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THE MOD 2 COHOMOLOGY ALGEBRA GF A SYLOW 2-SUBGROUP
OF THE GENERAL LINEAR GROUP GL{4,Z; )

PHAM VIET HUNG

INTRODUCTION

In [8], Huynh Mui proposed am approach to study the mod p cohomology
algebra H*(GLH,P ; zp) of the Sylew p-subgroup GLH, » GL{n, Zp ) consisting
of all the wpper trianguiar matrices with 1 in the diagonal, Here Z, means the
prime field of p elements. Since GL3’ 2 1s isomorphic to the dikedral group of
order 8, its cohomology algebra is well known. In the present paper, we determine
the algebra H*(GL, ,, zp) following the approach proposed in [3]. Applying
this result, the algebra H*(GL, ; Z,) will be computed in a subsequent paper
{10]. Throughout the sequel, we shall use the notation H*(G) = HY(G\Z, ). The
main result is the following.

THEOREM. | The cohomology algebra H*(GL
generated by elements:

i 2) is the commutative algebra

Yy9> Vag Ugp Vigs Vgys Prps 240 2y
mithlvi i—]—k|=k’1‘<~k"‘<-3’ I<i<éd—k
; 1= 2,1z, | = 3 and with the following siruciure
1) As a moduile,

H"(GL&?) = 75 (V199 Vg Vapr Vygr Vop DM]/I

D Zy (V9 430 g0 01,1 { 24, Zos E5 2y fo
where I is the ideal generated by the elements:

V19V VasVsp V12 + Vsylip ViVe, + Vyyblp Urgty,  Uayvse
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DY The inultiplication is defined by the idenlilies:

= D, U

R FER— 7

{4 Vyg%y = Vg1 == VgV = UVuz
Vipfy = Dyl =0,

(i) 2= vz —}—v2 z, 30,0
1 237 2 2371 13724

2 2 , 2
Ey= 0oy, + VgsZy Byt (Vyg + Vg )%y

- Here |z| denotes ihe degi‘ee of an element z in a graded modide and K{xi -
xn} means the free module generated by %1,.., x over an algebra K.

The paper consists of 3 sections and an appendix. In Section 1 we shall
study the modular invariants for two pairs of variables which have been initi-
ated in 1914 by W.C. Krathwohl [3]. As in [5] and [7], the modular . invariant
theory wiil be the main tool of our study. Using this theory and the Hochschild-
Serre spectral sequence, we shall determine the cohomology algebras
H*(GL4' o/ Z(GL, 4))in Section 2 and H* (GL, ,) in Section 3. In the appen-

dix, we shall compute the mod 2 cohomology algebra of a factor group of
GL_ o
iy 2

1. MODULAR INVARIANTS OF TWO SETS OF YARIABLES

Suppose that we are given two sets of variables
{2, T ot [==1,2. Let Z, (2, s Ty Tgys %, be the polynomial algebra genera-

ted by @, @9 Loy Tpp OVET Zy- Let (Gl , Gg) be a pair of groups ol linear

transformations, G, C GL, = GL(2, Z,), on the 2-dimensional vector space Zg

The natural action of (Gl’ G2) on Z, [xu, T Loy Tg| is defined as follows,
For every (w,,w,) €(G,,G,) and feZy @y, Tsps Top Tgols

(wy» wy) f (.1“11, L9 Topr T gg) = f(a:’u, T yor gy ¥’ o) where sc’l.j, 1<, j<2

are given by

) ’ X x
Tos Tag a1~z
. =
=Wy Wy
] £ 33 m
_xn X9 11 12

By this action Zy [-;cn, Ty Lops :::22] is certainly aright 61 5 62 — algebra.
e, wy)f = f for all (w ,w,)e (G, Gy f is called an invariant of (7, Gy
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ora (G, G;) - invariant. It is easy to see that all (G}, Gy)-- invariants form an

algebra. A set of generators of this aigebra is called a full system of the inva-
riants of (G‘1 » (r,). In addition, if the generators are algebraically independent,

we say that they form a fundamental system.

Let GL, , be the Sylow 2-subgroup of GL, consisting of all upper triangu-
lar matrices with 1 in the diagonal. For later use, we shall compute the invariants
ol (/, GL, ) and (GL,,. GLé’g). Note that the invariants of (7, GL,) have been
compuled by W.C. Krathwohl [3], and those of (GL,, GL,) by the author
in [10].

= 2 . ;

Let V=,V =%+ x,2,, 1<I<2

Then we have

PROPOSITION 1.1, (L.E. Dickson [2], [5])

6Ly - )
Zolz;1, %yl =ZylVy1» Vipl 1<K 2,
Define M = I = wilm?..? + xi,‘.‘?xﬂf'
Zar Loy

Then, M is obviously a (1, GL,) — invariant (see W.C. Krathwohl [3]).

THEORREM 1.2. We have
)
= ZQLVH s VJ,Q, 1’21, V22] {1, M}.,

Therefore, the invarianis Vﬁ, Vﬁ, ng, Voo M form a full system of the

(1, GlLg o

Zy (%110 ® 490 Ty g Tyl

(1, GLy 5)—inwariants. Furthermore, we have
2 9 9 o ,
M- =V Vo + Vo Vi + ViV, M.

Proof. From Proposition 1.1, the invariants V » 154, j<2, are clearly
algebraically independent. Furthermore, by an eaS} computation, we obtain
the expression for M? as‘i_n the theorem, On the other hand, the degree of any
element of Z, [V, /., V5, V,,, Vyylinz,, is congruent to zero modulo 2, but
that of M is %, tben 1 and M are linearly independent over Z, [V, V12’ Vor Vool
Hence, it remains only to prove that the invariants Vir 'V, Vﬂ, Voo and M
form a full system of (1, GLg,g)—lnvariants.

Suppose f to be a homogeneous invariant. Without loss of generality, f can
be assumed to be homogeneous in {a,jl, x5} Write
o lt . S kb
fr=alefy (10 %19) +£f’22 Ty F(®1g Tgp)-
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If n = 0, by Proposition 1.1, f can be cxpressed in lerms of V,,, Vi, Suppose
that p > 0. According to W.C. Krathwohl [3, §§ 7,8], foz,y T,q) is an (1, GLy,) —
istvariant of the [form

§
Fo@sp 240)= V11 9V 15 Vigs
where s is certain integer such that s == n (mod 2), 0 < s <{ 1. This shows that
f is of the form :
syt L]
f == M V22 gO(V11’ Vj_2) + f 3

where n = 2{ 4+ s and ' is an (1, GL2’2)—invariant with f[; =0, i.e.
f!=§xn -k I‘f(.‘l: )
p—g 22 11> %12
Consequently, we need only to consider the invariant f with f, = 0. In this case,
we have f = V,,9. By induction on the degree of f, the theorem ihen follows

Now we consider the invariants of (GL, 5 GL, 5.

Let f be a (GLy o (;L2 23 — invariant. Clearly, f is then an (1, GL, )—inva-
riant. According to Theorem 12, f can be expressed in terms of V and M.
Since M = (V12+ My 4 V12’ we can write

f=2V: ys f (V Vags Vg + M),

s 11 21

Further, we have

WV = Vg Vo =V, +Vy
wV12= V]2, wV2?= Vgg 4 (V;tf,' —]—- My,
1 1
wM = M, for w = [G 4 ] e(GLg’g, GL?‘z). : N
From these relations, we sece lhat f can be cecomposed as a sam of
(GL2 o GL2 2) — invariants which are homogeneous in {Vﬂ . V'I:} } Hence,

we need only to consider the invariants of the form
n— Ik ; N
f= Fo Vot Vﬂ Fro Vigs Vo, Vo -+ 00), | &
LEMMA 1.3. Let f beas in (2). Then fo(V 19° Vags Vyy + M)is aninvariant of
{GL2 9 GL2’2). Further, if nis odd, f, has the factor V12 L M.

Proof. Following the argument used in [3,§§ 7, 8], we write

n n k V]\ v M
f _ = 91 fk( 19°* 22: 12 _l" )
k=0
a—1
o 1f (VIZ’ 22,V]2 —I—,ll]) '-l— ‘f szf (Vl.), 221 12+ “'j)
T e
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Let w be as in (1). We have
wf = (V21 + V]] " (wfo) -} (V21 + Vﬂ)ﬁ—i Vﬂ(wff) P
= V;I(wfo) + V;I'"I V, (n (wfo) + wf ;) + ..
Since wf=f, we have wfy= f, and n(wf,)-- wf; =F;. The first relation shows
that f, is a (GLg,e GLy,g) — invariant. If n is odd, f, = wf; + wfy = wfi1+ fo.
Writing f, in the form .
—_ f
fﬁ = 2 % rst V;‘,g V;2(V12 + M), arse € Zy»

P,s,t
we have

f0= fj - wfl = X a ng (V;g "'(V22+ (V12 + Mr))s) _(Vgg + M)t .

rss,t

Thus, f has the factor Vi + M. The lemma follows.

By a direct verification we have the following invariants of (GLg,y, Glgpe)t

, 2 2
W, o= Ty Woy = Loy + Xy 270 Wyp = Ty + %11

Wy = gy (@gp + Tpp) @ppt-Ty) (@op + Tpp + Ty + %4 )s
M = Tyq Loy -+ Zya Loys

2 2 2 2
K = xy&ast %y Fpy T Ty + TppTyy

THEOREM 1.4.

(GL, o GL, o) ,
Zg (%7 > Ty Tpps Tgp 1 Lo, — 7, (W Wi Wy, Wil {1, M, K, MK}

Therefore, the invariants Wy, Wi Woi, Waea, M, K form a full system of inu_a—
rianls of (GLyer GLay:) and

Mz = WK - Wa M+ WiWy,
K2 = Wh Wy, + WaMK + (W + Wa)M2

Proof . The proof of this theorem is similar to that of Theorem 1.2, Obviously;

the invariants W, j are algebraically independent. By a direct computation we

obtain the expression for M? and K2 as in the theorem. Furthermore, the degree
of any element of 7 [Wy, Wi W1, W] in &y is congruent to zero modulo 4,
put those of M, K, MK are 1,2, 3 respectively, Then 1, M, K, MK are linear
independent over Z; [Wy, Wi, Wy, Wy]. It remains only to prove that inwva-
riants W, M, K form a full system of {GLy,; GLyg)—invariants.

Let"f be a homogenecus invariant of the form (2). Let n=2f+s, 0s 1.
According to Lemma 1.3, f, is a (GL,y, GL;g) — invariant of the form
fo== (Vi -~ M)’ ¢y Hence,
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. the form

f=KWig + ', where f*is a (GL, ,, (L, o) — invariant with f3=0. Thus,
it is sufficient fo consider the invariant f with f, = 0. In this case, f = Wyg
and the theorem can be proved by induclion on the degree of f.

Remark 1.5, Consider Zo[x,;, Ty T21] a8 a (GLy,s, GLy,) — subalgebra of
Za[T1, T1es Tag, T22]. As a consequence of Theorem 1.4, we have

2 hY . - r
Zo[ 2115 Ty le](GLzﬂv GLzo} o[ Wi Wig Wil

2, COHOMOLOGY ALGEBRA H*(D(3,2))

a) Let us consider the Hochschild-Serre spectral sequence
B, H¥(G1Z) @ H¥(Z) = H*(G)
for the central group exiension ‘
1-Z—-G6->02->1, T (£

where 7 == Z, X Z,. Let a,, @, be {wo generators of Z and T, : Z—>7, the duals
of @, i = 1,2. Then H¥(Z) = Z [%, x2]. Let us denote by ©: H*(Z) —» H*WG[Z)
the trangression as usual, Then, from [4, c¢h. 2] we have

L Tx=x(zp) € HYG/Z) tor . € II'(Z) = Hom(Z, Z,,)
- where z,& H2(G(Z,Z)is the cohomology class corresponding to the extension (&), .

PROPOSITION 2.1. In the Hochschild — Serre spectral sequence for the ceniral
group exzlension (L), we have

By == II*(GIZ )ty T02) @ Z, [, 23]
@ AnnH.(G/Z)(’EwI, X)) ® Zg |2f, adlryx,
(T2, @ 1y~ Tay ®-7'32) (H'(G/Z) @ Z, [331; 372])
whexe A= {yl®a1 + ¥ ® /Y, €HH(G/2), yrva, - gty = 0}

' Proof Identify L, with 3%(G/Z) ®Zz[w1, Z2) Smce

®x —-(g@l)(l@ac Y1 @ a ) lies in E, for yEH*(G/Z), wé' have
d2 (g@a )_ n(::]'m: ® a:” 11:m) —]—m(t;ta: ®@ .1:" ‘;l 1)., : ~

T_};en, computinu E; = ker dy/im d., we oblain easily the proposition,

b) Computatzon of E,(H*(D(3,2))) ‘ ‘
Let C(n, k) be the subgroup of GL(n—{—I Z.) consisting of all m
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g f 100..... ) ¥ 3
‘ 10..... 00 ovuus -
10 .., -
10... 0«
1... 00

0 e .
10 k lines
. 1 ¥

and D{n, k)= GLn-}—l o /C(R, k + 1). Then there is the central group extension
1— Z(D(n, k)) —» D(n, k) - D(n, k —1) -1
with Z(D(n, k) = Cn, k) / C(n, K41y = Z27*71

PROPOSITION 2.2. (Huynh Mui {8, Theorem AJ)
In the Hochschild — Serre spectral sequence

H*(D(n, k— 1)) @ H¥(Z(D(n, k))) = H*(D(1,k)), k > 1
for the above central group exlension, we have Fo = E 1 + 1
We shall consider only the case n =3, k=2

Let € be the elementary matrix i.e. the malrix with1in position (i, )

and zero elsewhere. Set
ci,i+2=(I‘+ ei,i+2)c(3’3)ED(3’2)’ 1<i2,
¢, rg =0 +¢ 11p) C(32) e D(31), ISISS
Let % D@3, 2)—Z, or ;i D(3, 1) — 7, be the dunals of € Thean
H*(z (D (3, 2))) = Z2[351:'.e Tl
II*(D (3’ 1)) = 72 [-'Cms Lags 9334]-

LEMMA 2.3. In the Hochschild-Serre speclral sequence for the ceniral group
extension : :

1> Z(D(3,2)) — D(3, 2) — D(3,1) = 1, @)
we have ‘ : .
EoH* (D(3, 2)) = Zs [%12s Zag T3] / (212%a3 93233734) by A8 [;‘-17?3, -‘1»‘24]
® (T12 @ Xgy + Ty ® xi3) (Z2 [@1gs @23, Tyl @ Zz [zt x3])-

(512323 ® Lo, + Toglisyg & 3513) (Z‘Z. [xl'%’ Tozs -'rgd] ® 7> [55123, It%‘])

Proof. According to Proposition 2.2, we need only to compute
E, = EoH*(D{3, 2)). We observe that the projection D{(3,2) — D (3,1) has an
inverse map {: i(3,1) —D(3,2) given by

ey 1415, 412 = Siv 142 S, 741 [e;, jagr €5, jedk ITSHISS
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The factor set f corresponding to the extension (3) with flx, y) = Ha)t gyl (zy)
satisfies the following relation '

Chivp HJ=1+41,

f(ci,i+1’ ¢ 1) = 5 1 it j=1i-1,
: 1<i j<<3.
By a direct verification, we have
L& 1 o)=[r, . ,fl= Viitt gy, i T=12
The Lemma follows easily from Proposition 2.1,

c) The resirictions, Let A, B be the subgroups of (3, 2) given by A = {¢,a,
Cras Cays Cy1)y B = {Cas, ¢y, ;) Wwith C,p= ({ + eij) €(3,3) € D (3, 2). Obviously,
and B are maximal elementary abelian 2-subgroups of D(3, 2). Let us again

denote by Ty A— 17, or Lo B ~» 7. the homomorphisms given by xl.}.(ck!;“—:
== Q,, ,,(Kronecker symbol). Then

Hx(A) = T [1'12s Lyzs Typn 2:24],
H*(B) = 7, [23, T1gs Tog)e
By a well known resualt, we have

W a4
Im res (4, D3, 2)) ¢ H%(4) DG 2)4),
W B).
Im res (B, D(3,2)) ¢ H¥B) D3, 2) 8
Here WG(S)=NG(S)/CG(S) denotes the weyl group of a subgroup S in a

group G and H*(S) is considered as a PVG_(S)-mod'uIe via the adjoint isomor-
phism (cf. Huynh Mai [5].

2
Let Vis, o = %3 T %%,

2
Vou, 4 = %gq -+ %py2q o

HA == Wz Xzg + Ly T1g.
We have

LEMMA 2.4. WD(S 9) (A) = GL, , and under this isomorphism H*(A) becomes
an 1 % G—L2_2 -module, that is
w (4)
., D 3,2 e o
Bq) D327 2ol o1 Ty Vg 4 Vag 41, M}
2 2 9 ,
Farther, M, = wp, Vot a T %5 Vig,at @@y M.

the lemma follows from Theorem 1.%.
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LEMMA 2.5 Let V 3 p = @351 %5 Tog > VB = T + wg,Tag .
WD'(3 2)(3)
Then me(B)y DA =Zy[ @y Vigps Var 8 )
Proof. Since RXTD(3,2)'(B) =D(3,2)/ B= GLg’z X GL2,2,the lergma follows
from Remark 1. 3. -
By an argument analogous to that used in [7], we prove

LEMMA 2.6. (1) There exists the unique cohomology class z € H¥D(3,2) such
thatz| , =M, z[B_O

(it) There exist lhe unique cohomology classes Uyq 1)24 € H? (D(3 2)) such

that Viidaa = Vi, 142 A

v i+2B = Yhi+2 B

Proof. We prove only the existence. The umqueness will follow from
Lemma 2.9, :

(i) From Lemma 23, there exists a cohomology class z e H2(D(3,2))
such that : - o

T e FLEND(3,2) ~ @12 @ Tq + T3 @ @y € B
Here { F H*(D(3,2))} means the Hochschild-Serre filtration on H*D(3,2)) with
1espect to (;5) Accordmg to Lemma 2.4, 7 1 Ais of the 101m

B ’A-—“ Zpp %y Tgp Ty 3 ¥y + B1 13 482 Vi, 4 HBgM, With
“!g GZM \151%3'
On the other hand, we have the commutative diagram

P HAD(5,2))— BY (D(3,2), Z(DG3.2)
Vo !
F o (8)y——— E) (4,2(D(3,2)
induced by the inclusion (4, Z(D(3,2)) C (D(3,2), Z (D (852))).

From this dlagram we observe that By =P =0, By=1L

This means that z | 4 = 0%}, + 4% - o2, +MA with e, & Z,.
Similarly, z- | 5 = B @3, with pe Z,. Set

Z== Z < o D%Z —+ dgthally, + dav§4 -+ ﬁvéa.s

where '-u[., iii-‘l inf (D32 DB % ;4 g 1<<i<(8.
it is easy to see that z satisfies the condition {i).
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(i) From Lemma 2.3, there cxists a cohomology class. vy, € H2 (D (320

such that 013 lZ(D(3,2))=x53'

Consider the commutative diagram
res
H*(D(3,2)) ——— H* (4)
| ) res | res
HA(D(3,2)) ——— H(Z(D3,2))-
induced by the inclusions Z(D(3,2)) € 4 C D(3.2).
By Lemma 2.4, —5]3 [y = el ey + Vg  +BM, + ozl

with o, Be Zﬂ, 1 << 3, Similarly,
7;13 l B = 'Yx%, _]_ V13, B ] “{ E Zg- Set

Vig = Uiz -t o D2, - 00 U Ugy - g V2, + B2 4y U] -
Then v,; satisfies the condition (ii). The clemeni v,y is obtained in =2 similar
way. The lemma is proved. '
From Lemmas 2. 4, 2.5 and 2. 6 we have
COROLLARY 2.7.

W ... A
() Tm res (4, D3.2) = H*(a) 32 4

W B
(if) Im res (B, D (3,2)) = H*(B)" 032®,

Remark 2. 8. From the proof of Lemma 2, 6, we have that
ze FIH2 (D (3,2)) 1= 21, ® Loy + 234 ® x45 € EPL,
Lir o BY
| 1<i<C2
Now we determine the algebra F*(D(3,2)). According to Lemmas 2.3, 2.6
and Remark 2, 8, this algebra is generated by the elements:

v, 11p €FHE(D(3,2)) 1> 1@z,

. . Do, Uz, 0345 Ul.?,_v U4y 2, ] _ !
where Vit pq = inf (D (3,2), D(3,1)) 9:1.’;. A 1<i g 3 and H*(D({3.,2)) can be
decomposed as the direct sum of modules
H* (D(3,2)) = £, [U;LH U2y Uyas V1gs Uzg] [ (D12Vege Uzglise)

o £, (012, PN Ulg; U2y} {Z} (4)

It remains to compute z2 and v,z to determine the algebra structire of
H* (D (3,2)). To this end we prove

LEMMA 2.9. The homomorphism _
Res: 0" (D (3,2)) — H* (A) X H* (B),

given by lhe resiriclion homomorphisms, is injective.
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Proof. We shall denote by ’ FfH* (D (3,2)){ the Hochschild—Serre filtration

with respect to (3). We consider the element © & HA(D(3,2)) such that
Res () = 0,ie. x fA=x /B =0, .

Suppose that x € pr=k jjr (D (3,2)). We shall prove = 2= 0 by induction
on k. If It = 0, Le.x ¢ F'H® (D 3,2)) = Eg"‘, by Lemma 2.3, it is easy
to see thatx = 0.

Suppose that k > 0. Write k = 2/ + 7, 0 < r < 1. We consider only the

case r = 0, since the case r = 1 can be treated in a similar way, According
to Remark 2.8 and (4), = is of the form

C o afitd
2 T2 ey v, ool Y
i+tj=1
£ By vl vhe ot ST 4 X
i+j=1
with X ¢ Fr—*+1 H2(D (3,2)).
On the other hand, consider the commutative diagrams

Fr—k H®(D (3,2))

-> EBT ki (D (3.2), Z(D(3,2))

| 4
pr—k pgn (4) N Eg""kvk (4s Z (D(3,2)) (5)
Frmk HY(D(3,2)) —— Eg —k k(D (3,2), Z(D(3,2))
! - - /
Fr—k go(B) ————> E;‘ ks k(B, Z (D(3.2)» (6)

induced by the inclutions (4, Z (D (3,2)) C (D (3,2), Z(D(3,2))) and
(B, Z (D32 < (DG,2) Z{D(3,2))), respectively. By Remark 2.8 and (5), we
have

0=1x|Aec FP kH"(4) > T2 By @y wns = 2ird) g o2l 23,

i4j=1
Since A is an elementary abelian 2-group, we have §;; = 0. Similarly, by

Remark 2.8 and (6)s;, = 0. Hence v = X € gr—k=1 gn(D (3, 2))). The lemma
Tollows.

For the pestrictions of the elements vg,2, z% on H*( A)and H*(B), we bave

GOROLLARY 2. 10.
(i) g3 =0

(I‘l) 2 = Ulzz Vqg + 03‘013 + U Uy Z
Combining the above results, we obtain
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THEOREM 2.11.
H*(D(Bsz)) = Zg [Um, Ugqy 034, DI3I_U24' Z] / 1

. _ ; 2, 2
with I = (vybay Doglag, Vs 2, 2° + V5, 02y + Vg Uiz + Dpg Vg 2h

5. COHOMOLOGY ALGEBRA ' (61, ,)

a) Consider the ceniral group extension

12 (GL,,)~>GL,, — D32 -1

(E)
with Z (GL,, ) = Z, |

Let Zg € H2 (D(3,2)) be the cohomology class correspoending to estension
{E). From Lemma 2.6, by considering lhe restrictions of the elements z

E ]
Sq'zg + S92 Sqt z; on H* (4) and £I* (B), we obtain
LEMMA 3.1,
(i) Ty = 7,

(ii) Sq zp = DiaVae + 03;0“ + (042 + vs54) zp, '
(iil)  Sq2 Sq 75 = vvds + 303, + (V%2 + Vis 4 v1g0y) Sqizg +
(V12 + D3) (Vig U3 + z)éa

letc=1I+4 e,eGLl;,; bea genelator of Z(GL,3) and z: Z(GL4,2) - Z,
the dual of ¢. Then, as is well knowm H*(Z(GLy,)) = Z, [z].

LEMAMA 3.2, In the Hochsc!u[d-Sezre spectral sequence {.r the central group
extension (E), we have ‘

Ey = 2 [Uygy Vagy Vg Dygs D“J/Il R Z, [a:dj
Z; [vgg, 01gy Vo] 2y /1) @ 2y [at] 2
Z; (Va3 13, V] Vas /7 Iy @ Zy [24] 23
Z, [v9y, Usss Uas) Vaz /" In @ Z, [x'] 22,
Here It = (01p Vus, Vs Vg 032 Vs 4 V3s3),
Iy = (1}, 043 U3 - Dya015).
Proof. From [6,2.1], we have

Ey = B (D(3,2)) / (%0 54 7) © Z [a4]

® A pes,2) (D (s ) © 7 2 @
® ANy (D(3.2)) / (1) (ST 20) @ By [a4] 22
® Anng, (D(3,2)) (% S¢* z5) @ Z, [2%] 2

The lemma now follows from Theorem 2.,11-and Lemma 3.1.
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LEMMA 3.3.
a’(u @m)__(u 2 1 02)®i'z'11E5’0
23 12 21 34713 :
Proof. Suppose that d,(v,, ® ) X 2024 + 031013) ® 1

Them, it is easy to see that (v 24 -+ 034013) @1is not zero in F5’ On the

other hand, according to Proposition 2.2, fi; = EH* (G 4.2). Hence, we have

~ dz*) = 1) — 1(SPSq'n) =S¢%S ' (1) =

1 v+ 03)®11n£5’

2
= 8¢°8q = = (VyyV0y + Uy

(by Lemma 3,1}).
ThlS contradlctton proves the Lemma.
Computing E, = E; = Ker d,/im d,, we obtain
PROPOSITION 3.4-
EH*(GlLyyz) = Zo (2125 D23y Vas, Usgs vulll @ 2o [x4]
B Za [Van. Vigs V2g) Van/1 @ Zo [2' ]
P Zo [025> Vigp Vag] Vopfle @ Zo [t ]
@ Zs [V2g5 V1zs V2q] V3312 @ Zo [l4 T2,

{'{gre I,,I; are as in Lemma 3.2 and I = (I, v,v 24 + vy, 13):

b) The restrictions

“ e use the technique developed in Section 2,¢) to compute the images of
the restrictiens of H#*(GL,.) on H¥ (4) for each maximal elementary abelian

2-subgroup 4 of GLy..
Let &; be the emementary matrix (i.e as (Iefmed prcvmusly, the matrix

with 1 in position (i, j) and zero elsewhere). Set €= i "{""eij and
A = < Cygy i3, C1a > 5 Ag == < C1z; Cips Cags €20 > 5
Ay = << ¢y Couy Cya > CA, = T Cge Cyps C1a >
Ay = < ¢ €, €3 >
with € = €42C3p €2 == C3€2p C3 = Ciee
Let Ty : A, — Z, be the duais of ¢, w1th suitable 1ndxces @ fori k<4
and let x; : Ay — Z, be tt;e duals of ¢, . Then

Z, [%;;, With suitable indices (4 MNok<4

H'(A,) =
IS Zz [xl’ 2’,‘2, a:;], k — 5.
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By indentifvi e
v ying Ui,rln!c

A\
A
“T\:J
7\

= inf (GL,s, D{3,2)) Vi i I

it is easy to see that

D3 l -.Ai

Ugy l ‘Ai

Uiy | 4y

Let us set

7 -
v 14,

We have

LEMMA 3.5, WGL4 oAz == GLe,z X GL3,2- and under ihis isomorphism

HY(Ay ) = Zy[%y5, Tyg, Tyyr X,,] becomes a GL2,2 X GL2’2 — medule, that is

H*(45)

[l

WeLy 5 (4y)

2 " v
= I3 + i3 xi,i+1 y I = 1,2,

2 -
& N PN =
\ + LA 2,3,

. 2
= Ug; | ds = a3 -} w01,

T, 4 ) (X1 + Tie) (14 + Tip + Tygh § = 1,

T1(Z1s - Tg3) (Xpu F Tag) (X1, + Tig + Toy + T2), [ = 2,

Z14(X1q + Far) (Tog b 23} (@T1a P Tag + Tyads i= 3,
14(Ty, + Trg) (Trs + Ty @4+ Te + 230)y i =4,
Ty + Lo} (3 + @) (B3 + T2 + ), i=35,

M= 2033y, + @450,

.2 2 2. 2
K =amw,, + %525, + 7,0, 4 5327,

= Z3 (%2 Vi3] 4y Vot ag Via o0 My K1

where I'is the ideal generated by the elements

2

K =25V g + TpME (v

2 ; 2
M = :c23K -2y, M 4 (UN Az) (024’}12),

2

Ay T Ve

2
a)M

Proof. We have W GL4’2(A2 )= NGLM(AZ ) CGL4’2(A2 )=

= GL4,2/A2 - GL2’2 % GL2,2' The Lemma now follows from

Theorem 1.4,

LEMMA 3.6.

w (Ag).
GLy 5 A4 |
B (4,) =2y [ Tap Vig 4]
Proof Tt is eftsy to see that W . (A4) 2 (€ g, Coy )
He'l_;e .Ef,‘ 12 PRV Further, the action .of VVGL (44)

on H*(A)) = Zyl[x;5, Tgy Tq4] is as follows

< 44—k,



Cisjra Ljrjer == Tisj+1r i=12 j=1or 34
CraZys == T1a 1 T3 34 T1a = T14 + Ty,
proving the Lemma.

Since W ;| , (4 ) =2 GLyy for = 1 or 3 or 5 we have proved (see[d]).
LEMMA 3.7.
Zs [ %12 V13| 4 » Vigals £==1,
WGL (Al) .
H*(Ai) 42 = Z2 [3734.- ”24‘ Aa’ Vid.ss]; = 3,
Z; [z Vsl 40 Viash L= 5.

By the argament used in the proof of Lemma 2.6, we obtain easily

LEMMA 3.8. (i) There exist anique cohomology classes
7 € H? (GlLyo), 226l (GLy2) such hat
zily = :\-:i[A3 =2yl = 0,i=1,2,

zl.]Az = M, z, lAs = Uisl Ag’
Ty, = K, Za |4 = 0.

(ii) There exists a unique cohomology elass vy,&¢ HY(GLy,)
such that vy Al =V 1 I 5.

(iii) 7 € FHHH (GLyg) 1=+ V2 ® e By, i= 1,2,

Ul‘ -] FOH'L(GL"Q) == 1 @ Cc'l =] E8’4-

. Wer, o(4;) .
COROLLARY 3.9. lm res (Ai,GL4,2) = H*(4, ) L2 7 115,
PROPOSITION 3.10. The homomorphism
1 5
Res : H*’(GLé’z)——-»ii"[1 H*(A,)
;:-iben by ihe restriction homomorphisms, is injective.
Proof. The proof is similar to that of Proposition 2.9.
COROLLARY 3.1t.
, 2 2
(1) 23 =DagZpt Vpg2y T Vyg Py
- 2 2 2
(i) 7y = Vg vyt Vs 2 Zpt (Vg5 V00 Zp
(iii) Dyp2; = VUgyZy =VyyVsy
(iv) D52y =VgyZy= 0.
Proof. Considering the restrictions of the elements 5‘3, z;, VigZy s DgeZys
P9 %g 0 V3s %2 on H*(Ai ), 1< i< 5, we ob'ain ihe requmired formulas,

Rinaily, we derive the main Tesalt of the paper :

-1JI|“-



THEOREM 3.12.

H*(GLyz) = Zig {0y, Uy Uy, Usg, Vage Vsas Zp Za) /1, where I is the ideal gene-
rated by the elements:
: 2 2 2
VsgVog VogVogr Vyaloy + Vg Uygs Vya Uy o+ Vgl Uyl of T 034 Uy
' . 2 2, 2 . . 2
Zy+ Dpg Ty o5 By T Vyg Vg Zgh Ung Uy + Vg 2y %o+ (g5 + 039070

rgt Vagd 10 Vyp (5; b Do) Vyp 29, Vg %o

APPENDIX. THE COHOMOLOGY ALGEBRA BY (D(n, 2))

In this appendix, we compute the cohomology algebra of the group D(n, 2)
defined in Section 2. b) The result is stated as follows.

THEOREM A. 1. H*(D(n, 2)) is the comnutative algebra generated by the
elements: s Vs T 1_g I n.

I<j<n—1, I<k{n=-2 with lu; =1, ]_uj]:.—.?, [zk]-._=2;
the algebraic relaiions befween these elemenls are the following identifies:
(i) u =, u[.+1=0, u, Z—H b, et = d,

.y 2 2 Lou?
(i) L=l l+3 v+ 4 i+ 2%

(i) 22, = Wl o0y 4
a) Consider first the Hochschild-Serre spectral sequence
E,= H¥G|Z) ® H*(Z) = H¥(G)
for the central group extension
1-Z—6—G/Z—>1with Z=Z,. (E)
Let ay, ag, ..., 4, be the generators of Z and «,: Z —Z, be the duals of a; .
We know that H*(Z) = Zg[zy, %3, ... %] Proposition:2.1 can easily be genera-
lized as follows.
PROPOSITION A.%2. For the centrul group exiension (E), we have
Eys2H* (G]Z) \ (T&1, vr T2, ) @ Ly [, .., T3]

@ A ®Z [(Bp snay "‘]
IePq

::1:(:1: )®XI/{i} ,TeP )
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Here P” is the family of all subsets of n={1, 2, ..., n},
1_12::J @:LI& yi€11°(G/Z),- zjgi’twizﬁ,
1

i€
y.e A (tx;), (41, jelf, X, = Il @
' "”H*(G/z) d (€I
Now we apply Proposition A.2 to the central group exlension
1>Z(D@m,2) > Din, 2) = D, > 1. (4)

Suppose that ¢; ;, , (resp..c; j'ﬂ)'are elements of Z(D{n2)) (resp. D@D)
represented by I + e, ;. 5 (vesp. I+te J+1) 1€ig<n—1, 1 j<n) Let :1:1-:
Z(D(n2 Zy (resp. Y ;! D{n, 1) — z,) be the duals of c, ﬁz(resp c; J'H.)’

<n—11<<j<n
Then H(D(,2) = Zoon@2e0s @,y b
 EAD@D) = Za@Paes U
From Proposmons 2.2 and A,2 we can derive
" LEMMA A.3. For the central group exlension (A), we have
EgHH(D(2) = Zdlisreslf Yl — 1Y )®,mlm v @]

)

2
& (gi-®?xi+1+ Ui+2® % )(Ze[Jn---‘ynl. ® Z, [z}
=1
® — .
(= ‘*(‘T )®\I/{ }Iépn
iel

b) The restrictions. Consider a subsel
I={1, iz, I } with iy <L fy <o < 0OF Pn. We say that [ is admissible if

21 >n—1, 2 J&:S,i J<s—1

+1

SetA =<c{.i+1, ”_l_2,ieI 1< i< n—1>cD(n2;, Wherecjs
represented by I +- ¢, . Glearly, Aisa normal elementary abelian 2—subgroup
of -D{n,2) and {11 is self centr allzed : so it-is also a maximal elementary abelian

2--subgroup of. D(n,2). Let us denote by y,: A[“*'Za (resp. e AI — Z,) the
duals of € i+1 (fesp. cj,j_.rz).We have . .

HYA) = 2, [wp gy 1 <i<n—1. JE I
We set L V:y’J:iGIQ

o: +$Jy_”1fj—-]-k€I L-Uorl
gmj othe1w1se 1< j< n-1,

sz =

M=y, %4q T 91c+2 o 1 k’ I‘+2E $
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LEMMA A. 4. Denofe by W (1) = .\’])(n 9 (AI M CD(n, 2) (4,0 the weyl group
of the group Apin the group D(n, 2). Then

@ )" =z, vy, M, iel, 1<j<n—1, kk+ 2ellJ,

2.1 ?
where J is the ideal generated by the elements:

Proof: Let {j;s Joses Jo_ o} (1 ]I<J2 e < J,_, < n) be the comp-
lement of / in n. It is easy to see that W (Jy=D (n2)fA; =(aq,, 1 ksn- s?
where a

is represented by I + e By identifying W(I) with < a,,

k Lt
1< k < n— s>, the action of W (I) on H* (AI) is defined by
G Y.=y;. tel, |

$t+y£+1iff+lef,t:jk, :

o T x4 4, iffEI,t'“—-—jlk'—l,

@, etherwise, °
It suffices to consider the casei = n. Let f e H* (4, )W(I) . Without loss

of generality, we can suppose that f is homogeneous in {x _g5 ¥y, | (see Sec-
tion 1). This means that f is of the form

Z -k k : . .
f = E 2yl pieLizn1<j<n—-2)
As in the proof of Theorem 1. 2 the Lemma follows by mductmn on the degree
of f.

As in the case n = 3 (see Secltion 2), we have

LEMMA A. 5.

(1) There exist unigque cohomolog iy classes z e H? ( D (n, 2)) 1i<n—2such

M, ifi,i—2¢el,
Fila, = Vai V'2_, i+1 ifiel,i4+24¢1,
V1,5+2 Vgg ff_ iel,i4-2¢1,
0 ifigl i+2¢L
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{ii) There exist unique cohomoloqy classes v, € u? (D (n, &)y I <1< n— 1 such
that
Vo if t,i+1¢1,

Dl =
iy V‘,[. ofherwise,

Further, Z € FIB(D n2))— Y§; ® %;1; +’ yi.{.g@ T € Ea.i’

b, < FoH2 (D (1,2)) —> 1@ 27 c By 2,

Now let us denote u, = inf(D(n, 2), D(n, 1y, » 1 Kign

By Lemmas A3 and A5, H*(D(n, 2)is the algebra generated by the
elements : u,, vj, Zp We have the following

LEMMA A.6. The hemomorphism' Res: H*{(D{(n, 2) - I'IH*(A[) given | bg the
resiriction homomorphisms, is injective. '

Here the direct product runs over the set of all admissibie subsets of n.

Proof. Suppose that xeFm™k [ (DR, 2)),.:1:|AI = Oforeach I If k=0,
zeFMH™ (D(n, 2) = H™(D(n, 1)). Clearly » = 0. Suppose that k0. By using
the following commutative diagrams

’ Fm”‘:Hm (D(n, 2)y——> EP~5k(D(n, 2), Z(D(n, 2)))
FUORHT(A) s ERTRN(AL Z(D(R, 2)))

induced by the inclutions (4., Z(D(n, 2))(D(n, 2), Z(D(n, 2))) for each I,

we bave zeF@~(&"1) HM(D(n, 2)). The Lemma follows by induction onk asin the
proof of Lemma 2.9. :

By considering the restrictions of the elements u,, v;, £, on 4,, we obtain

LEMMA A Z, U, g = 9, u, z; +1+ U3 2 = 9,

2 __ .2 2
z; = M Vg UV T iy B
Ty Bed = U UingVier

This completes the proof of Theorem Al
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