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COMPACT SUBSETS OF HOLOMORPHY
OF A COMPLEX SPACE

DAU THE CAP

' One of the most important properties of a Stein space X is the isonor-
phism of the canonical map between X and the spectrnm SO(X) of the algebra
of holomorphic functions on X.

Given a complex space X, many conditions called «global » conditions have
been known that ensure X = SO(X).

In the present paper, given a compact subset K of X, we shall study «semi-
giobal» conditions in order that K = SO(K). When K is compact in a Stein
manifold semi-global cohomology conditions have been established by Harvey
and Wells ([7]). In the sequel we shall develop semi-global cohomology condi-
tions for the case where K is a compact subset of holomorphy.

It is known that every compact subset of a Stein manifold is a compact
subset of holomorphy ([12]). But, as will be proved later (see Remark 1), every
compact saubset of a cone in C? is a compact subset of holomorphy. Ience a
compact subset of holomorphy can have singularities. This is one of the results
that follow from our study. It should also be noted that the methods of proof
to be used in the sequel are quite different f rom those of Harvey and
Wells (7).

1. COMPACT SET OF HOLOMORPHY.

Let X be a complex space, SO(K) the spectrum of O(X), where O(X) denotes
the Fréchet algebra of holomorphic functions on X equipped with the topology
of uniform convergence on compact subsets of X.

Let 8X: X — SO(X) be the canonical map. A complex space X is said fo

have envelope of holomorphy if the spectrum SO(X) of O(X) has a complex
structure such that

(i) Oy is locally biholomorphic;
(i) O(X) == O(SOX)).
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if X bas envelope of holomorphy then SO(X) is called the envelope of holo:
morphy of X.

We say that a compact set K in X is a compact set of holomorphy if K has
a neighbourhood basis consisting of open sets having envelope of hkolomorphy.

By a Stein V-manifold we mean a complex space S which is biholomorphic
to S/ G, where § is a Stein manifold and G is finile group of aulomorphisms
on S . ‘

A complex space X is said to be a Riemann domain over § if there exists a
locally biholomerphic map 8 : X — S. By [12],'évery open subset of a Riemann
domain over a Stein manifold has envelope of holomorphy. Henee every com-
pact subset of 2 Riemann don;éiu over a Stein manifold is a compact subset
of holomorphy. The following -theorem shows that every compact subset of a
Riemann domain over a Steir V-naanifold is also a compact subset of
holommphy

1.1. THEOREM. Let X be a Riemann domain over a Slein V-manifold S. Then X
has envelope of holomorphy and SO(X) is also a Riemann domain gver §.

Proof. Consider the commutalive diagram

r~t
Txg X —F ¥
5 ie
T i > S

where the fibered product Z = §>,X is a Riemann domain over S. Since § is

a Stein manifold, it follows that S0(z) is a Riemann doma-in‘over S and SO(%)
is also envelope of holomorphy of Z. Consider the mdp R: SO(Z) — SO(X)

inducded by x. Then the theoxem is an immediate consequence of the follow-

mg lemmas.

1.1. LEMMA. Let 0 be a finite surjective proper holomorphic map from a complex
space X onto a normal space Y, Then® : X — Y is an analylic covering and O(Y)
is a continuous integral e:Ltemzon of fmzte order of X.

Proof. As in [3] we can find analytlcaliy rare subsets ACcXandBCY
such that :

0l p\a :X\A—->X\B

‘is locally biholomorphic. Hence 8 : X — Y is an analytic coverlng

Let f e ¢(X). We define the functions G4 seems 6 00 Y by
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G) = Fe) + e fla, )
6, () =f(z,) f (x, Y+t fle, o f(,)

Gn(y) = f(‘t'.]) f(a’g)" f(xﬂ)

foreveryye ¥, 8 ~{(y) = {5 %}, where x, are equipped with multiply,
Then 6,€ (Y} and the polynomial
Ply=t"— 6,070 p . 46 = (t— fx,)) e (t ~ f(z, ))
salisfies P(f) = 0. Hence ¢)(Y) is an integral extension of 9(X).
Let {f } © O(X) be a sequence such that f —f and 5YE O(Y) be the func-
tion associated to Y, The problem is now reduced to plovmﬂ that 6'Y~+ 6; for

i = 1,..., n. Take for every ye¥\ ¥ a nelghbourhood V of y and for every

J ==1,..., na neighbourhood b of x such that 6], : U - V is biholomorphic.
: _ : i :

Thenv _
f., 0, —=>fo, torj=1..,n
Y Uy [Uj

Hence

n
vi =Z fy0 —>2 fei =6
61IV JITU U; 1IV

6T1|V

Since O(Y) T OY \M) (see [9], we infer that 67 — 6, fori = 1.

1.3. LEMMA. SO(X) has a normal complex siructure such {hat O(X)_: O(SO(X) ) |
Proof.- By a theofem of Grauert [4],‘it suffices to show that R : SO(Z)—-SOX)

_1'1 fe]U ~ T felU =G, |y,
= J=

‘is finite and surjective. Since X is normal, % : Z—YX is finite and surjective, by
Lenima 1.2, it follows that O(Z) is an integral extension of O(X) of order

- ot

n=sup{tr @:reX} e
Since OZ) = O(SO(Z)), we have sup {4 R1(w): weSOX)} < .
Let o e SO(X) and let ‘ ' - '

= { xe @) k4 a,.x‘t"'ii +aitg, =0, for some GEw , k=1, 2,.}
be the integral closure of « . Since w, is prime, it follows "th'at WNOX) = @ e

Let » be a maximal ideal of O(£) which contains «’. Then c:a?\(f)(X)=wo. Since
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oX) 7(» isintegral over O(X)/wo == C and C is algebraically closed, we get

(X)) w, = C. Let o = KerT, where ;‘vis a multiplicative linear functional on
O(X). Since O(X) is a continuous integral extension of O(X) of finite order, by the
continuity of fIO(X we infer that f is continuous. Henceﬂf;eSO(X and Ro= w o

1.4, LEMMA. The canonical map g: SO(X) — S induced bg 0:X — § is locally
biholomor phic,

Proof. Consider the commutative diagram

S6(2) ; : :“se(x) ]

’5\[ \ZZ” £ \(x
'y

'§'/ R ‘Lz/

a) By Lemma 1.2, R: SO(Z) - SO(X) is an analytic covering of order

m == sup {1t R-1I (@) : weSOX)} < n. First we check that m= n(n is the
number in the proof of Lemma 1.3)

bmcesup{jtl;:t () xeX}—-sup {Hr"F@a): ze X}, we find , & X
such that '

-7 il ~

o 41 (ﬁxq) = {S:!--., sz}-
Take h € 0(3) such that (sf) ={fori=1..,n Thenh?i(&z (';;’, x, )= 1{ for
i =1,.,n Hence &£ R (6X (‘:r:0 ) > rand m = n,

b) We now prove that

H R ™Y (0) = 47" 1 (Bw) for every » & SOX).
Given weSO(X), let =~ 7 (Bw) = {5; ses ?k} and R (w) = {©, 1 $I L, Take
geO(S) such that g(s ) =ifori=1,., kand (gs)) =itori =1,.., n. Putting
f = ¢P, we have '

o, (¥° ) Ty) = 986 (s, =, )hge(s @) =g(s) =i
for i = 1 .» n. Suppose that P’ eO(S)[?] and P eO(X)[M are monic polyno-
mials of order n such that P (g) =0 and P (f) = 0, Since
Pg(f)w =Pg(gﬁ) w = ng(Bw) = 0
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for every we&SO(X), it follows that Pg (fy = 0. Then, from the unigueness .of

prs We have Pf = Pg » Combining this with the relalions

yields
2 mulg(s;)= 2 mul g3 )
Al -7 J
Bcoj =s;
This implies & = [ and ﬁ({gj...., Sk b o= {3} euny EA |
¢) Let w e SO(X), s = pw. From b) we have
~ —g ~ ~
) = ?‘”1 e W b3 T (S) = ;'_51"“’ Sk%

r —

and B wjﬂ s. for j=1, k. Take a neighbourhood Uj of gj and a
neighbourhood Vj of sJ. such that B]Uj: Uj — VJ. is biholomorphic for every j.
Since the niaps R and = are proper, there exist neighhourhoods W and W of

@ and s respectively such that [SW C Wand R (W) - u U 7 ~{(Wy=
Jj=1

k : : - ~ '

= Vj. Then from b) we infer that f: W — W is an imbedding. Hence, by
the normality of W and since dim W = dim W, it follows that {3{{7 is an open
neighbourhood of s, Thus B-: W - W is bikolomorphic.

This compleles the proof of Lemma 1.4 and there by that of Theoreml.1,
Before closing tbis seciion let us also prove the following

1.5. PROPOSITION. Let X be as in Theorem 1.1. Then
SOB x ¢X)="8 x ¢SO(X).
Proof. Consider the holomorphic map v: Z — S % sS0(X) defined by the

formula
= (B R& 2% for every z 6 Z

and the canomcal map P 5y X SO(X) — SO(X) Smce p 1sf1n1te and surjactne,
and S S(O(JL) are Stein, 1t follows that § X SO(X) is Stein. Thus there exisis

a unique holomorphic extension y SHZ) — S >< SO(X) of y. Hence we
have the commmative diagram - - !
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Y S@(’Z) —_— > SG(X)
S l T P -~
X SO(X) | SO(X) T
:L T % i NS
S 2 > S ‘//

where =, ;,, p and R are analytic coverings ol order sup { j:}: T 1(3) s & St
Then as in the proof of Theorem 1.1, it follows that H R (w)=1p 1(:»)
for every coe.S()(X)_and 'y is biholomorphic. The proposition is proved.

2. THE CONDITION K = 50X(K)

Let K be a compact subset of a complex space X, Put
OK) = lim OU),
| vK
where U runs over open subscts of X which contain K, and suppose that O(K)
is equipped with the inductive topology. Let SO(K) be the spectrum of the
algebra O(K) and 8,1 K — SO(K) the canonical map. If &, is an Imbeddlng,
we shall identify K with &, K.

2.1. THEOREM, Let K be a compact subsel of holomorphy of a complex space
(X, ©). Then K = SO(K) if and only if H? (K, O) = 0 for every p > 1.
For the proof of this theorem we need several lemmas.

2.2, LEMMA Le! HP (K, Q) = 0 for every p > 1. Then H?P (K, OF )y = 0 for
every p > 1 and every Fréchel space F.

Proof. Let {U. } be a ncighbourhood basis of K consisting of relatively
compact open subsets which have envelope of holomorphy and Un+1 < Un for
everyn=1, 2, ... “

For every n, take a Stein open covering 9, of U  such that

(i) 4, is finite; :

(ii) For every V e 9 , there exists U' € 9, such that U V-

(i) For every U/ & U, ,» there exists V(L) e 4, such that U < V(0).

Let 0, : CXu,) — CP(%,3+E) be the map defined by

enf(UO’ e ) gl Ug M. f\UP

at
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for every | e CP(%,) and every U, e U )e N(%,, ;) where g : Vo N

nV{U ) — C is a ¢component» of f. Pmm (i) — (i), it is easily scen thal @
is injective and compact. Hence, for every p = > 1, I = 11m CP(GJL Yis a DFN-
space and hm CP(,) is regular (see [10]). Put

z, = Ker {8 : F — Fp—i}’
Then Z is also a DFN-space. Consider the exact sequence

F ->Z—->0
p—1

Since H? (K, OF) = lim HP (U, OF )= lim HP (%, ,0"), it suffices te
— — L.
show that

p—1
6F

: li_n:(Cp_I @, ), F) - lim (ZP@,) F)

is surjective, where 4. F = A/@)\5 F.
a) First consider the special case where F is a Banach space.
It is know that ZP (), B = £, (B;,ZP (%)), where B, denotes the '

veclor space of continuous linear fuactionals on B equipped with the topology
uniform convergence on equicontinuous subsels of of B’. Using the regularily

of lim Z’P(%!1 ), we shall prove that
i lim (ZP (U, ), F) = (lim ZP (% )).F.
. —_— = — ho .
Indeed, it is obvious that lim (ZP (@ ). Fy C (lim ZP (). F.
- n-e - n’'e

To show the converse inclusion, take fe (lim 2P (&un ))EF and let S be the
unit ball of the Banach space I. Since f(8) is bounded, we find n, such that
f(S)yc Z*F (%n ), hence f € ZP(AU ), F o

o 0

Similarly, we have

lim (CP(%,), F) = (lim CP(L,)), F.

Take f ¢ (lim 72U, F) = £, (Z F). Since every DFN-space is barrel-
led B-complete, it follows that FP"I - Z is-open. By [13], Zp — F _; is an
imbedding. -

Consider now f as a map from a nuclear space into a Banach space.
From [11], there exists a neighbourhood U of zero in Z:p such that the following
diagram is comautative

‘Zp" £ > ¥
., A4
Zp/3u
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where ¢ is-nuclear, p is the Minkowski functional of 77 and‘Z"P/PU is.the space
Z;J s 1(0)'equipped with the 'norm induced by p.

Let V bea.balanced convex ncighbourhood of zero .in F;-_I such that
VnZ;) = U. Consider the normed SpaCQ_Z’p /pU contained in the normed
;space F;)—J/pv . By the nuclgarity qff'g and lthe Hahn-=-Banach Theorem, we

find a continuous I'near map E : F;—I V/pV"’ F such that the following
diagram is commutative

T ot
l~>hﬁ ]
" e Sy

Thus there exists f - F’ _; — F such that Bf;——lf =f.

b) Turning to the general case, let f ¢ Zp (U, ) F cP (%, oFf )
Without loss of generality, we may assume that V{f(16]):6¢ N( )
bounded Let B be the Banach space spanned on B equipped with the norm defined
by B. For every 6eN(, ), consider the map f : 16| — F g in the following com-
mutative diagram

&

~

=

Since f : |6/ — F is holomorphic and f(|6[) is bounded in Fg, by the Cauchy’s
integral formula, we have that f : 6] — Fy is holom01ph1c Hence f &
€ ZP(U,) Fg By a), f = 6p F for somef € hm (C‘" (Ca ) ). The lemma
is proved
2:3. LEMMA. Assume that [P (K, 0)::0 for every p » 1 and is a ¢ coherent

analytic sheaf on U = SO(U), where U is some nr*zghbourhood having enueIOpe

of holomorphy of K. Then HP(K, Hﬂ(b §) ® (6\0) =0 for ecvery p >
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Proof. Put F = MU, (p) For every open set V U, we have
FQopy0) = F 8,001/ 1m ¢ where d : F&, 00)® 0(V) F®,0(V) is a
amap defined by du®6®@v) = Bu@uv — uouv.

Let F®0(U) O be the sheaf generated by Lhe presheaf {F®O(U)O(V)} $When

V is small enough, by [8] TorO(U)(F O:V)) = 0. Hence Tor! ~(F, 0) =

o)
Put P0=F@QO(U) and P, = Pk_'_1®50 (U) for every k >> 1. By [8] we have the
‘direct projective resolution of F '
d
k
- Pk e Pk—l
Putling F, = Ker d,, we obtain the exact sequences

— .., — I’y = F.

0> F—Py—F — a0,
O—J-Fk_i—)Pk—rFk—-? Ofpl‘ every k > L
Consider the homology sequences associated to these exact sequmences. Since

I , _ ) . .
Tor 0{0)(F O) == 0 and TOT 0({ )(1 0/ = 0 for every k > 1, b}’ the induction

on k we have Toro(ﬁ;{f“k, 0) = 0 for every k > 1. Hence we obtain the
exact sequences
0— F ®0(L)O — Py ®0(U)O — f‘ ®U(U)0 - 0
0— Fk—1®O(U)0 — Pk® OQU)O_) 14[\-@0([1')0 — {0
for every k > 2. ’ o
Obviously
PRy = FROU)®om)? = F®,.0;
P @0 (ﬁso =P, 1@;0 for every k > 1.
Thus, by Lemma 2.2, H?(K, P, ® o )O — 0 for every p > 1, k > 0. Consider

the cohomology sequences. assomated to the tensor exact sequences. We have,
for p = 1, 2,...

HP(K,F ®0(U)0)—Hp+ (K, F ®O(U) 0);

ap+k (K,F@O(U)O) Hp+kel(g, F®0(U) 0) for every k > 1

Therefore .
HPK, F®0(U) 0) = HP+K(K, F ®0(U) @) for every k > 1.

Since HPHK (K, F ®O(U) Oy==0 if p+ k> dimp X we get HP(K, F ®0 U)O) = 0

for every p > Lo
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24 LEMMA. Lel K be a compact subse! of holomorphy of X and K = SO(K).
Then there exists a neighbourhood W of K such that (W) separates points of WV,

Proof: a) Let U be a neighbourhood having envelope of holomorphy of K.
Then 6U : U— SO(U) is locally biholomorphic. Hence: for every x e K there

exists aneighbourhood U, of z such that g(U) separates points of Um. Put
' A=KX KN U, xU_:zeKk}.

For every (z.y) € A there exists f € O(G), with G some neighbourhood of
K, such that f(x) # f(y). Hence forevery (x, y) € 4, there exist neighbourhoods
Uz, y) and V(z,y) of (z. y) and K respectively such that O(V(x,y)) separates
points of U{x, y).

We cover K by a finitc number of neighbourhoods U(zy, ¥) 4. U(:ck,gk)
and put V.="V(z, y) n ... n V(z,,y.) n U. Then V is a neighbourh ood of
K, and O(V) separates poinis of K,

b) By a) the canonical map &: K — SO(V) is a homeomorphism of K onto
its image. Since &: V -» SO(V) is locally bih>lomorphic, we may extend
871 :8K— K toa holomorphic map p from a xeighbourhood ¢ of 8K into V
such that &3 == id. Hence 6[136 is biholomorphic. Putting W = BG, we then haxe
the desired nmghboulhood

2.5 PROOF OF THEOREM 2.1. Assume that /17 (K,0) = 0 [or every p> 1. Let

U bea neighbourhood of K having envelo e of holomorphy U. We shall prove

that O(K) separates points of K. Since T is Stein, it is sufficient to treat the
case ¥, § € K in which dx = 8y. Let 7 be the ideal sheaf on U/ associated to the

set {x, y}, and 7 the ideal sheaf on U associated to {8z}, Since

;72 e ?& —-_=(H0(/E7,/2\)@0@\) 0)): for every z e U/, by Lemma 23 we
obtain H1(K, J} = 0. By considering the exact cohomology sequence associated
to,the exact sequence. '

7 0—-7—-0—-0[7-0,
we have the exact sequence
HO(K, 0) — 1I°(K, ©)7) - 0.

Hence, there exists f < HO (K, ©) such that f()=0 and f(y)=1.
This shows that 8: K — S@O(K) is injective. We now prove that is also sur jective,
If it were not so, then we should have y € SO(K) \\ K.

" For every ' € K, if y(f)=0implies f(z) = 0 for any f & O(K) then x == y.

Therefore, by the compactness of K, we can find a neighbourhcod U having
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envelope of holomorphy T of K and i F,, € QL) such that y(f ) = 0 for
j =1,u.,, k and such that these functions do not vanish si sultaneously at any
point in K. Consider the exact sequence \

0——>I\eLBlU-—>0 ] -—>01U~—>0

whereﬂlsdefmedhye\gj, o ) = E fgj Let 8 : O"‘[A—-a-OjA be the
i=1

homomorphism induced by f_ ..., f,. Then
N o~ =~ HO(l Ker —~ o~ ,,.,_
KerO{U___H(L,hmBIU)®O O | :

{0
Consequently,

Ker 8), = K -~ = H° U Ker 8 = ~
(er) : (Ker ol )5 ( er § | )® (U)OIU)z

for every z € /. By Lemma 2.3, Hj(lx, Ker 9) = 0. Hence, the sequence :
(OUNE— Uy - 0 |
k
is exact, and there exist g;,..., g, € O(U) such that % fj g;=0.

j=1
“This is impossible, because
L=y =2 y(f;)yg;)=0
The ¢if » part is thus proved.
Turning to the conly if » part, by Lemma 2.4, there exists a nelghbourhood
basis {U } of K such that each U/ having envelope of ho!omorphy b and
sach 'that for each n=1, 2,... the diagram '

>

Vgt ———p ¥

T b

U >

n

is commutative. Let f & H#(K, 0). Then there exists n_ such that f ¢ HE(U  .0).
o

Denote by %”0 the cover consisting ol all Stein open subsets of Un meeting
0

: o~ e~ . .
eno (U n0+1). Let f’?,zno +7 and OZéno 4 be the covers consisting of all Stein open

subsets of U/ ny +1 and U”o +1 respgclively._ Then, for every U & %"o there
. 7 I oy Trn | ETal
exists V({U) € GZ[HO 11 such that 8V .({J) U and for every V e °2£n0_|_1 there
exists W(V) &%, ; such that &1 (¥) < V. Obviously, W (V (U)) CU. Hence,
(2]

we obtain the com nutative diagram
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P, ,0) —— ZF(u
b1

BN

P11 | A
¢ _,(l£ﬁ°§13€% - ,ZP(1LHQ?1,G@

R ™,

P-teqp P

where the middle row is exact, Hence f=0in H(YU, , 4, O
. o
Thus HP(K, 0) = 0 for every p ;> 1. The proof of Theorem 2.1 is complete, -

2.6. PROPOSITION. Lef K. be a compact subsel of a Riemann domdin over a
Stein V-manifold. Then K = SO {(K) if and only if dimHP(K, 0) <o for
every p > 1. '

Proof. According to Theorems 1.1 and- 1.2, it suffices to show that
HP(K, @) = 0 for every p > 1. Denote by L(H? (K, 0)) the space of linear
maps of HP(K, O) into HP(K, 0). Define a map 8: O(X) — L(H (K, 0)) by

8 () = fo for every f e OX), ¢ e HP (K, O
Since dimaO (X) = o and dim HP(K, ©) < =, we have Ker 6 == 0. Hence,
there exists f; ¢ &(X) such that f, is non-constant on each irreducible
branch of X, f1HP(K, 0) =0, dim V(f) = dimgX —1 and the sequence
0—>Ol:10—>0/f0 -0
: 1
is exact, where 7‘\1 is defined by multiplication by f‘,\_.. By considering the
-cohomology sequence associated to this exact sequence, we obtain the exart

sequence

0 — HP(K, Olf o) ~ HP t (K, O).

Hence dim CHP (K, OlflO ) < oa. By induction on dim X, we‘ find functions
tfl,..., fn € J(X), where n = dim CX’ such that '

o
6y kaP(K,O/‘IZ{: ij) = 0 for k= 1,...,n where X f,-O = 0;

j=1 j=1°
(i) dim V(fs, ..., fk)-= dim C‘Y —kfork=1,...,0;
(iii) for k = 1,... n, we have a short exact sequence
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ﬁ.. ]
— - 0
0—0|_, ol-, Y, -0,
2 f.o |z f.0 Tf;0
j=1 j=1" j=1
Obviously, H2(K, O ln Y= 0. Assume that (K, O /I{—]—I =0,
ij 2 f;0

By (iii), we have fhe exact sequence

Fe
Hp(f{,()lé f il (K,@Ié f ) U
0. _ =10
j=1’ =1’

e .
Using (i), we see that f  is the null homomorphism. Hence,
g k

p g ]{-]'Jr = 0, ™ . P(K k — . .
HP (K013 ij) 0. Thus. we have H (K’O"Ef.o) Q0 for k==0,..., 0.
- j=1 =1’ |
When k = 0 this yields 4P (K,0) == 0, The proof is complete.
Remarks :

1. Let G be the group generated by the isomorphism (u,0) |- (~u,-v) of G2 In
view of the isomorphism. (@,0) [ (u? — v% 2av, u® 4 v?), we oblain
Cg =Y = {(zy2) € C*: 2* + ¥ = 2
Hence the cone Y is a Stein V-manifold.
2. We can prove the following: ¢ Let K be a compact set of holomorghy. Then

K = SO(¥) if and only of HP(K,0) = 0 for every p >> 1 and every coherent
analytic sheaf ¢ on K», This formally resembles the condition for a complex
space to be Stein. '

3. If K is a Stein compact set, then H? (K,9) =0 for every p >>1 and every
coherent analytic sheaf ¢ on K. Noie. however, that the.converse of this state-
ment need not necessarily hold. Indeed, it is well known [1] thai there exisis a
compact subset K2 such that K = SO(K) and K is non-Stein,

4. For any given compact subset K“C", and a real number m, o< m<n,

let &, (A) denote the m-dimensional Hausdorff measure of A. From [[6] it is
known ihat if lgm(K) = 0 then H’(K, @) = 0 for every p>>m. Therefore

HP (K,0)=0foreveryp >1 provided Ag(K) = 0.
5. Proposition 2.6 was already contained in [14], but the proof presented above
is new,
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