$ we get $\omega(k,i) (g_n(x),h) \leqslant s \omega(k,i) (g_n(c),h) + (1-s) \omega(k,i) (g_{n-1}(y),h) + 2^{-k(\sigma)+1} (m(k,i) (g_n(c)) + m(k,i) (g_{n-1}(y))$ Hence, for each $k \leqslant k(\sigma)$ we can write

$$d_k(g_n(x), h) = \sum_{i=0}^{2^k-1} \omega(k, i) (g_n(x), h)$$

$$\begin{array}{l}
\mathbf{z}^{k} - 1 \\
\mathbf{z} \\
\mathbf{z} \\
\mathbf{i} = 0
\end{array}$$
 $\omega(k, i) (g_{n}(c), h) + (1 - s) \sum_{i=0}^{2^{k} - 1} \omega(k, i) (g_{n-1}(y), h) + (1 - s) \sum_{i=0}^{2^{k} - 1}$

$$+ 2^{-k(\sigma)+1} \sum_{i=0}^{2^k-1} (m(k,i) (g_n(c)) + m(k,i) (g_{n-1}(y)) \leqslant sd_k(g_n(c),h) + (1-s)d_k(g_{n-1}(y),h) + 2^{-k(\sigma)+1} \cdot 2 \max\{m(\sigma'): \sigma' \text{ is a face of } \sigma\}$$

Therefore, from (5) we get for each $k \leqslant k(\sigma)$

$$d_k (g_n(x), h) \leqslant sd_k(g_n(c), h) + (1 - s)d_k (g_{n-1}(y), h) + 2^{-n-1} \operatorname{diam} g_0(\sigma^0)$$

Consequently,

$$d (g_{n}(x), h) = \sum_{k=1}^{\infty} 2^{-k} d_{k}(g_{n}(x), h) = \sum_{k=1}^{\infty} 2^{-k} d_{k}(g_{n}(x), h) + \sum_{k=k(\sigma)+1}^{\infty} 2^{-k} d_{k}(g_{n}(x), h)$$

$$\leq \sum_{k=1}^{k(\sigma)} 2^{-k} (sd_{k}(g_{n}(c), h) + (1-s) d_{k}(g_{n-1}(y), h) + \sum_{k=1}^{\infty} 2^{-k} d_{k}(g_{n}(x), h)$$

$$+ 2^{-n-1} \operatorname{diam} g_{o}(\sigma^{o}) + \sum_{k=k(\sigma)+1} 2^{-k} d_{k}(g_{n}(x), h)$$

$$\leq d (g_{n}(c), h) + (1-s) d(g_{n-1}(y), h) + 2^{-n-1} \operatorname{diam} g_{o}(\sigma^{o}) + 2^{-k(\sigma)}.$$

Note that from (5)

$$2^{-k(\sigma)} < 2^{-n-3} \operatorname{diam} g_{\sigma}(\sigma^{\circ}).$$

Hence

$$d(g_n(x), h) \leq \max \{d(g_n(c), h), d(g_{n-1}(y), h)\} + 2^{-n} \operatorname{diam} g_0(\sigma^0).$$

Let $\sigma' \in K^{(n-1)}$ denote a face of σ containing y. Then by the inductive assumption we get for each $h \in M(X)$

assumption we get
$$d(h, g_{n-1}(y)) \leqslant \max \{d(h, g_0(V) : V \in \sigma^0\} + (1 - 2^{-n+1}) \text{ diam } g_0(\sigma^0) \}$$
$$\leqslant \max \{d(h, g_0(V)) : V \in \sigma^0\} + (1 - 2^{-n+1}) \text{ diam } g_0(\sigma^0).$$

Therefore $d\ (h,g_n(x))\leqslant \max\left\{d(h,g_o\ (V)):V\in\sigma^o\right\}+(1-2^{-n}\)\ \mathrm{diam}\ g_o\ (\sigma^o).$ Hence, the condition (4) holds.

Finally we define $g: K \to D$ by the formula $g(x) = \lim_{n \to \infty} g_n(x)$ for each $x \in K$.

Then $g \mid K^0 = g_0$ and from (2) (4) we get for each $x \in \sigma \in K$ and $V \in \sigma^0$ $d(g(x), f(V)) \leq d(g(x), g_0(V)) + d(g_0(V), f(V))$

$$\leq 4 \cdot 2^{-n(\sigma)} + 2^{-n(\sigma)} = 5 \cdot 2^{-n(\sigma)}$$
.

Hence

$$\delta(\sigma) = \sup \left\{ d\left(g(x), f(V)\right) : x \in \sigma, V \in \sigma^0 \right\} \leqslant 5 \cdot 2^{-n(\sigma)}$$

Thus by Theorem 1-1 $D \in ANR$. It is easy to see that every convex set in M(X) is contractible. Therefore $D \in AR$. This completes the proof of Theorem 1.

2. Proof of Theorem 2. We shall assume that X is infinite, though our argument is valid in the finite case as well.

2-1. LEMMA $M_s(X_0)$ is the union of a sequence of finite dimensional compact sets, shortly σ_{fd} – compact.

We say that $f: [0,1] \to X$ is a k-step function if f there is a partition $\pi: 0 = a_0 < a_1 < \ldots < a_k = 1$ such that $f \mid_{(a_i, a_{i+1})} = const$ for each $i = 1, \ldots, k-1$.

Let $M_s^k(X)$ denote the set of all k-step functions in M(X).

Assume that
$$X_0 = \{x_1, \dots, x_n, \dots\}$$
. We put $X_n = \{x_1, \dots, x_n\}$.

Then

$$M_{s}(X_{0}) = \bigcup_{k=1}^{\infty} \bigcup_{n=1}^{\infty} M_{s}^{k}(X_{n}) = \bigcup_{n=1}^{\infty} M_{s}^{n}(X_{n}).$$

Therefore, to complete the proof of Lemma 2-1 it remains to prove that every $M^k(X_n)$ is a finite dimensional compact metric space.

Let $\{f_i\} \subset M_s^k(X_n)$ be a sequence. For each $i \in N$ let $\pi_i : a_0^i = 0 < a_1^i < \ldots < a_k^i = 1$ denote a partition of [0,1] with respect to f_i , that is, $f_i \mid [a_j^i, a_{j+1}^i] = \text{const for each } j = 0, \ldots, k = 1.$

Since [0,1] is compact and X_n is finite, there exists a subsequence $f_{ij} \to f \in M_s^k(X_n)$. Thus $M_s^k(X_n)$ is compact. But it is easily seen that $\dim M_s^k(X_n) \leqslant 2k$ for every $k, n \in N$. This completes the proof of Lemma 2-1.

2-2. LEMMA [1]. Let Y be a metric space homeomorphic to l_2 . Let $\{\Psi_n\}$ be a sequence of finite dimensional compact subsets of Ψ such that $\Psi_0 = \bigcup_{n=1}^{\infty} \Psi_n$ is dense

in Ψ . Then $(\Psi, \Psi_0) \cong (l_2, l_2^f)$ iff the following condition holds

(*) For each finite dimensional compact set $K \subset \Psi$, for each $\varepsilon > 0$ and for each $n \in N$ there exists an embedding f of K into Ψ_m for some m > n such that $f \mid_{K \cap X_n} = \text{id}$ and $d(f(x), x) < \varepsilon$ for each $x \in K$.

2-3. LEMMA [1]. Let A be a proper closed subset of a metric space Ψ . Then there exists an indexed family $\{U_j, c_j\}$ (called a Dugundji system for $X \setminus A$) such that

- (i) $\mathcal{U}_j \subset \Psi \setminus A \text{ and } c_j \in A \text{ for each } j \in J$,
- (ii) $\mathcal{U} = \{U_j\}_{j \in J}$ is a locally finite open cover of $\Psi \setminus A$,
- (iii) If $x \in U_j$ then $d(x, c_j) \leq 2d(x, A)$ for each $j \in J$.

Now using Lemmas 2-1-2-3 we shall complete the proof of Theorem 2. Let us check the condition (*) of Lemma 2-2 for $(M(X), M_s(X_0))$. Note that by Theorem 1 we have $M(X) \cong l_2$.

Let $K \subset M(X)$ be a finite dimensional compact set, $\varepsilon > 0$ and $n \in N$. We take p > n such that $M_s^p(X_p)$ is an $\frac{1}{2} \varepsilon$ -net for K. Let $\{U_j, c_j\}_{j \in J}$ be a Dungundji system for $K \setminus M_s^p(X_p)$. Let $\mathscr{N}(\mathcal{U})$ denote the nerve of $\mathcal{U} = \{U_j\}_{j \in J}$ and let $u \colon K \setminus M_s^p(X_p) \to \mathscr{N}(\mathcal{U})$ denote a canonical map. Using the proof of Theorem 1 we get a map $v \colon \mathscr{N}(\mathcal{U}) \to M_s^p(X_p)$ such that, denoting

$$g(x) = \begin{cases} x & \text{if } x \in K \land M_s^p(X_p) \\ vu(x) & \text{if } x \in K \backslash M_s^p(X_p) \end{cases}$$

we obtain a continuous map $g: K \to M_s^p(X_p)$ such that $g|K \cap M_s^n(X_n) = \mathrm{id}$ and $d(g(x), x) < \frac{1}{2} \varepsilon$ for each $x \in K$.

Let us approximate g by an embedding. Denote $k = \dim K$ and let φ : $K \to I^{2k+1}$ be an embedding. For each $x \in K$ let n(x) be the smallest natural number such that there exists a partition $\pi(x)$: $a_0 = 0 < a_1 < ... < a_{n(x)} = 1$ with respect to g(x). Assume that

$$g(x)|_{[a_i, a_{i+1})} = y_i \text{ for } i = 1,..., n(x) - 1$$

We define $f(x)|_{[a_i, a_{i+1})}$ as follows. Put $b_0 = a_i$

$$b_{j} = b_{j-1} + \delta d(x, K \cap M_{s}^{n}(X_{n})) \varphi_{j}(x)$$
for $j = 1,..., 2k + 1$.
$$b_{2k+2} = b_{2k+1} + \delta d(x, K \cap M_{s}^{n}(X_{n}))$$

and

$$f(x)|_{[b_j,b_{j+1})} = x_{p+j+1} \text{ for } j = 0,..., 2k+1$$

$$f(x)|_{[b_{2k+2},a_{i+1})} = y_i.$$

Obviously $f|_{K \cap M_s^n(X_n)} = g|_{K \cap M_s^n(X_n)} = id$ and if δ is chosen to be suffici-

ently small then $d(f(x), g(x)) < \frac{1}{9} \varepsilon$ for each $x \in K$. It is easily seen that f is an embedding and $f(k) \in M_s^m(X_m)$ where m = p(2k+2).

This completes the proof of Theorem 2.

- [1] C. Bessaga and A. Pelczynski, Selected topics in infinite dimensional topology, Warsza wa1975. The control of the co
- [2] N. T. Nhu, Investigating the ARN-property of metric spaces, Fund. Math. 124 (1984), 243-264.
- [3] N.T. Nhu, Orbit spaces of finite groups acting linearly on normed spaces, Bull. Pol. Ac. Math., 32 (1984), 417-424.
- [4] N. T. Nhu, Hyperspaces of compact sets in metric linear spaces, Top. Appl. 22 (1986), 109 - 122.
- [5] H. Torunczyk, Characterizing Hilbert space manifolds, Fund. Math., 111 (1981). 47-232.

Received April 20, 1986.

I - Committee of the following

: Mark Carlo

INSTITUTE OF MATHEMATICS, P. O. BOX 631, BO HO 10.000 HANOI, VIETNAM

ాటా కాంద్రం కో కాణ్మ్ ఈ కే కోరాయాడ్ వారాక్ స్ప్రాంగ్ కు

A section is set of the set if I be a