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0. INTRODUCTION

_ Let G be a reductive Lie group, K a maximal compact subgroup of G, I' an
arithmetically defined subgroup and V some I'-module, i.e. there is a represen=
tation ¢ in the complex vector spacé V., Our aim is to study the Eilenberg —
MacLane cohomology group H*(I"; V). It is well known that if I"acts freely, the
quotient space X T, where X := K\, is a smooth manifold and, since X is
contractible, it is also an Eilenberg-MacLane space K (I 1). Therefore if the
representation (o, V) is trivial, H¥(I'; V) is isomorphic to the ordinary De Rham
cohomology group H} o (X/T ; V). If the representation (o, V)is non-trivial,
the coefficient sheaf €= (X,/I", V) must be replaced by a local coefficient

asheaf system Fy associated to this representalion (see for example

[3, § VIL.2.2]).
- The homogeneous_ space X has a natural Riemannian structure with
negative defined scalar curvaiure. Thus for the part of this new kind of de
Rham cohomology classes with compact support one can develop the ordinary
Hodge theory; in particular find the harmonic ‘representatives. for every coho-
mology class with compact support. By virtue of the long exact sequence for
the.'pair of a space and its boundary, the «suplementary » part is closely connect-
ed with the boundary of X/I'. So, for an algebraic reductive group G and an
. ‘i‘:'itht_netii:éll_y defined subgroup I A: Borel and J. -P. Serre [2] have proposed a
‘constriction of manifold with corners X/I' which is a compactification of X/I
and the boundary of which is homotopic to- the quotient by I' of the Tits
building of parabolic subgroups. The main properties of I' needed for the
reduction theory are abstracted by R.' P. Langlands[9] Jby, introducing an
essentially larger [11, 15] class of discrete subgroups that we call «of Langlands
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type». Our early goalis to conmstruct the Borel — Serre compactification for
Langla’xfds type discrete subgroups of general Lie group. There is some diffe-
rence belween our situation’and the Borel— Serre’s: We consider general Lie
groups and Langlands type discrete subgroups instead of the algebraic reductive
Q-groups and arithmetically defined subgroups. So in our situation the cuspidal
and percuspidal subgroups must occur in the place of arbitrary parabolic and
minimal parabolic subgroups in Borel — Serre’s consideration,

With each cuspidal subgroup, R.P. Laglands [9] associated a family of
Eisenstein series. But the Langlands theory was for a long time very difficult
to understand and to use. Harish-Chandra in his lectures at the Institute for
Advanced Studies [6] refined the theory for semisimple Lie groups in a more
comprehensive form by using the Maas-Selberg rclations. In an other work
[7] he developed an analoguous theory of Eisenstein integrals to study the
Plancherele measure, We will in a subsequent paper develop the Harish-
Chandra’s approach to the theory of Eisenstein series in our situation, '

In some further 'parts‘ of the contribution we certainly apply this theory of
Eisenstein series to describe the cohomology classes at infinity of H*(I"; V).
It will be considered as a theory of harmonic forms which appear as the values
of Eisenstein series at some special values of parameters. So  we shall have
some «iodge theory» for non-square-integrable differential forms, see
[4» 5, 8, 10, 13, 14].

1. CUSPIDAL SUBGROUPS AND THE LANGLANDS ASSUMPTION

In this section we -shall introduce the Langlands’ notions of cuspidal,
percuspidal and finally Langlands type discrete subgroups.” The general refe-
rences are ' Langlands [9] Borel-Wallach [3] and Harish-Chandra [71.

© 1.0. SPLIT COMPONENT. Recall that for any Lie group G we denote by A(6)
the group of all {(continuous) homomorphisms from G into the multiplicative
group R” of positive real numbers and by G°® the connected component of the
identity element of G. By a veclor subgroup of G we mean a closed subgroup 4
which is topologically " isomorpbic to the additive group R"™ for some n.
We define '

© 706 = A Ker|X|
R o XeK (G)



Then 9G is a closel norma! subgroup of G and G, 7% is an abelian Lie group.
We call dim G, 7% the p(H’GbO[lC rank of G and denote it by prk G. By a splil
component of G we mean'a veclor subgronp A of G such that G = °G.A and
oG n A= {1}

1 1. ASSUMPTIONS ON G: Let G be a Lie group with only finite number of
.n connected <omp0nents and with the Lie algebra G, which is reductwe, i.e.Gis
the direct sum of an abelian suhalgebra a4 and a Semlslmple Lie algebra Gs
It WIII be also supposed that the center of the connected subgroup G* of G
correspondmg to the Lie algebra gs is finite and Ad G is contamed in the
connected complex ad301nt group G, of the complex1f1ed Lie aigebra G,
One can ‘deduce (aee Harish — Chandra 7. "Lemma 4. 11]) that the centrahzer
Z(T) of an arbilrary maxzimal vector subgroup T of G meets every connecled
component of G. ‘ ‘ :

1.2. PARABOLIC OBJECTS. Recall that a subalgebra Z_ of g is called a
Carian subalgebra iff it is mlpotent andis its own normallzer in G . The cenira-
lizer in G of a Cartan subalgebra of § is called a Cartan subgroup. A subalgebra
@ of G is called parabolic if its complexifica'tion‘G'Pc contains a Borel subalgebra
(i. e. a maximal solvable subalgebra) of & . Then,if ? .is a parabolic subalgebra,
it is its own normalizer in G. A subgroup P of G is said to be parabolic iff

it is the normalizer in G of a parabolic subaluebra P of G. It is easy to see that
m this case P is closed and its Lie algebra is just ?

. .1.3. LANGLANDS DECOMPOSITION. Let < be a maximal subalgebra of
| EP =P NG consrstmg of the elements whose adjoints are nilpotent and U be
the analytlc subgroup of P with the Lie algebra . It is well known that there
exists a maximal subalgebra X’ of @ whose 1mage in adg is fully reducible
and that @ = M @ o/, and M’ contains a Cartan subaldebra of g Thus A
1s its normal:zer Let o4 be a subalgebra of the center of M A gs whose
image in adg is dxagonahzahle If K is the” ortho‘oonal complement of -4 in
A with respect to the Killing form on G (see Harish - Chandra [7] then
oA n M= {0}. Let M’be the normalizer of it inr P. Then theconnected compo-
nent of M’ .is of {inite index in M’, M’ and U are closed in- P and P= i, U.
A, M’ nU= {1} and fmally M satisfles all the conditions imprsed on G in 1.1,

Let M= OM’ and iet A be the (connected) vector subgroup of P with the
Lie algebra 4. Then M is the centralizer of 4 in G and M meets every connected
component of . G. We Have the decomposilion M* = A'X M and we call A the
split component of P,
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The map (m a, u) — mau defines an analytic diffeomorphism of (M < A). U
onto P. Moreover OP = M U and we refer to the decomposition P = M AU as the
Langlands decompos:tzon.

I, 4. STRUCTURAL THEORY- OF: PARABOLIC éUBGROﬁI.'S- By a parabotio
pair, or p-pair we mean a.pair (P, A), where Pis a parabolic subgroup of
G and A is the split component of P. Let P = MAU and ? = 4+ A4 A

be the Langlands decomposition of P and its Lie algebra ?. By a root « &.

2 (P, A) we mean a toot o € I (G, o) such that @, = of, C of. If I =
prk P — prk G, there exist. exactly [distinct simple roots {27 seees ml} which are

R-lmearly mdependent and each . g Z (P, A) can be Wntten in a unique fashxon'

in the form
o = m &, + + m o -
with nonnegative integral coeffl-c:lents m; .
Fix a subset £ ¢ A (P, A) = {a s @ } and put
' ,_{HeA,a(Ii) 0V acF),
2, ={ee Z,(Ps 4); « I"¢F= 6 4

5, =5(P A)—.3,,

u:eE’
Then P is a paraholic subalgebra of g and the corresponding parabolie
subgroup Pp = o (#;) has thé-Langlands decomposition - Pp=M rAeU
- where A —exp ‘¢F' '-exP c/yF. MOI‘GOVBI' P o P, M - M A c A

Uc:U

Gwen any parabohc subgroup P’ of G contammg P, there exlsts a unique
subset F o= A(P, A) such that D= P We write (P A)F AF) In this

case the finite set F of sxmple roots 1s called the iype of the parahohc
subgroup P. 7 _

There is a one-to-one correspondence between the ‘parabolic subgroups ;P'
of G contained in P and the parabolic subgroups *P of M. This correspondence
is given by the relation *P = P A M, If P' = M'4°U", *P — *M*A*U are. tkie
Langlands decompositions, then M ’ *M A=*A A U=*.U,*A=M n A’
MW=MnU., _' o ‘

Let (P;, 4, ), i = 1 2, be two p- palrs in G. We write (P A > (Py, 4,)
iftpP, O P (and hence A1 O A2 X ) ‘ : v

-
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Any two minimal parabolic subgréups of G aré ¢énjugaté under K9, fet
P, P, and @ be parabolic subgroups of G. Suppose that Py Py 2y Q and
P, is conjugate to P, . Then P, = Pz .

Let P = MAU be a parabolic subgroup of G. Then the following three
conditions are equivalent:

(1) P Is a minimal parabolic subgroup.

Q) M C K.

(3) prk P = rank &G /K.

i. 5. SIEGEL DOMAIN. The map H 1— exp H from A to A = exp 4 defines a
bilection « — &, belween o4* = Hom,_ (o4, ¢) and & (A) (the character group),

such that:
¢, (exp H) =exp «(H),

Let us denote
A+(c1 Jop) = faedie i (@< e 1<IS < Uk

Fix once for all a maximal compact subgroup K of GO If (P, 4) is a p-pair,
if ¢ is a positive number and if w is a compact. subset of 9P, then the Siegel

domain J associated to (P, A} is
= {g= sak;s¢q W, a€ At(c, + o), k & K}

1. 6. CUSPIDAL SUBGROUPS. Consider a discrete subgroup I" of . A parabolie
pair (subgroup) (P, 4) is said to be cuspidal if every majorating parabolic pair
(P, A’) satisfies the following S o

N nrapcp,
| 2) U /I ~ U is compact and.
3) °P,I' n P has finite volume.

A cuspidal subgroup is called percuspidal if the condmon 3) is replaced
by the following

3 %P ' n 9P is compact.

1. 7. GENERAL CASE. Let us now con'éidér the géneral (not necessarily
, reductive) Lie group G wilh finite number of connected’ components. We denote
by G/R ‘G the Levi subgroup of G and suppose that it satisfies all the
oondmons imposed on reductive groups in Section 1. 1.It is well known
that there is a buectlon PG) & P (G/ R, G) hetween the sets of parabolic
subgroups of G and of G/R G.



© We always ¢onsider discrete subgroiips with finite (co-) volime, Vol(G/I)
<l eo. Then in general a parabolic pair (P, 4) is said to be cuspidal (respeciively,
percuspidal) if P/R G is cuspidal (respectively, percuspidal and RGICNR G

is compact) in the sense of reductive case.

1.8, LANGLANDS TYPE DISCRETE SUBGROUPS, A set ¢ of percuspidal subgroups
Is said to be complete if every lwo elements Py, 44) and (P,, A,) are G -con-

jugale (i. e. if there exists an element gof G such that gPI g—1 = P,and g.-l2g"1 =
A ) and if 6 is I'-stable (i. e. whenever a p-pair (P, A) belongs to G then

every p-pair (TPy~I; .y Ay"-“f)__ Y e I', belongs to G).

Langlands assumption. There is a complete set & of percuspidal subgroups
such that for any cuspidal subaroup P which majorises an element P’ of ¢, one
can find a finite subset P; o, £ of ¢ sach that P> P  i=1,.., r and Siegel

domalns d,; associaled to (P;n P/U A, /A) such that M = v d; 0, where O is
i=1 !

the image of ' 0p in M. Moreover there is a finite subset ¥ < & such that
6= v VoY IPY
yel' Pe¥F ’
DEFINITION.- A discrete subgroup I' of finile volume of a Lie group G which
satisfies the Langlands assumption is called a Langlands type discrete group.

. Remark, Every arlthmetlcally defined subgroup is a Langlands type dnschte
group (Reduction theory), E. B. Vinberg [15] and V. 5. Makarov have constructed
examples of non arithmetically defined subgroups of finite volume, These
groups are also of Langlands type, as was remarked by R. P. Langlands [9].
(see also Harish —Chandra [6])'. So the class of Langlands type discrete sub-
groups is more general than that of arithmetically definite subgroups.

2. THE BOREL SERRE: COMPACTIFICATION .

In this section we shall construct the so called Borel-Serre compacuflcatlon
of the quotient of a symmetnc space X of G hy a Langsand‘: type discrete r.
Our sitnation is different from that of Borel—Serre in {wo respects. Eirst, We
consider an almost general Lie group (wuh f1n1te namber of connected com-
ponents, see [9]). Second we do not restrlct ourselves to anthmehcally defined
subgroups; instead, our objects are the Lanalands ty pe dlscrete groups as defm.
ed in §1, ’ '
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% 1. SPAGE OF TYPE . Le' s riow motivate the Borel-Serré notion of « spacé
of type S) in our situation. .

A Qpace of type S for G is, by deflmuon any pair consisting of a right
homogeneous space X and a fan:uly {L } T e 2& oi Levi subnroups of G satisfiy-

ing two conditions:

i‘, ) There exists a connected normal solvable subgroup VR of G containing

the unipotent radical R G such that the isotropy subgroups H Lz €X)of Gare
of the form of a’ semldlrect product K.S, where S is a split component of Ry
and K = K_'is the maximal compact subgroup of G normalizing S. - '
S;) The familly {L.} eX 15 G-invarian, i. e. Lxg = Lg =g iLg, g€ G,
and each isoiropy subgroup H_ is conlainedin L_ .
In the case where R, = Rd G = AU, the splll radical of' G , we shall say

that X is of type S/R . In the sequel we shall effectively. be concerned with this
‘situation.
A o o :
2.2, GEODESIC ACTION. Let X Dbe a 'space of type S under a Lie group G,
H, (z € X) the isotropy subcroups and L the Levi subgroups of &, Pa para-
bohc subgroup of G, Z the center of I’/R ‘P and finally'let = ; P - P/R P
be the canonical prOJectlon. Let Y be the greatest compact subgroup of Z. By
virtue of our convention in 2.1, RX = Hd & = AU, the kerinel of the homomor-
phism Ry —P/R, Pinducedbywis Ry n R, P=U.ThenRy /US—>P /R P
and itsimage isa vector group which is invariant and hence centralin P /R P,
"‘J e. :r:(R )y zn Sisa maximal vector subgroup in R then “(Ry) == )
and hence -rc(R )= -m(II N Rp). On the other hand, H = K_(Hm N R ) for
some  maximal corupact subououp K of G, and one has Hx N P =
= (K n P).(H_ n Ry). We define
Zy =7 N "(H.:c N P) =mEKnNP)nZ). = H, n Ry)
The group K N Pis maximal compact, hence Z N (K A P) is maximal compact
in Z. Denotmg Y=Znn= (K A P) we have that z; =Y, wH_nRy) =
=Y. n(R, ). In partlcular, Zo = Z N "‘E(H N P)y= Y n(R ) is mdepeudent
{pf z e X, '
It is easy to see that X is canomcally of- type S under P (cf. also [2 §2 3(5)]

for the arithmetic case). For zeX the Lew,subgroup L;r: of P associated to z is
contained in L, . Let Zw = C.(L;;) bo _theoeuter of L;’v . Then Zw ‘is the unique
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lifting of Z in P which is stable under the Cartan involution of L withrespeet
to a maximal compact subgroup of H_ . Forzeg Z let = be its hftmg inZ

Fix a point z ¢ X. Every other point y &€ X can be obt_ainéd from z by the
action of some element g e P, y = zg. If ¢ € P also satisfies the equality
y =w=g, then g = hg for some he H_n~ PCL’_. Therefore, the eclement k
commutes with z_eZ = C(L’ ). Hence

€.z g=w.7z.hg=x.h.z .g=w.z_ .4

Thus =, Z,-g depends only on z, y, z and we put by definition

yoxz=:i;.zx.g.

It is easy to see that this defines an Z-action y on X and the definition
is independent of the choice of the point #. The action v of* Z on X defined
above is called the geodesic  action of P, It is easy to see. that Z, =
=Z n=n(H_n P)operates trivially and Z/Z, operates freely.

The group Z, contains the maximal compact subgroup ¥ = ZAn(KNP)
of Z. We may therefore write Z == Z, X A, where A is the 1dent1ty component
of a (vector) subgroup of Z. Hence, for everyx & X,z0Z=2z.A

2.3 BUNDLES DEFINED BY THE GEODESIC ACTION. Let T be a split
component of C(P/R P)= Z whose intersection with Z, is finite and 4
be the image of the connected component 70 of I into Z/Z9. By [2,§ 1:2] there
exists a normal subgroup M of P containing RX and all maximal compact
subgroups of P such that P = T0 X M. Since P commutes with A, the later .
operating by geodesic action, we have an action of A x M onlo X defmed by

:x:l—a-(:c a). m, forallaed, me M and x = X, |
We have (r,4). M = 2.4 . M = 2,P = X, Then the 4 X M -action on X is
transitive.

The space X is of type Sunder P and in particular the isotropy group
H nP of z under P is generated by a maximal compact subgroup K;:K ot
of P and a subgroup of-RX . Since both of these groups are contair.d in M, we

have H_ ‘N PC M. If(xod). m = & then a.me€H NP CM Thus
a eMnA—.{I}andwehaVe -
a) For every x € X the 1sotr0py group ofxind X Mis {1} x (H_ n P).
b) The map l-l tA X (H, N PY\M — Xof Ax M -homogeneous Spdces

defined above is an isomorphism for evéry = ¢ X.
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¢) The space X is a trivial principal A ~bundle and the orbits of 4 are the
cross-sections of this fibration,

These results are proved in the same manner as in-[2),

2.4. MAXIMAL VECTOR SUBGROUPS IN PARABOLIC SUBGROUPS. Let ?(G) be the
. set of all parabolic subgroups of G, & the (solvable) radical of G,and ~: GG/R

the canonical projeclion. The correspondence Pi— n(P) gives us a bijection
between ?(G) and P(G/R). Let S be a maximal split vector subgroup of G0 - [,

= X(GY -0, §) the set of roots of G¢ /U with respect to S, and A a basis of
s:mple roots. There is therefore a natural 1-1 correspondence between the

conjugacy classes in ?(G) and the subsets of A, The class corresponding to a
subset JC A is represented by the standard parabolic subgroup P,: the image

P, /U of P, in G4U is the semi-direct product of its unipotent radical I/ 7 by

the centralizer QL(S yof §; = (~ Ker «)? and its split radical is S, U,. Given
agjg

P e’?(G), the only 1 such that F is conjugate to P, under G? will be denoted by
1(P and calted the type of P,

Let P € ®(G). The quotient S = R P/(R P.R ;&) isasplit vector subgroup
and it is also the greatest vector subgroup in C C(P/(R P.R ) Wetake
by definition A mS --Let P’ & 9(G) be conjugate to P under Go VP =P, rcGe
Then int = mduces an isomorphism of C » onto Cp and one can find a natural

_.‘xsomorphiam DP-BP. SP' = 5 In particular, if P = P be a standard parabo-
lic subgroup, then § p = 5;/55 and A — I defines a basis of Z*§,/S) and fi-
nally we have a canomcal 1s0morphxsm AP g (R ) Tlns isomorphism de-
fines an open embedding of 4, inlo RA-T Tpe closure of 4, in RA-T iy be

denoled by AP The action of Ap on itself by means of translation is extended

to one on 4,, given by coordinate multiplication.

2, 5. THE CORNER ASSOQCIATED TO A PARABOLIC SUBGROUP. From oow on
. we take R = R G.By23, Xisa prmcxpaBA -bundle under the geodesic acs

tion, By def!mt:on, the corner X(P) associated to P ig the total space of the
associated bundle with typieal fibre 7 p

X(P) = X X 4Ap
4p
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Let us put e(P) = X/A In particular (G = X, Becanse Ap = A P(L),
LC

where I5(L), = {z & Ap; a@) =0, ¥ e ¢ L and «(x) # 0, ¥ a € L}, we have

X(P) = U e
Qe?(6)

Q> P
LetP ¢ Q be two parabolic subgroups of G, Then the mcluslon Q) ... X(P)
is an isomorphism of manifolds with corners X(Q) onto an open subset of X(P).
We have also

Cl;-(p) e(Q) = QDLI-EI jP e(R) = ¢(Q) (P),.

Re ?(G)
where ¢(Q) is viewed as a subspace of type S/R under Q and e (@) {P) is the

corner of B(Q_) associated to parabolic subgroup P of Q (see [2, § 4,3 3)] for
the arithmetic case),

2.6. THE MANIFOLD WITH CORNERS X. For two parabolic subgroups P,
Q € ? (&) and the smallest parabolic subgroup R containing both P and Q we
have X (P) (] X () = X (R). Furthermore if two parabolic subgroups P [\ P’
€ ? (), we have also an open inclusion of topological spaces X (P") C_, X (P),
Hence there exists one and only one structure of manifold with corners on

X= Ll e = v, X (P
Ppe?(® pe? @
such that X (Pys are open submanifolds with corners of X, X e(G). The space X

will be endowed with that structure and {X Plpee. @ | form an open cover

of X,

Considering e(P) as a manifold with corners endowed with its canonical
structure of spa’cé of type S,7R under P one can take ¢ (P) by the general
constraction. We have -e P) <, X. Let Z be the ciosui'_e e(P) in the topology
of X.Thene(@Q),Q & @ (G), meets Z Iff X D N e(P) +=¢,ie QT P
Therefore
' Z= U X@Qni= U eBOWD

ge?(6 Qs ? (&
QCP QCP

We have obviously some corollaries:

() For P.Qe ?(0), ¢ N e @ =@M Q) iff PN'Q&? (6).In partis

cular, e(P, = e(Q) &= P = Q. o
(2) For all P,Qe ? (G), e(P) N e P eeP)Te@e=PC Q .

50



.

@ b {geG;W:ngg::Q}=
{9eG;e(P)g=2Q =
{9€G;e(P)g ne(Q) = ¢t |
i) {geG; PY NQeP(G)} = {geG; eP)g ne@) + ¢}
iii) Q= {g € Go; Q) n e(Q) + o}
THEOREM (Borel-Serre {2]). The manifold with corners X is Hausdorff and
countable at infinity.
2.7. THE BOUNDARY 0 X AND TITS BUILDING. Recall that the Tits building
of G is the simplicial complex whose set of vertices is the set / of maximal

parabolic subgroups of & and whose simplexes are the nonempty subsets

S of I such that P, 2L AP g2 (6). 1t is canonically isomorphic fo the
Pes

building attached to the Tits system of G’/ RG constructed in N. Bourbaki,

LIE, 1V, 2, Exerc. 10.

The cover of 89X given by e(P) is locally finite. It is easy to see that for a

subset s of I, Pr\ 'é'('p—) # Qe Ps € ?(G) < s is a simplex of the Tits
a

5
building T,
Let | T | be the geometric realization of T. Then 89X and| 7 | have the
same homotopy type of a bouquet of (! — 1)-spheres with the weak topology.

2.8. MAIN RESULTS. Let I" be a Langlands type discrete subgroup of G. We
introduce the cuspidal part of X :

A
peP (&

» cusp

f

where Qéusp () denotes the set of all cuspidal subgroups of G,

THEOREM 1. I acls properly on X, cusp

and t=he guotient fcusp /T is compact,
THEOREM 2. Let 1 : Xcusp — Xcusp/F be the natural projection, I the set of
all representatwes | of T -con  fugation classes of cuspidal subgroup, I

(G, T'p dyG (PYN T, e (P == (e(P)).

cusp

-'(1) e (Py= eP)pande Pyne (Q)Fdee P)=e(Qeayal;

= Q, The set D is fmzfe and ¥ = 11 e (P).
pe? (6}l

1

cusp/

g ' cusp

@cly p© (P) = = GP. If T C GO, we have I'p=1TInPand

cusp /T |
#(e(P) = Pyl I - e(Q)

Qs? s p (@I p
QOP
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In particular e (Q) < CI e (P)e 3 P’ = P such that P & é)cu'sp ;‘(G) grgd‘ 4
Xcuz;p r ‘
conjugates under I to P,

We shall prove these.theorems in the‘t;-erst of the paper,

2.9. REDUCTION TO THE REDUCTIVE CASE. Assume that V = R P s {1}. Let
3rG - 6" = G/V and n: X — X' = X/V be the canonical prOJectlons

LEMMA. [ == 6(F") is of Langlands type in G*, VI ~ V .is compact and so
I nVisof Langlanda. type in V.

~_ Proof. We have the canomcal bl]ecnon Q(G) o 9’ (G ) P « PV, By
assumptmn V/F N V is compact, see § 1.7, and G ¢ OCMP. (G). It is casy to see.
(G") and ¥ (G)

that there is also a bz]ectmn P sp (@) = ‘Pcusp percusp

ﬂ’pemusp (G*). Thus the assumptxons in the definition of Langlands type dlscrete
subgroup sare fulfilled. The Lemma is proved.

The space X_ , 13 a principal V-buadle and X ' /V We are now-

us : cusp - cus.p
in the same situation as in 9.2 of Borel-Serre {2]. By induction on dim G we can’

then conclude that if V.= R P # 1 then I acts properly on X‘ and X /&

Cusp cusp
is compact.- We are thus reduced to the case where G is connected and-
reductwe

2. 10. REDUCTION TO THE SIEGEL SET CASE. In view of [2, §9, 1] apphed'

10 Y =X usp 7= 3Xoysp 804 L=1T, it suffices to show that if C, D are
compact subsets of ‘X' , then ‘ g :
{yeI‘ C. ynDnX+¢}<m,
The closure Cl = e (d) in Xcus .of a Slegel set mth resPect to .a fixed
, susp - .

pomt T e X and a fixed parabohc subgroup P is compact and each pomt in
the corner X(P) has a nelghbourhood of thls form On the other hand, we have_

LEMMA- WhenPruns over the sel ?percusp(G), the corners X(P) form an open

- cover of X cusp -

‘Proof. Ry = 12 (Py=v X(P) and X(Q) v X(P)
p p
o ?cusp(e) Pef?cusp(e PeP(Q) .
" and X(P) is open in X(Q). Since ‘every cuspidal suhgronp contams some

idal one, {X(P form ar open cover of ¥ the Lemma -
percuspi {X( )}pe QPercusp (6) " p y Xcusp

L .

is proved,
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Thus it suffices to check the case where C==Cly () and D=Clo (I,
) X\,usp Ycusp
where o (respecmely, ') is a Siegel set with respect to X and a percuaspidal

subgroup P (respectively, P'). Any two percuspidal subgroups are conjugate
under G, by assumption. Thus there exists g € G such that P’ = P9 = 4-1pg,
Then Jg~1is a Siegel set with respect fo P, x. Since any two Siegel seis are
eonlained in a blgger one, we may also assume the set w occuring in the
definition of Siegel scts fo be' compact see § 1.5. Thus & is closed in ¥

cusp ’

hence equal to Cl}- (cS) N X. Under this condition, we must prove
cusp :

2. 11. THE ACTION PROPERNESS. Let 7-: G — X be the map g — x. g and let

S = 55, Then &'’ is a Siegel set in the group G with respect to a maximal
compact subgroup K of H P and a smtable maximal vector subgroup of

R G. 1t suffices thus to prove

#{Ter cS"’Yf\d”g#Sﬁ}‘(m
Thus the finiteness follows from Langlands work [9], see also A. Borel [1]

- 212, THE GCOMPACTNESS OF Xcusp /' T. In view of the relation between Siegel

sets in X and in G, there exists a Siegel in X wih respect to a percuspidal
subgroup P.and a finite subset C of G such that X = &.C. I. By virtue of

[2, §7.9], the closure M of S.C in Xcusp is compact. Since I acts properly on

X ., t'he-fau-lily of sets {M.y }?ér is locally finite in X ,' hence is closed

cusp ' cusp
inX_ . On the other hand X — M.T (by assumption) and X is dense in

cusp

)Xcusp. Then M.T = Xcusp and M is. mapped onto Xcusp /T under the natural

projection. So. X 7 T is compact and the theorem is proved,

eusp

Remark, X = X’cuspuopen subset, therefore X cusp is Hausdortff‘ and

closed in the Hausdorff space X,
2.13. PROOF OFR THEOREM 2. (i) By virtue of 2.6, we have lmmedlately that
. eP)=nE@P)=eP)/ Ty,
where I'p =T n c/}’G(P) We also have
PN €Q #.0 & eP)=e(Q) & P‘/ =Q

representatives of percuspldal g '

4forsome yel. Since D= sugrboups of G

by the Langlands assumptmn D is finite, and

ST = (. - &Py /T=u (P /T, =
Heosp PP e (6) Pe?,, . (6) P
= v - ewPp.
Pe?cu:p (&)



(ii) Since e(P) . v == e(y~1Py), vy € I', it follows that e(F) .
- . . T — : S -1,
finite family in chsp and e(P). I is closed in Xcusp, . et

I' forms a locally

(eP)) == e(P). T

Hence =(e(P}) contains the closure of e(P) which is dense in =(e(P)) we have

thén Cl be T (e'(P)) = =(e(P)). From (2.6), we obtain

cuasp 7
w(e(P) = e(P) /Tp =" LI elQ).
P 0, @/,
Q>P

The proof of our theorem is complete.
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