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A FINITE ALGORITHM FOR GLOBALLY
MINIMIZING A CONCAVE FUNCTION UNDER
LINEAR CONSTRAINTS AND ITS APPLICATIONS

VU THIEN BAN

1. INTRODUCTION

The problem of minimizing a concave functlon f(x) subject to linear com-
straints was first studied by H. Tuy 3]. Since then, this problem has attracied
a great deal of attention from a number of researchers (see [2]. where an
extensive bibliography up to 1979 was given). This interest is motivated, on the
one hand, by the practical origin of the problem and the importance of concave
mlmmuatlon as a typical case of global optimization and, on the other, by the
fact that a'large class of mathematical programming problems (inctuding 0 —1 in-
teger programming and bilinear programming can be reduced to a problem of-
concave minimization (see [2]).

Up to recently, however, most of the authors have concentirated only on
the special (though very important) case where the feasible. set of the problem
is compact, i.e. is a polytope. The only papers that deal with the problem wi-
thout the boundedness condition imposed upon the constraint set are, to my
knowledge, [5] and [4), where the most general problem of minimizing a con-
cave function over an arbitrary closed convex set was considered for the first
time, Note that the algorithms given in these papers are in general infinite
(though surély- convergent), as might be expected. It is therefore of interest to
have a finite and reasonably efflcient algorithm for the minimization of a con-
cave function over a polyhedral convex set which is not necessarily ‘bounded.
The purpose ol the prese“it paper is just to develop such an algorithm.

_In Section 2, we shall describe the general 1dea of our method, which can
be regarded as a further development of the cone’ splitting and the cone bisec-
tion procedures worked out in H. Tuy [3] and Ng. V. Thoai and K. Tuy [2],
respectively.The noveliy of our approach is the device of a-bisection method
which “will guarantce the liniteness of the algorithm, taking account of the
linear structure of the feasible set. This cone bisection method, along with the
bounding operations involved in the algorithm, will be discussed in detail ip
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Sections 3 and 4, The finiteness of the algorithm will be derived in Seclion 5,
Finaily in Seclion 6 we shall discuss |he applications ol the present algorithm
to the fixed charde, the bilinear programming and the linear complementarity
problems,

2. OUTLINE OF THE METHOD

In precise terms the problem we are concerned thh can be formulated as
follows :

Minimize f(x) subject to x ¢ D,

where D is a given polyhedral convex (not nccessarily hounded) set in £2, f:
R™— R is a given concave, upper semi-continuous function on #%. We emphasize
that we are secking here a global minimum, i. e. a point & € D such lhat
f(z )< f(z) for all = & D (the problem would be a standard one if only a local
minimum was required).

Withouot any loss of gemerality’ we may (by increasing if necessary the
dimension of the uncierwmv space) assume that [} lies in the hyperplane T =1

of R" and is gwen bv 2 system of form :

Aw=0 1y

where A isdanmy ;‘hz—matrixbf i'ank m, with tE_;e m first ecolumnas Ai » vany A
linearly independent. -
Writing for each k = m 4 1,..., n

and. def:mng R" by , S '
2k e = wk 1, o m), 2K, K02k jmm 1, ),
J A i k i A _ .

o have n—mvectors 7211 | ey 2% such that AzF = 0 (k = m 4 1, .., n).
Denote by AM©° the cone: VBrtexed at: 0, generatcd by these vectors '
' ' ,"M‘ == cone { mFl on b

LEMMA 1. MO; coincide: with the set of all x € R salisfying

dz =0, .= Q,..., X, = 0. E : Y]
- - ) : n , . .
Proof. If &'e M¥then x = X & zF with gk =0, hence Az =
: . k=m+1 .

= Ek'Axk == 0, and\“ '/'.ck : % O (k‘—' m -+ 1:"-, ﬂ).

1i4:
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Conversely, if x salisfies (4) ther -

2 od,+ T -3 & 0
A S cxy (- zZ, A )= 0,
J=1 s E=m+1 k j=1 ;o
he{me
s e =1 )

T, = =, (J = L., m),

I geme E
iex= X Z, ¢ with z, > 0k = m + 1, n), or x € M®,

k=m+1 .
GGROLL.ABY. We have D - M@, ' ' o o N 6))

Furthermore: _ .

1) A vector x& M® withx, =1 is feasible if and only if €, >0, 2, > 0:

2) A vector x € M° with x = 0 is a direction of recession of the feasible
set D if and only if x, >0y T, 2> 0. ' | -

Now the method we propose for solving the problem proceeds according to
the following scheme which is essentially the same as that of the method of
Ng. V. Thoai and H. Tuy in [2]. '

We start with the cone M°® and a feasibte solution x°%

At step k=0,1,.., we are presented with a collection Rk of polyhedral
convex cones veriexed at 0, each baving at’most n —'m edges  (at step 0,
R0 = {Mo}). To each cone M € Q% is associated a number W(M) which is an
estir‘n‘ate'd jower bound for f(x) in the feasible region contained in M. Moreover,

a feasible solution z* is available, ‘which is the best feasible olution knowi, up
to this step. The collection R& is construcied in such a way that no feasible
solution better than a2 exisls in the feasible region outside v { M: M € RF 1,
i. e. the feasible solutions z lying in the cones of RE are the ohlyi ones

that remain to be explored. Therefore if it happens, that ﬁi,k_z_@-then lm?",.:must
be an optimal solution of the problem, and the algorithm .stops. Otherwise, we

choose in the collection RK a cone. M¥ with R(MF ) = min {H(M): M e,
we perform some definite operations on M¥ which result in replacing it by a
subcone or splitting it into two subcones. Then we compute a lower bound
(M) for each one of the newly obtained cones, update the curreat best feasible
solution and pass fo the next step, with a newly formed collection of -cones,
k+1 '

@41, and a new current best feasible solution

For the convergence of the abhove procedure, the way of definiiig the
operations to be performed on M k and forming the new collection ‘.R.""-*I s as
well as the method of estimating a lower bound (M) for each cone M, are of
¢rucial- importance. In'[2] it-has been shown that convergence can b guaranleed
if the splitling process is'« exhaustive» and the bound estimation ¢ ¢onsistent>.
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In the sequel we shall show that not only convergence, but even finiteneas of
the above procedure can be sccured, provided one uses, along with a consis-
tent bound estimation, a special cone splilting method explo:tma the linear
structure of the feasible set. :

3. OPERATIONS O% CONES

First, we proceed to describe the operations to be performed on the cones
of a given system R, '
. Consider an arbitrary cone M ¢ MU, with vertex at O and with at most

n — m edges. Denote by p ="p(if) the number of edges of M, and let @ .y P
he the dtrechons of these edges, so that

M= cone (x!, xp).‘
The cone M can be characterized by the matrix:

I 2 p
:L] xl T . 3:1

72 p . '
:1:2 5122 [ :r:z . - . (5)
T xn xn.

We shall call this matrix the mau iz o/' M. Sometimes we shall find it convem~
ent to denote this matrix by the same symbol M,

~ Since M C M5, the last row of the matrix (6) has no nedatlve entry.

We now describe some operations whlch can be performed on a cone (i.e.
on ils matrix).

I. DELETION |

LEMMA 2. Suppose that either of the following conditions holds:

1. The matrix M has onre row with all negative entries;

2. The matriz M has its last row consisting entirely of zeros.
Then the cone M contains no feasible solution, i. e. M N D = .

Proof. 1f for some j: a:[‘ < 0 (k = 1,..., p), then every e'dge of'M lies in
the halfspace {x ¢ R": Tp < 0} Hente M lies in this halfspace, and 50

MnD=g@. If_a:fI =0 (Ic == 1 . )then every edge of M hes in the « honzon-
tal » hyperplane z = 0. Hence M lies in this hyperplane, and so M N D @
because D= {x 7-_7_'1}. '

" Thus it either of the above ‘conditions holds, the cone M otters no 1ntereat
for our purpose and can simply be deleted as irrelevant.

16



Il. REDUCTION

Suppose now that the matrix M has atleast one negative entry., We shall eall
the first row of M that contiains a negative entry the fest row. et .s denote the
index of the test row of M.

LEMMA 3. Suppose that the test row s of M contains at most one positive entry.
Denole by M’ the malrix thal is obtained from M by the following operation :

1) If lhe row s has just one positive eniry :ci , then replace every afsuch that
a:“s' <0 by
yjz 2t a:j - :vj xi-,' . C (7)
s 5
2. If the row s has no positive eniry, lhen delete every of such that z/ < 0.
§
Then M"D{x_e M: =z >0} I (8)

- Prodf. Suppose a:‘ > 0, while a:-’ 0 (z % ), and let xe M Wlth T > 0.

k
k= 1

by (y + :c-’:c‘)/ :c' , we get

: Then ¢ = 2. e ¥ ‘with mk>0 Denote J={j: " <0} Replacmd each z’ (JEJ)

T = 'E‘axk—{L—(E ma:f/'n+az)x+2(m/a:)JJ
k&.fu{l} ied jed

where. 2 «; x-’ + a; :c' = > 0 (note that a:s = O.for k¢ J u{i}). Therefore
jeld 8 $ .
x € M, proving (8).
:~. If the row s has no positive eniry, i.e. a:i'\{ 0(¥ ), then obviously . < 0

for all z ¢ M, and M" is nothing but the intersection of 3/ with the hyperplane
= 0. Hence (8) must hold.

Thus if the matrix M satisfies the condition of Lemma 3, then M \ M’ con-
tains no feasible solution (since x << 0 for every we M\ M’). Therefore in

this case, we can reduce M by replacing it with its subcone M’

IIT, SPLITTING

If a matrix M has a test row s, but cannot be reduced according to the

previous Lemma, there are two entries xl > 0.and x" < (in this test row. We

can then spht the cone M into iwo subcones in the followmg way. Let

y==z, x’-—-m":c! 9)
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and denote by M; (M,, resp.) the malrix that is obtained from M by replacing
zt (x/, resp.) with y.

LE\I\!A4 ’iVe have \ = Ml, v M,

l’roof Since gls a pos-tl\e combmatlon of z¥ and :cJ the mclLsmn MIUM CM
is obwous To prove the converse inclusion, let x'e M ile, x'w= : o, X kith

‘ k——l

=0 =« .:c + ®; 1: )0 then subshtutmg:c H(a: x’ +y)/:c we can

wr1te

z = F a a +(afr>y+(n/a:)m
-k

ﬁ% ﬂ%

i, e. x € M,. Similarly, if 7 < 0 then z & ,. Therefore M My U M,.

The reason why the test row has been taken. lo be the first row that con-
tains negative entries can be seen from the following proposition.

" LEMMA 5. If M is obtained from M by a red iction, or a splitting operation, then
either the test row of M’ has more zero than that of M or it has a greater index

Proof . It suffices to consider forinstance the case ot a 1educl10n (because the“
argument in the case of a sphttmg opelatmn is sumla1) Let J be an index such

that x$< 0. We have from (7), J$=0, while yh> Ofor allh(s (because :c >0, :nh>0)

Therefore the fi'ndex of the test row- of M is at least equal to & and if it is
equal to s then y = 0 is a new zero (because mJ - 0).

As will soon become apparent ilits Lewma  provides a basis'for-a proof of
the.finiteness of the algorithm. .. .

4. BOUND ESTIMATION
Let M be any cone with matrix (6) (we assume of course M C M;). Denot-
ing by Q the hyperplane » = 1 we bave obviously
MAD=MnQnR{
Therefore the number I
W(M) = min’ {f(a:) reMnQ}

always provides a lower bound for f Fover M n D "To compt ite (M) we use
the follewing '
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LEMMA 6. M N Q is a polyhedral convex set with at most n — m exir me
elements ( points or rays), the evireme poinls being"ui = :;:i,’:tij1 (iel,), the extreme
rays being o (je Iy, where 1, ={i: a:i >0} Ip={i: ar:;2 = 0}. (Nole that
I, # ¢, otherwise M would be deleted according fo Lemma 2)

Proof. Let A be the polyhedral convex set with exireme points o (f¢ltand

extreme rays o’ (J € Iy), 1. e. the set of all & such that

r= Eau 4+ Z B:c,
iely ‘JEI.,

&i >0, Emi = ]., BJ- >0-
Then obviously x =1 {because u; =1, :rf2 = 0), and x ¢ M, (because
% i i
xr=3 — x 4+ Z Bj;r).Hence
i€l -.t:!” Jel;
ANCMAn Q

To prove the converse, let xe M N Q, so that

x ._1.1:*-}4(:1:!:—]— Bx,a.,B}U
i€ly JGI(]J

Setting b, ==,/ . we have

'iGI.q- JEID
with A, = 0,8, = 0. Since 1= = ¥ « /2. = 5 A, itfollowsthaiz €A,
I J n ¥ . S 3 1
i€+ €]y

completing the proof.
COROLLARY. Let i, be an arbiirﬁrg (fized) element of 1. If tlzer;e exist jel
and =« > 0 such that f(ui - a;’) <.f (ui* ) then W (M) = —-ao-; otherwise
W(M) = min {f (@) is Iy} | (10)

Proof, It is known that a concave function either is unbounded below over

a ray, or attains its minimum at the origin of this ray (see e. g. [1). Therefore
if for some j € /; and « > 0 we have f (u' + az) < F (' "') then f is unboun-
ded below over the extreme 1ay of M N @ emanatma from #* in the du‘cctlon

J . In the contrary case, 'y = f (u ) is the mmlm_um of f (r) over each one of

the rays emanating from u™*in the direciions :CJ j e Iy). Since the set of all
xeM A @ where f(z) 2> v is convex and clnsed since each ray emanating
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from u in the direction z, (j € Iy) is contained in this set, it follows that each

ray emanating from any extreme point u of M ~ Q in the direction z’ is also

contained in this set (see é. g. [2]).. Therefore'f cannot be unbounded below in
any extreme ray of M n Q. But then { attains its minimam over M N Q at some .
extreme point, Hence (10) follows.

Remark 1. The above bound estlmatmn is «consistent» in. the toliowmg
sense: whenever a cone M cannot'be farther splittéd; then M(M) ecquals the’
exact minimum of f(x) over M ~ D. Indeed, M cannot be further splitted

only if ils matrix has no negative entry. Then, by Corollary of Lemma 1, every uf -
{iel.) is a feasible point, while every =/ (J e 1’0 ) is a direction of reces-
siion of 1, Therefore, U(¥H) = min {f(z):x €M n D},

5. ALGORITHM

The above development leads to the following algorithm,
Initilization. Let MY be the initial cone 3panned by zm+1 ey 210,

Reduce M? if possible. Compute L{M0 ), Set R0 = {M")} Set2? = any
available feasible solution.

Step k = 0,1,.... At this step there are available a current best feasible
solulion =¥, a collectlon of cones RF, and for eaci cone M e Rk 4 lower
bound W(M) for f{zx) over M n D, '

a) If Rk = ¢, stop zk is an Optlmal solution,

b) Otherwtse, choose M"c = arg min { M(M) M € Q"} Spl1t M" mto two
subcones MI, M Delete any of these new cones that can be deleted

accordmg to Lemma 2. Reduce any of these cones that can be reduced according
lo Lemma 3. For each resulting cone M, compute M(M) as indicated in the
previous section, If in computing H(M), an infinite edge of M A D is discovered
sach that f(:r:) is unbounded below on this edge (see Corollary of Lemma 6),

stop: the problem has no finite optimal solution. Otherwise, set xk+1 equal to

the new current best feasible solution (i.e. the best among :c and all feasible
solutions newly genelated in the' present step) Delete all cones M such that

B fat. oy
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Set R%+! cqual te the collection of all remaining cones and go to sep & + 1,

Remark 2. According to the formation of @@%as above, M¥ has
always at least one negative entry in its matrix and hence can be splitted by
the procedure indicated in Lemma 4. Indeed otherwise, by Remark i,

M* AD =M A Qand WM*)=min { fz):x ¢ M5 ~n D }. Moreover this
minimum must be finite (otherwise the algorithm would have stopped).
Thereiore ll(Mk) = f(u) for some exireme point u of Mk ~ D, and by the
definition of =% , we must have f(a:") < f(u) = u.(Mk ). So M would have
been deleted. : :
" Remark 3. Suppose that the problem has been onglnally set in R"~7, with
D ¢ Rt given by the system '
i | :
Z: ‘rjAf =b (12)
=1 . . .
RZ'J- > 0(j= 1- seay n— 1)‘-

. Introducing an additional variable x and setting An,=<_—-b we, can write
this system into the form described in Section 2, namely

n

);_': a;J.Aj =0
J=i
.’BJ->0 (J=l’°"'w
x = 1,

n ;

Therefore, if { 41 v d tisa feamble basis for (12), the AIgorlthm can star
Wlth M° = cone {zm'l'I . 2P } and z° = =,
THEOREM. The above Algorithm terminates af ter finitely many steps,

Proof. First observe that the number of descendants.of a cone M.is always
finite, where by cdescendant» of a cone we mean any cone which can be
derived from it by a finite sequence of  reductions and splitting operations as
described in Section 3. Indeed, by Lemma 5 one such operation increases either
the index of the test row or the number of zeros in the test row. Since the
matrix M has only n rows and at most n-—m columns, there exists a number N
(mdependent of M) such that after at most N reduction and splitting operations
~we shall arrive at a cone which can not be further reduced, nor splitted. Now
let us associate to the Algorithm 2 tree rooted at M9, whose nodes are the cones
generated during the procedure, and where there is an are from a node M fo a
‘node M’ if and only if M’ is oblained from M by a single reductiosn or splilting
operation. Then by the above observation, any path in this tree starting from
“he root, is bounded in length by N. Therefore, the tree must be finite, wh-ch
lmphes that the Algorithm itself must be finite.
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Remark #. The Algorithm can be started, cvea il no fcasible solution x®
is available at the beginning. In fact, it quflices to replace instep k= 0,1, the
condition (11) by

uony > v-
~vhere ¢ = 4o if no feasible solulion has been available yet at step k, and

Y"f = f(x"‘) if a feasible solation is already available and z* is the best feasible
solution so obtained. -

Remark: 5. Inthe above discussionit is not excluded that f(x) = —eo at sOme
points outside D (provided the function is upper semi-continnous). However,
if f{x) == —ce everywhere outside /) then it can be seen that a cone M can be
deleted only if ¥ A Q=M “\'D and so the Algorithm will necessarily generate

all the extreme points and extreme rays of D. More generally, this is trae if
f(x) < min {fap:ye DY} for all z ¢ D.

Remark 6. If thefeasible set [is éon‘lpaét,'the Algorithm can be applied even
if the function f is only .quasiconcave and not necessarily upper semi-conti.
nuous, Indeed, in that case we can choose the initial cone Me so that its
intersection’ with the hyperplanc @ ={x, =1 } is compact (and corlains Dy.
Then for every cone M- M° the intersection M N () ig always compact, 50 that
we can always take H(J/) to be equal to ihe minimum of f at the exireme points
of M N Q. |

6. APPLICATIONS

" The above Alébrithm can atso be applied to some important problerﬁs of
mathematical programming. : o S L :

I — THE FIXED CHARGE PROBLEM - .~
Minimize f(z), subject to
Ax =6
=0,
where Ads an.m X n matriz, ‘b an m-vector. T an n-vector and flo) =

= % f; @ _)-, with If[. (t) a concaye funelion such tibai f,h>0( > 0); f[ (-0y=

i=1

=d, >0 f; 0y = 0 (.f;oA the function f; () is discontlﬁuons at 0). If’ we extend
.fi (f) over the whole line (— o=, o) by setling f,H=0 for t <0 then the func-

tion f is quasiconcave. Hence, by Remark 6, the above Algbrithm can be applied,
provided the feasible set is compact. - - e

A D
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II - THE BILINEAR PRUGRAMMING PROBLEM .
Minimize f(z, y) subject te
rebD, ye kE,

where D is a polytope in RP , Ea polyhedral convex set in RY, and f(z, y) is
affine in z for y fixed, affine in y for x fixed. Setting

o(z)= min {f(z, y) : y € E} '

we have a concave function ¢ defined on RP , and the problem is reduced to

_minimizing @ over D). Since for every x the value of p(x) can be easily computed
‘by. minimizing a linear function (depending upon x) OVeT 2 fixed polytope, the
-above Algorithm applies aad yields a finite procedure for solving the bilinear
' programming problem. o S .

- With a bit more effort the method can be. extended to the case where D is
pnbounded. The computation of R(M) in’ this casé involves solving parametric
linear programs of the form

min{f(u+esc,y):yeE}-,Oge<m.

ITI — THE LINEAR COMPLEMENTARITY PROBLEM

Find x € R?, y & R" such that
y=Ax+b>0, = >0, yla =0.
As is known [6], this problem reduces to the concave program
Minimize f(x) subject to
Az 4+ b0,z >0

n
with f(z) = £ min {2, 2 o;%;+ b,}- We can apply the above Algorithm to
i=1 J

solve this concaye program: if an optimal solution x exists such that f (z} = 0.
it is a solution to the linear complementarily problem ; otherwise the linear
complementarity problem has no solution.

7. COMPUTATIONAL EXPERIENCE

The above Algorithm was coded in Fortran IV and has been run en a
Minsk-32 and an [BM/360-50, Preliminary results have shown thal the Algorithm
should be eff.cient for problems with n = 100 variables (approximately).

To avoid storing a large number ol cones, a procedure has been devised to
permit to store only the tree associated with the Algorithm as described in the
proof of the convergence theorem. The cones needed in the course c¢f computa-
tions are reconstructed from their positions on this tree.

123



Acknowledgement. The author should like to express his deep gratitude to
Prof. Hoang Tuy under whose guidance this work has been carried out.

. REFERENCES

1. R.T. Rockafellar, Convexr Analysis, Princeton University Press 1970.

2. Ng. V. Thoai and H. Tuy Convergent algorithms for minimizing a concave fanction, Math.
Oper. Res. 5 (1080), 556 — 566. R

3. H. Tuy, Concave Programuning under linear constraints, Doklady Akad. Nauk 159 (1964)
32 — 35+ Translated Soviet Math. 5 (1964), 1437 — 1440." )

¢- H. Tuy and Ng. V. Thoai, Solving the linear complementarity problem via econcave pro-
gramining, Methods of Operations Research. Proceedings of the V Symposium on Opera-
‘tions Research, Koln, August 25 — 27, 1980. Ed. R. E. Barkard, T. EHinger, 175 — 178.

9 H. Tuy, T. V. Thiew and Ng. Q. Thai, Corical algorithm for solving a wide class of
mathematical programming problems, Math. Opeér. Res. 10 (1985), N 3, 488 — 514.

8. T.'V. Thieu, Relationship between bilinear programming and:concave minimization ander
" finear constrains, Acta Math. Vietnamica 5 (1980}, N 2, 106 — 113.

Received November 12, 1985

CENTER FOR APPLIED SYSTEMS ANALYSIS

&





