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1. INTRODUCTION

In this paper we shall be concerned with the following problem :

(P)  Minimize  f(z) == (¢, x) (1)
subject to
zeD={x: h(@) <0,i=1,2, .. m} (2)
9z) < 0, @

where A, (x) ({ = 1, 2, ... m) and ~—g(z) are real-valued convex functions defined

throughout R", ¢ and x arc n-dimensional vectors. We shall assume that D is
compact and has a nonempty interior.

This problem, often called the reverse convex programming problem, has
in reccat years atiracted an increasing attention from researchers (see {2], (3]
[5], [7}, and the bibliography given in [8]). For the origin, the practical
applications, and the theoretical interest of this problem, we refer the reader
to [8] and [13]. '

In general, finding an exact optimal solution to problem (P) is compu-
tationally very expensive. Therefore, in this paper we presentafinite algorithm
for finding a vector x(s, g) satisfying | '

(e, 8) € D, gz, &) < & fa(e o) — F* <,
where f* denotes the optimal value of the problem (1) — (3). Such a vecter
will be cal'ed (¢, g)-solution of problem (P). While in practice it is uvsually
sufficient to have an (g, 0)-solution with reasonably small g, g > 0, the cost
for finding it may often be much less than finding an exact bpt_imal solution.
The theoretical justification of the concept of (g, p}-solution is given by the
following

THEOREM t. If 2(e, 0) is an (¢, g)-solution of problem (P) and z(e, ) —
as €,0 — 0 then x is an optimal solution.
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Proof, By hypothesis

x(c.0)e D, gl2(e,8) <0, fa(e ) — F* < '(4)

Lelling ¢,0. — 0 we obtain from the continuity of g (3,) and f{a): q(:b)
f(x) — f* < 0. Since D is cowmpact we also have xe D, and con-.sa,qm,ntly,
fi@)y— f* > 0, Therelore, f (x) = f*#, and so x is an optimal solution of (). O
The paper is divided into several sections. After the Introduction (Section 1),
a general coneeplual scheme of the melhod is described in Seclion 2. By ihis
scheme problem (P) is reduced to a scquence of concave minimization problems
for the solution of which a conversent oater approximation method is given
in Section 3. An implementable realization ol the scheme is described in
Sestion 4. In Scction 5 the method is specialized to the case where D is a
polvtope. In Scction 6 a two-dimensional example is presented to illustrate

~

how the alvorithm works in practice. Finally, in Section 7 some preliminary

computational cxperience is reported,

2. GENERAL SCHEME.

Let us begin with a conceptual scheme for solving problem (P) which has
been presented in [7]. ‘This scheme can be considered as a variation of the
general framework developed in [8] and reduces the problem of [inding an
g-optimal solution of problem (P) to a finite number of concave mmlmi/atlon
problems (by an s-optimal solution we mecan a vector & satisfying the con-
straints (2) and (3) and such that f(z) < f* + ¢). '

| }Let.:' o - -
. 2% ¢ arg min {g(z): xeD}
: : z lecargmin { < ¢c,v >:axe D}
It is natural o assume that

g(") <0< gla™h

Indeed if q'(;ic") > 0 then the set of [casible solutions of (P is emply,

while gz~ 1) < 0 implies Lhut z!

is an optimal solution.
General scheme, L
Imtm[z zation. Solyve the convex problcm
, . min {<T ¢, x>z e D} . ‘
obtaining x=! (g(x—1) > 0). Set v = < ¢, x71 > {vo is a iower bound for ¥).
Solve the concave minimization problem.
min {g (@)t 2 e D}
oi)taining a0 (g(x®) < 0). Set By = << ¢, 2% > (Bp is an upper bound for f*).
Select = > 0. : :
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Tteration 1 (I = 0, 1, 2...)

At the begining of ihis iteration we already have B,» v, (upper and lower

bounds for f*) and af (current best solution), with < ¢, 2! =~ = B, -

IER, — v, <<= then af is an c-optimal solution.
Olherwise, solve the relaxed problem:
(P,) min {g&): x e D, < ¢, x > «, b
where «;, == %— (Bt + v, ).Let?E( bz an optimal solution to this problem. Two

cases can occulr .

J— |
MIf gz’ ) = o then setB ., = B, v,u; = o , #tT7 = 2! and go to
iteration 7 4 1.
g L ‘ ‘ Tt B E S
(K g(x) < g then set Bz—]—l““<c’x s Vg =Yy = a

and go to ileration { 1 1.

THEOREM 2. The above scheme finds an z-optimal solution of problem (P)
afler al mosi

t. = max {0, [log, (M 7z)] + 1}
iterations, where M = < ¢, 1° > — <C ¢, x~! >.
To prove this Theorem we need the following lemma.

LEMMA L If m=min {g(x) 2 e D < ¢ o> a}>0then<c, x%> >q,
where x* denoles an optimal solution of (P).

Proof. Assume the contrary, that < ¢, % > < «. From the definition of 1
we have g(z*) 2> m > 0. This contradicts the feasibility of x* . 7]

Proof of Theorem 2. We first note that at every iteration =0, 1, 2,...
B, and ¥, are actually an upper and a lower bound for f*. Indeed, if glz') > 0

then by Lemma 1, @, < f*. 1f g(@’) < Othen zf salisfies the constraints (2)—(3)

and hence < ¢! >3- f*. Therefore, if §,, v, are upper andlower bounds for f*,

then this must be trne also for SH—I’ Yoty Since this is true for =0, this

-+
must be true foralilt =0, 1, 2....

I.et us now show that:
<cadl>—7, <HRAI=0,1,2.) ' (5)

" The inequality being obvious for /=0, let us assume that it holds for f < &
and prove it Tor ! =k 4- 1- Two cases can ocenr '
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{i) if g(—x"")>0 then < ¢, 1> Y441 = < c, ok > . @, =

< ¢, s %— (B]l_h'r;}’k):% (< e, xk > 1) §;1I/2k4'1.

(i) If g(z") < 0 then < ¢, ¥+ = —fy=<azk>—7,
1

2

. 1
“‘%“k"—]’kz (Bk—l—Tk)—Tﬂ‘ ='—2—(BL—TA):

= (<o af > ),/2 < M 2T

Thus inequality (5) holds for all ¢ = 0,1, 2,... Since < ¢, z* > > Vp
we have ‘

0<<ea!>—<ear>< < al—1,< M2

’ . . . . . i. \
Therefore, afier I, iterations we must obtain a feasible solution 2%, which
satisfies ' ‘

i. i
I<<e,r*>—<e, 9> M /28 . O

The above described scheme requires solving at cach iteration ¢ the relaxed
concave minimizalion problem:

(P,) Minimize g(z), subject to ' (8)
| welD | (7)
<car><e,, 3

{

At the present lime, several'algorithms are available for solving this
problem (see e.g. [4], [6], [9], (10], [11], [12]). However, cxcept when D is a
polyhedron, these algorithms are infinite, though convergent. In other words,
if D isnot a polyhedron, then by a finite procedure we arc able lo find only
an approximate solution to (P,). Therelore, the incorporation of concave
minimization algorithms intothe above scheme so as to make it implementable
is not a trivial matter. Before discussing this incorporation, we shall describe
in the next Section an outer approximation procedure for concave mini-
mization,

3. AN OUTER APPROXIMATION PROCEDURE FOR SOLVING THE RELAXED PROBLEMS

Each relaxed problem (P;) is a concave minimization problem. Obviously,
(Piir) differs from (P, ) only by the additional constraint (8). By this fact,
it is advisable to choose lor solving the relaxed problems an algorithm which
would permit the use of the information obtained in solving (P,) for the
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solution of {P,44 ) in such a way lo guaranice the convergence of the whole
scheme. The outer approximation algorithms (see [41_/]', [9], [12]) meet these
reguirements. 7

In this Section we shall describe a procedure for solving (P ) whichis a

concrete realization of the general ouler approsimalion method proposed in [9]-
Given any = > 0 this algorithm provides an = ¢ -optimals solution to problem
(6) — (8) after a finite number of iterations.

For brevity ol presentation we shall denote the sct of all x satlsfjmo
(7) (8) by C, so that the problem concerned is

min {g (z):ze C } (%)
Recall that we assume that the [unction g(z) is concave on K" and € is
compact, int C £ ¢.
PROCEDURE .
Initialization. Set u’ = - o». Construct a polytope 8, 7 C with verlex set
V, . Seleet = > 0,
Step e =1, 2,...

i) Find v¥ e arg min { g(v) 1 v e V, }. Clearly g(v*) is a lower bound for
min {g{x) : x € C}.

ii) Solve the convex programming problem :
Q) min { | v"‘—z”ﬂ:zeC}
obtaining z¥. Set u* = min (uk~L, g(zk) ' and let ¥ be the corresponding

solution. Obviously #* is an upper bound for min {gx):xeCl.

There are two possible cases:

If uf — g(*) < ¢ then 2F isans -optimal solution of problem (9) and
the algorithm stops.

Otherwise, we have uf — g(v®) = &, Set
L) = <<vk — 2k, o 2k o
Form the new polytone
Siig =8, nfz:l (@) <0}
Find the set V,4q of all vertices of S, , and go to step k + 1.
Ng. V. Thoai established in [11] the {initeness of the above algorithm on
the basis of the « cutting plane convergence prineiple» [9]. We give here a

different proof which will also he uselul subsequently. First observe the
following '
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LEMMA 2, I || oK~ 28 | & = ¢ /L, where Lis the Lipschitz constant of
the function g(x) on S,, then z% is an ¢ - oplimal solution of problem {9).

Proof. Let@" be an optimal solution of the problem (). W e have

gy — (B << g() — goh) < vk — < o
Hence 2 is an e -optimal solution. [J

LEMMA 3. For large enough k we musl have

ot — k<.
Proof. Suppose the contrary, that
ik — 2w & vk, ‘

Denote by L, the hyperplane [, ()= 0, and by N, the convex polykcdral
cone generated by all the rays emanating [rom 2% and passing'through points
:ueL‘,,r\SI, Let '

=N, n{x: L(z)>04,
T =N, n{e: L@ >}

where m, = min {{, (2) iz e C}. Clearly T" C SN S while 7" D C. 1E V',V

k+d
arc the volumes of T, 77" and &’, It’* are the distances from v¥ to the hyper-
planes L, and /1, = {z: [, (x)=m, } (respeetively), then

V' VY = Ry
But /7 < A = diameter of Sj . while A = Mot — ) = §. Comcqucnth
V'V = (0707, henm. Ve (6/&)” V2 (8.7A)"V, where Visthe volume

of C. Since vol (SI-H') Vol (5, )=V T vol (§,) - (B748)" Y, we gel
\ol(b Yy — k(@AY <0 for large enough k, which is absurd. ;3

vol (SI. A L

From the two previous Lemmas {ollows immediately

THEOREM 3. Procedure ¢ lerminates after a finite number of iterations and
ylelds an =-optimal solution of problem (9).

Remark 1. For the construction of the polytope §, O € and thc computa-
tion of the set V, , , from knowledge of Vk we can use any method from
[4] and [12].

Remarlk 2. From the results of [6] it is not necessary to find the optunal
‘;01‘”.1011 of problem (Q ). It suffices to obtain a solution z* such that the

&-expansion of ;47> as defined in [6], contains C.
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4. FINITE ALGORITEM FOR FINDING AN (5,4) - SOLUTION OF PROBLEM (P).

Incorporating the above procedurc ¢ into lhe scheme presented in Section 2,

we can formulate the Following algorithm [or solving problem (P).

MAIR ALGORITHM.
Inilicdizaiion. Construct a polylope Sq 2 D) with a simple vertex set 17, Sclect

e > g amnd 8 > 0. Compute
fommax{ < caw>:veVyh vo=mni<cr>:aebh}

feralion It = 0, 1, 2,...

H g, —y, <9, stop.
Otherwise, solve the relaxed problem
(_ffj;‘_) min {g{r): < Sl; s =T O, > & }' ¢
r- where ¢, = —12— (B, + v, ) Let 2* be an oplimal selution of (11). There are 3

possible cases;

A g 2k ) = 0 Sel Sk+
and go to itcration k 4 1.
B, g(a:]‘) < 0 and 2% g D : Set Sk+1 = S:,C s ﬁk-{—l = < ¢ z% >,

=5 Praer = Prs Yy = &4,

® and go to iteration k - 1.

Vg = Yo & =2
0 and w* ¢ D : Solve the convex program

- C. g=") <
? . ze D}

(Qp min {gz—a’
S S .

obfaining an optimal solulion & set I]_ (x) = < a" — %,

Spr = Spniw @ < 0.
Compute the vertex sel VI;—{—I of S[‘__H .

Two subcases may occur:

Cl. gy < 03 Set BRJr“f = min {Bk s << €,
and go teo itcration k 3 1.

Rd ponding solation. Sel v, , =,
C2. g(zF)y =~ ¢ Set Bk—i—l = B Vs =Yg and go to iteration £ 4 1.

} an¢ let = be the corres-

~ .

-

THEOREM 4. /e Main Algorithmn lerminales after a finile number of iteration

nd yields an (<, 8) ~solulion of problem (P).
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. . _ 1
Proof. Since cases 4 or Bimply B, ,— v, 1, g; (B, — v, )» the algo-

rithm may be infinite only if for all large enough- k (e.g.k = I} only case C
occurs, First assume that for k >k, only case €2 occurs. Then for k >k,

B, — v, remains unchanged Irom iteration to iteration, i.c. we are aclually
solving the problem
min {gx): x € D, < ¢, 2 > 10}

Therefore, by Lemma 3, for large cnough & we shall have | xk — Ry
< & = 0./ L, where L is the Lipschitz constant of g(x)on §, . Since ga¥y < 0
and g(z¥) - gla¥) < L] xh — zk 1 < 9, it Tollows that g(z¥) <C 8. This contra-
diction shows that if the Algorithm is infinite, case C7 must occax infinitely
often, e, g. in iterations k&, , v = 1, 2,... Then it is easily seen that there exists

kll p= 1"0 such that Bkv—!—i >0 and B, ~ 'ykv> ¢ for all k, > Icu . Clearly,
<c,zk>>ﬁ1_+1 and <7 ¢, 2" > < «, for all k. Conscquenlly,

0 <TB, o1 < <o v—abvs el fhv— a2k
for all k; = ky . By consiruction of the sequence {B, § we have B, ., <{B, and
so this sequence is monolone nonincreasing. Since it is bounded below, it must

converge, Therefore, B‘-"v —_ {31‘_\7 45T ~ 4 for all large enough f, . Now, by

anargument analogous Lo lhat usedfor the proof of Lemma 3, we can show that

2 —ab o< S e

for all large enough k. Hence
1 :
* /2 <'_' (Bk — “l’kv) = (Bky - Bkv+1 ) + (Bky'l'-i - 0"1‘.” )

Se bt el 2 =t | Ko e b= 02
for large enough Ic\,gku, which is absurd. Therefore, the Algorithm cannot
be infinite> snd must terminale al some iteration k. Then 2% e D, g{z®)<8
and < e a® >—f*< Bk. — v, <& a8 was o be proved, []
Remark 3. Problem (11) is a concave program. Since the set Vy of
vertices of S, is known, we can apply the method described in {12},

5. CASE OF LINEAR CONSTRAINTS

In this Section we shall discuss the case where D is a polytope defined by
the system of linear inequalities

-

~’\AI.,:L , i=12,...,m

b
0, ',j=1,2,.,.,n

\///\

xZ,
J
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R

where AJ. a R7, bi e R, i=12,...,m, Then the relaxed problem (Pl) is a
lincarly constrained concave minimizatlion problem of the form
Minimize g(x), subject lo

xeD:{a::<Al.,a:> gl’)i,i=1,m;mj;> 0, j= 1,11}<c,m>‘go¢l.

For solving this problem several finite algoritlhms can be used (see e.g.
[1], {12}, [11]). Incorporating the finife algorithm of Thieu-Tam-Ban [12] into
the general scheme we obtain the following

ALGORITHM 2.

Initializalion. Compuie

n
N =max { 2 x; rxe DL
=1

Set SO = {a: x; >0, j=1. n: iwjg' N1 Findthe vertex set VO of the

TS

J
simplex 5 _. Compute

B,==max $<<e,v > ve VO} and ¥V, = min{ < c,u>‘: ve VO}.
fteralion k = 0, 1,2,... .
If Bk — TI; < ¢, stop.
Otherwise, solve the relaxed problem
min { g(z): x & S,, <¢ 2> < « }

where  «, = 2B + v,) Let x* be an optimal solution ol this problem.

There are 3 possible cases,

h

g Lo ’ . .
A, g(x®) > 0. betSk_H = Sj_,. [3]{_{_1 =Bk’7k+1 = akandgotoxteratlon

B. g(zk ) (EOandrx"'eD: Set Sk-!—z ='Sk,:vE = zk, Bpar =< ¢, af >,

Yi+1 ™ Y% and go to iteration k 4 1.

C. g(@*) < 0 and af¢ D: Select the index
{, =agrmax{ <Ad,xt>—-b ,i=1 .u,m}
Find the vertex sect V]{-f—I‘ of the polytope
Sppr =8 .n{zr:< Aik,:c >_b"k <0}

Set By 1 = Bgs Vpyy = v, and go toiteration k 4 1.
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.From the resulis of [12] and Theorem 2 we det

'THEOREM 5. Algorithm 2 terminaies afler a finile number of iteralions and
ygields an ¢ -opiimal solution of problem (1)—(3).

6. ILLUSTRATIVE LEXAMPLE

To illusirate the Main Algorithm we give a two-dimensional cxample :
Minimize f{x) = — 3 &; — x,, subject to
hy(zx) = —wx, 4 wz—]. <0
hy @) = (x,— 2)? +(z, —2)% — 490
hy@y = (@, 27 — x, +1<0
gy = — (¥, — 3)? —(x, — 257 +1.25 <0
Initialization. ‘

So :{(xi,rcz):ﬂ\{}xi, 0\<__:c2,g;1 + T < 8T

Vv, ={ (0,0 (0:3), 3,0}

[30:0;“1’0—--—13853 Lc[“: 5 and 0 = 0.01,

Iteration 0. By — Yo = 13.833 = ¢ , Solving (}30), vields 20 = (0,8).
Since g (z?) = —38 < Oand x°¢ D we are in case C . Solving (0} yields z9 ==
=(2.825,3 . 825). The cutting plane is Iy () = -2.825 x; + 4.175 2, - 8, and the
vertex set.of S, 1s

== { (0, 1. 913) (3 63, 4. 37) 0, 0, @, (1);
Since g{z%) < 0 we set f; = — 12.3, Y == 13. 833, 2% = :0.

Iteration 1. p; — 1= 1.558 > =. Solving (P, , vields 7l = (8 0). Since
g (x') = — 30 and z* § D we are in casc G -Solving (Ql) yields z1 == (3.134,2.825).
The cutting plane is L(x) = 4.87 =, — 2.28 2 — 9.9, and lhe veriex set
of S, is ’ ‘
Vo = {{2. 035, 0), (4.06, 3.94) , (0,0), (3.63,4. 37), (0,1. 915) }.
Since ¢ (z%)=8 we set fy = — 12. 3, Vo= — 13.853.

Iteration 2. By — T = 1553 > ¢ . Solving (Py) , yields a2 = (3.63, 4. 37),

Since g (2*) < 0 and 22 ¢ D we are in casc C. Solving (Q) vields 2?2 =
(3.134,3. 641). The culling plane is Io(’C) —=0.496 2, + 0.73 x> - 4.225, and the
vertex set of S§; is
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vV, =4(29.3.85), (3.7,3.33), (0,0), (2.05,0),(0,1.915 )}
Since g(z%) < 0 we set B, = — 13.043, v, = — 13, 983, a° = (3. 13,3 . 641).

Iteration 3, B, — v, = 0.840 > =. Solving (B)), vields 2° = (3.7, 3.35).
Since g (%) = 0 we arc in case A. Set S; = §,, By = — 13.853, vy, = — 13.448,
fleralion 4. B, — ¢, = 0.405 -Z =, The Algorithm terminates and gives

4+  aa (0.5, 0,01)-solution 2° = (3.134, 3.641) . '

7. COMPUTATIONAL EXPERIENCE.
The Algorithm 2 was coded in BASIC and run on a micro compuier

APPLE II. The resuifs on 8 [est problems are summatized in the following

tableau.
Probiem Size - Number of Number Maximal number of
> of A ‘iterations.  of cuts . generated. vertices
1 3.2 6 2 5
2 6.2 6 3 5
3 4.3 7 3 6
4 6.3 10 4 S
3 7.4 7 3 12
6 6.4 6 2 3
7 75 14 4 24
8 6.8 3 3 48
o
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