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REMARKS ON MEASURABLE FUNCTION SPACES

NGUYEN TO NHU

Let X be a metrizable space. By M(X) we denote the space of all measn-
rable functions from [0, 1] into X equipped with the topology of convergence
in measure. We identify / = g iff

[{te0 J:f@O = gy} =0

. Here | A | denotes the Lebesgue measure of 4 in [0, 1].
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In this noie we investigate the AR-property of certain subsets of M(X). As
shown by Torunczyk [5] the AR-property of a metrizable space is' closely
related to its topological structure. Therefore the study of the AR-property of
metrizable spaces is of great importance. Our results in the sequel are similar
to those in [2]—[4]. -

We shall say that a subset D CM(X) is convex iff for any f, g €D, for
any a € [0.1] and for any partition w: do =0 <y < s < a,=1of [O 1] we
have «_(f, g) € D, = = g) is defined as follows
fif te [a;, a; + uc(al._[__1 —a.))
gif tela,+ a(ai_H-—- a; )’ai—]—l)'

We also use the following notation : '

“n(fo 9)(t) =

I, = the Hilbert space of all square summable sequences.

Ig ={x=(,) el,: x = 0for almost all n}. Recall that a functionf :

‘[0, 1} - X is simple iff there exists a partition of [0,1] into subintervals such

that the restriction of f to any subinterval is constant.
M (X)= {feM(X): f is a simple function }
For other notions we refer the reader to [1].
We shall establish the following results.
THEOREM 1. Let D be a subset of M(X). If -there exists a convex set C ¢ D

consisting of simple functions such that C is dense in D then D is an absolute

T EfI'CICi.

THEOREM 2. Let X be a sepcu'able compleie metruable 'pace having more
than one point. Then for any coum‘able dense subsel X ¢ X we have

(M(X), M (X, )= .
&



We note the following special case of Theorem 1.
COROLLARY 1{2], M(X) and M_(X) are absolute refracts for any melric
space X,

1. Proof of Theorem 1. _ o
‘Let { U, } be a sequence of open covers of a metric space X. By =¥ (%)

we denote the nerve of 9 = U, . We write K < { U, }iff K is a subcom- P
n=1

plex of <4 (%) and each simplex ¢ O,f K is contained in U, v van 4z for some

ne N, We let
n(o)y=max {n:oc CU VU_

Let K° denote the O-skeleton of K, that is the set of all vertices of K and
ket K denote the simplex K with Whltehead topolo y. Our proot of Theorem 1
is based on the Tfollowing

1—-1. TBEOREM [2] 4 melric space X ¢ ANR sz there exists a sequence of
open covers {Gan} of X such that for each K < {%n}- and for each selection f:

K° — X there exists a map'g ! | K1 — X such that for any sequence o
n(c ) — oo we have

8(a, ) =sup {d(/(V), g (2)): V & o w5} 0,

We shall show that D satisfies the charactenzatlon c_ondition of Theo-
rem 1-1. '

k with A

 Without loss of generality.we may assume that the topology of X is induced
by a metric d bounded by 1. We put ' ‘

Ak i)= (27" @4+ 128 tori=o,.., 2 1.
For each f, g M(X), write

w (k, 1) (f, 9) = sup S d(f (), x) dt_SA d(g (), z)dt |,

T€X (&, 1) (b ©)
k
d (f, 9)= Z:m kD (f 9
' i=0
d(f, 9) = g: 2-"d (f 9.

It is easy to see that d is a compatible metrlc on M(X)

Take a sequence of open covers {7/} of D such that diam U <2
each U e 9 .

Let K < {Ga { and let f : K° — D be a selection. Take a map gfo K°—>CcD
such that : :

d (F(V), g, (M) < 2-‘?“” for each VeK®
%:



where
n(V) = sup {n: Ve U}

Let K denote the n-skeleton of K, We shall define inductively a sequens
ce of maps g, : KD M (X) with the following properties
(2) 9, IK(“-ﬂ = 9n_1) for each n > 1%,

(3) For each o & K™ there existsanm (s) € N such that for each z & o there exist

k
intervals A, ,.., 4, , k < m (o) such that U 4, = [0,1}, A7 A A}’ = @ for i=j
i=1
and 9, (x) lAi= const for each i = 1,..,, k.
(4) For each o e_K("), for each z €c and for each A € M (X) we have

d (b g, @) < max [d (g, (V)): V € ¢4 (1—277) diam g, (°) L

Obviously g, satisfies the conditions (3), (4). Assume that g _, has been
defined with the properties (2) — (4). Let us define g, : K(?) & €. For each
o e K@) take K(c) € N such that

() K> 1 + 3+ log, DAY 28 A foce of o}

Let ¢ be an interior point of the simplex ¢ and put
gﬁ(c) = gn_I(V0)= go(vo) .
where V0 is any vertex of a.
Identifying each simplex o € K with its associated geometric simplex we

see that for each x & o there exist unique s € [0,1] and y & & (the boundary of o)
such that x = sc + (1—s)y. We define g, () as follows: If gn(c)[A(k(c) 0 and

- 109 | Ak, §) 2T€ consfant then we ptt
gn(c) (t) if teli? -k(c)’ (f+s)2-1{(a))’

®) g (2=
h o @ e[+ 2 K, ap1)2 KO,

Otherwise we subdivide A (k({s), ©) into subinfervals so that gn(c)[ A and

gn_l(y)lA are constant and that each A ¢ {A} is maximal, (that is, if &’ i A

then either gn(c)lﬁ, or g, _4(#)ja- is not constant). We define g (z) [ A by the

formula (6), where A(k(o), 7) is replaced by A. Obviously g, satisfies the condi-
tions (2) (3). Let us check (4).

Consider & € ¢ with x == s¢ + (1 - s)y for some s & [0,1] and y € 4. For each
k < k(c), put ' '
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Ak, §) = v { A(k(o), 1) T Ak, z): 9p—1(9 | A0 ”is not constant  for
some z¢€ {c, y}}
' A(k z)__.f_\(k z)\A(A i). _
Note that A{(k, i) and Ak, {) depend on o and y. For each k <k{a) wa
subdivide A(k, ) = A*(k, i) U A**(k, 1) 50 that 97 () 18°61) = In )
: and g _(x) 1Au(k 3= 1(¥)-
Then for each .k < k() and z ¢ X we bave .

d(g, (£)(1), 2)dt = d(g, (x)(1), D)4 -

'SA(k. 0 SA' *(ky 1)

g ema+ |7 deg e =
(ke i) Ak o i) : '

dtg 0.2+ (1-) | A0,
i) Ak i) B

, +S_ - .)d(gn(;v)(t),'z)dt=
| @ty = { dtgoxon

Ak 1) .

+S {d(g (2)(1), 2) = s(§, () 2) = (1= 8) A(Qpuug(8)(D)i 2) } .

A(.k, i

Ak, i)

Therefore for each k < k(c), z< X and k € M(X) ‘wehave
e

d(y, (x)(t), z)di — S " d(n(t), z)dt

k,:)- &k :)

SA(;{' ) d(h(t), z)dt ] +

+(1—-s)ls ._ d(g,,_J(y)(t), i - |
YAk i) : My i) "

| S drg, (c )(z ), z)dt —
Ak i)
d(h(t),z)dt \+21Am il .

- Let m(k,i)(p) denote the ‘number of iitervals A (k (o)1) A (k, ri) on
which ¢ is not constant, where Q& {9, () 95, @ } Thea :

& (s D] < 2749 (mikit) (9, (0) +-m @D (Gpmg @) cmsequnnﬂy, for
each k << k(o) we get w (k, i)(g, (x), Ry ok, D) (g, (o) B+ - '

+ (=) 0 (e 1) (g,_s (ghil) + 27HONH? * (m(ld) (g, (D+ mk, 3 (9,7 U))
Hence, for each k < k(a) “we 'can’ wmte - .
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4 (g, @ B= "3 . o (k D) (5, @)h)
’ 1HO

2”._.1 B ok_g LT 7
s 20 o (k, ) (gn(c), h)+(1.._.s) T ow (k’j) (gn—i(y)’ h) +: e

;= ] i,_—_() - .
| , 2}{_,_1 Ce ,
' + z—k( o)1 I, - (mik, i) (g, (c))+m(k Dpoq (¥ <sd (g,(cW h) +

| i=0 ,

Fii—s)d (gn__i(y) B) - 9—k()}+1, 9 max { m(o") o' is a face of c}

Theref ore, from (5) we get f or each k< k( 0') _
d; (g, (@) k) <sd(g,(c)h) + (1 — S)d (gn_1 (y) h)+2“““1dlamg (c*)

Consequently,
| d (g,,(z). "= z zet d, (g, (@) b) =
k() _ | o0 T -
= 2 “d (g (x), h) + X 2=k d, (g,(2). 1)
1:—-1 s k=k(o)Hr s T
| K3
< 2 27%(sd, (g, (ch h)+(1~s)d (gn_i(y) h)+
‘ k=1 .
Fertdamg ()4 I 2R (g, @0

k——k(a)
< 'd (g _(¢) b)+ (1 —s) d(g, a1 (yJ, h) + 2‘“"" diam’ g5 )+2“"(")
Note that from {5)
2""(") < 2 3dlam g, (0' )
Hence
d(g,(¥), i) < max {d(g, (0 h), d (g,_y (W), B)} + 27 diamyg, (s°).

Leto’ & K1) Genote a face of contalnmg 1. Then- by the inductive
assump’uon we get for each he M(X)
dih, g, @) < max {d(h g (V): 'V €ot}, a- — grrkl) diam g (60)

<max {d(h go (V)2 V& ot + (1- 2 ) diam go (). .

Therefore . SR . o
. d (hg,(®) < max {d(h 9, (V)) V € cr"}-!~(1—2“" ) dlamg (o ).
Hence, the condmon (4) holds. o

Fmally we define g E=D by the formula’
T gl@) = lim g (2) for each xe K.,

n=—roe



' Then ¢ | K0 = 9 and from (2) (4) we get foreachx € 6 e Kand V ¢ o0
d (9@), F (V) < d (g(a), g,(V)) + d(g,(V)s f (V)
. <. 9—n(5) + 2——:1(0’): 5. g"n(c).
Hence :

8(c) — sup}d(g(x),f(V)) iz es, Veol f < 5. 279

Thus by Theorem 1~1 D &€ ANR, It is easy to see that every convex set in
M(X) is contractible. Therefore D & AR. This completes the proof of
Theorem 1.

2. Proof of Theorem 2. We shall assume that X is infinite, though our,
argument is valid in the flmte case as well.

2-1. LEMMA M (X ) is the union of a sequence -of fmzte dimensional
compact sets, shorlly o fd " compact,

We say that f: [0,1] - X is a k—slep function iff there is a partition
t:l=a, <aq <..,. < a, =1 such that f | (e ay ) = const for each
i= 1; --cg_k —lo

Let MY(X) denote the set of all k-step functions in M(X).
5

Assume that Xo = {371 g oo g mn » “', l',}-' WB put .
. Xn='{3‘:1 ’.-n.-’xn}o.

Then

M (X,)=0U U M Xy = UMYX,
k=1 n=1 n=1
Therefore, to complete the proof of Lemma 2-1 it remains to prove that

every MI:( X )isa finite dimensional compact metric space.
Let {f! } C M’: (Xn ) be a sequence. For eachi ¢ N let w, -a; =
=0< al < ... < a;‘ == 1 denote a partition of [0,1] with respect to

F)

f[. , that is, f!. = const for each j= 0, whk=1

i i
: (Ij ] ﬂj+1
Since [0,1] is" compact ‘and X, is finite, there exists a suabsegquence
fij—= /€ M: (X, ). Thus Mf(Xn) is compact, But it is easily seen that
dim Mk(X,, ) < %k for every k, ne N, This completes the proof of Lemma 2-1.
s i

2.2. LEMMA [1). Let Y be a metric space homeomorrhic to 1,. Let {¥ 1} be a

sequence of finite dimensional com j)aci subsels of ¥ suchrthat ‘Fo = ‘P‘n is dense
n=1

%0



in ¥, Then (¥, ¥ ) = (12‘- Il ) iff the following condition holds

(*) For each fzmte dunenszonal compact sel K — W, for each ¢ = 0 and for
each n € N there exists an embeddmg f of K into v for some m = n such thai

f = id and d(f(;c) x) < ¢ foreachr e K
KN Xn

2-3. LEMMA [1]. Lel Abe a- -proper closed subset ‘of a metric space W. Then
there exisis an indexed family {U , €. } (called a Dugundﬂ system for X \ 4)

such that
i) % C'_‘\P\Aandc eAforeach]e.I

(ii) U =4 Uj} ; isa locallg finite open cover af YN 4

(iii) Ifxe UJ then d(x, ;) < ?d(x A) for each j € J.

Now using Lemmas 2 1--2-3 we shall complete the proof of Theorem 2,
Let us check the condition (¥*) of Lemma 2-2 for (M (X)), M (X ). Note that by

Theorem 1 we have M (X)=1,,

. Let K ¢ M(X) be a finite dimensional compact set, ¢ > 0 and ne N. We
take p > n such that Mf (Xp) is an é—-e-ne.t for K, Let {Uj 2 €5 }jeJ be a Dun-
gundji systerh for K\MP (X ) Let c/}’(%) dé-no't-e' iﬁe nerve of %;{LI j-} jer
and let u: K\MP(K )-»c/y(’ﬂ) denote a canomcal map Unng the proof of
Theorem 1 we get amap D: dY(‘?L) — M"J (X )such that, denotmg

| (= 1fa:eKnMp(X)

> . - ° 3 - .
' glx) = '

va () 1f Te K\MP(X )

we obtam a contmuous map ¢: K —~ M? (X ) such that glK n M (X ) id

and d(g(:r) ) < —%— £ for each xeK

Let us approximate g by an embedding. Denote k& = dim K and let o:

K - %+ pe an embedding. For each = € K let n(x) be the smallest natural
number such that there exists a partition n(z): ¢y =0 < ¢; <. <a

: n{x
4 With respect to g(z). Assume that
— g, for i=1ly. n(x) —
Q(x)l o a; 1) g, for i=1...,n@) —1

y =1

as follows. Put

We define f (x) [a. ai+1)
i a

b

0 = %

o1



by =y s, K~ MK, ))cp,(w)
e o forj=1.. 2k+1.

| by s = boar 0 d (@ KM (X))
and

f( )l[b2k+2 ’ +1) : "
Obviously fIK A Mn(x ) = gIK n Mn (x ) == id and if & is chosen to be suffioi-

ently small then d(f(x), (:z:)) - -Ié—s for each T € K1t is easﬂy seen that f is

an emheddlng and f( k) C M (,X } where m= p{2k+2)

Thls completes the proof of T heorem %
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