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ON AN EFFECTIVE METHOD OF PURSUIT IN
LINEAR DISCRETE GAMES WITH DIFFERENT TYPES
OF CONSTRAINTS ON CONTROLS
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1. INTRODUCITION

In the pursuif process there are iwo control objects: the pursuer
* = (z,, x,) and evader y = Wy Yy) wPose dynamics can be described by the

following difference equations

(ke + 1) = (&), u(k)), 1)
gk + 1) = g(y(k), v(k)), @)
where # and v are controls. The initial values ':z:(O') = T, and y(0) = y, are
given. The components x,, y, (respectively x,, Yy, ) of phase vectors are referred .

to as geometrical positions (respectively velocities) of the objects. The pursuit
~ process i3 completed when the objects coincide geometrically i,e.

- Ty =Yg (3)
To simplify the notations we transform the pursuit process into the
discrete game. Namely, we couple the phase vectors x and y into a single
vector z = (x, y) which belongs to the phase vector space R of the game being
the direct sum of the phase vector spaces of both objects. Thus we can rewrite
equations (1) and (2) as a single difference equation
2(k 4 1) = F(z(k), u(k), v(k)), z(0o)= Z, )
Condition (3) defines in the space R a certain subset M on which the game is
completed, Consider the game independently of the pursuit process, The game
is given if its phase vector space R, the equation (4) and the subset M are
given. In the sequel we shall restrict ourself to the following two problems;
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19. The pursuit game: Find the value u(k) at each step k in order to
complete the game.

20. The evasion game: Find the value »(k) at each step k in order to’
prevent the end of the game.

In recent years the discrete games of pursuit have received much attention
from researchers (see for example [2—7]). In these papers some sufficient .
conditions for pursuit have been presented. Note that the controls u and v in
[2 — 7] satisfy either |

uky e P, v(k) e Qp» k=10,1, ..
or

£ ol <o®; T wof < 62
k=0 k=0

In this paper, we consider the discrete game of pursuit with different types
of constraints on controls.. Moreover, under general hypotheses of usage
informations we obtain some new effective suff icient conditions which guarantee
the possibility of completing the pursuit from apoint of the phase vector space.
The present paper is a continuation of the earlier works [4-8).

2. THE MAIN RESULTS

Denote the phase vector by z & R® and assume that its motion is described
by the following difference equation :

z{k+1) = Az (k) — Bu (k)—}-Cu(k);z(o):zo, ' (5)

where u € RP, v € R? are pursuit and evasion controls respectively ; k = 0,1,..,
are the index of step in the game, and 4, B, C are the matrixs of appropriate
degrees. The controls a(k) and v(k) are assumed to satisfy the condition

Z Hu(k)f? < o(k) eq,, (6)
k=o

where p > 0 and Qk are.subsels of R?7. Let M be a subset of R? sueh that
M= MJ 4+ Mz’ where M, is a subspace in R" and -M2 a subset of the
- orthogonal complement to M, in R". Let & denote orthogonal projection from
R7onto L (with respect to a given basics of R).
- Let there be given sets N(s), s = 0,1,... satisfying

N(s) < {0, 2, ..., s}. @



We shall say that the pursuit process in the diserete game (5)—(6) is complete
after k; steps, if for any controls (o), v(1), .., vk, —1); v() & Qi!i = 0, 1,04
k; — 1, there exist controls u(o), u(1), ..., u(k; — 1) such that

ky =1

I udi? <o

I=0
and the solution z = 2z(k), 0 < hk< k1 — 1 of the equation

‘ - Ak )= dzk) — Bu(k) + Co(k) ; 2(0) =z,
satisfy the equality
ky—1 ky—1

kg ey —1— —1-i
2k )=A" zy — Z A Bu(z) + Z A Co(ly € M,
l-—-O i=0,

We shall be interested in computmg the value u(k) of the pursuit control at
each step k when the values v(s) of the evasion control are know for all
s &€ N(k). In other words, we shall be interested in finding the function

u(k) = u(v(s) : s € N(k)).
Let us denote

BB ={0<kSE—~1:N(k) = @ }; 0,(K) = {0 L K—1}\ a,(K) ;

A (K) = NE; A (K)=1{0,1,..,K—1 A, (K).
3+ kEgJ(K) 005 8, { }\ 30

it is evident tHat

AI(K) == {31332,---1 siAl(K)I }’

Aol = Arp Py Tip gy B

where s, <s,<...< sIAI &) sy < ryg<..r <]A3 ()] and | A; (K)),i=1,3
means the number of elements of sets AI. (K). Furthermore we denota

HE) = = = ak-17igg.,
- e (K)

THEOBEM 1. Assume ihat Ki is positive miegral number satisf ying

1M, H(K ):# ®= w' re is the geometrical difference in the sence of
L.S. Poniryagm [1]. : : :

2/ ..y There exist controls u*(i), el (K, ), a mairiz ¢(K ;) ="(y K. (s;) rj)),i =1,

w1 BB 15 j=1, 2oy | Ag(Ey) | of degree] a(K,)Ix 1A, (K,)| and
matrizs F‘P(Ki) s, rj), l=12,., | 20, (E)130=1, 2., As (K,) | of degree
q¢ X p, such that
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2a) S et )2 <60,

€0, (K,)
2b) , yKI(SI.,rJ.)zf} ifrj EN(sI.),
: ]AI(KQ)I
2¢) iEI vg (82 7;) = 1lorall = 12.., |As(K, ),
2d) Fotx, )(si,r.)zﬁifr. & NGs; ),
Ky K,—-1-
2) = A1 By (sprp) = g (spr )T A6 )

for all i =1.2,.. S [B (K5 & Nis; ), where O denofes the rull matriz of de

gree ¢ X p.
3) ' WK, ) < (2, where
= - 2 | u*(i) || and
i€ 8, (Ky)
(A, &) ,
_x2(K1) == sup z = ftp(K_,)(si’rj..)v(rj)
iy € Q i=1 Ty '
i €A, (K )
KI . KJ_ "'i .
Hym Az e G(K,) + (M2H(K,)) + T xA Bu*(i), (8
v ' i € 8y(Ky) _
where L8,k | g, g, | A (&)
GK,)= T =4 Bu(s;): . Z lo@s )12 < (o — L(E,))?
i=1 - i=1

Then the pursuit process in the discrete game (5) — (6‘) is completed after
K ste ps. o

_ Proof. From (8), it follows that there exist vectorsm € M,* H(K ), P (s )
b=1,...1 Aﬂ (KI ) | such that

~ IA](KI)‘ —~ 2 ~ 2
o 2 lae) < G- UEY ©)
i= :
K K,—-1-i 1A (&} E;-1-s, ,,
wd iz — % mal  Bu(y=m+ ! (21) =4 1 B (10)

€A, (Ky) o ‘ f=1
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Assume now that (i), i = 0,1,..., K, — 1,77 (i) € (; is an arbitrary evasion con-
trol. Then the pursuit control u(i), i = 0,1, .., K, — 1is defined by the formula

w(i)if i ey (K, )

u() = S Forg,) G T T @) H 80 ) D= s k= L 18, (Kl
rjEN(sk) .

By virtue of the Minkowski’s inequality we bave

| AI(KI)‘ ~ 2 "é‘ Q
b w(s)+ X Fq»(K s, rj)_u—(rj)
i =1 i r‘je N(SI') 1
IAI(KI)l . iy
< T et +
j==1 .
| A, (&) . _1_
b )(s TT ) |2
iil \erN(si) IP(X n
<P —ME)+ XMEy )= 5.
Consequentily, '
i Ky 1 - 2 [AI(K})!' ' 2
! > oz @O)2=Zu*@®ff + X co(s)—}—EF (547, Yo (T <
E i=o W 160, (Kq) =1 rEN(s,) “’(K)
< 3T qaoit+iied

t€d, (k)
ie. (), i=01.., K, —1is acapable pursuit control. Moreover, for every vece

tor me M, * H(K,) there exists a vector m, €M, such that

B 17 ey an

moe=m, - z
z'L—'.A4 (K:,)

From the formula for solution of equation (5) we have
4
Ky=1-i Ky 2

r(K)= 4Tz, — T 4 Ba'(iy+ = A%171TiCT
i=0 i=o



Therefore,

. :-c-z(KJ) = A7 z, — % e A BU*(1) —
' i€ Ay(K, )
LAV €22 ) . Ky —1=i —.
- % = Bu'(s,) + z Al Co(i) 4
i=1 . ie D (x,)
+ T a A"t T T
iealk,) '
Erom (10) and (11) it follows that
Ay (&) L BeEd
) = my— I mA™T Bug) + 3 = AT Bas
i= 1 fe=1 ‘
+ 0z q AT
Jelg(xy) Co (P, (12)
where for { = 1,2,..., |A,(K,), ufs; ) is defined by
u(s,)==ws, )4+ I F ) (8,5 7;) U ()
i ( i FJG l\r(si) (P(K1 H J J .
Hence
A, (&) A (& )
-1 _ 1 —1=s,
= 'J:AKI y Bu(si )= b T AK1 s! B(Si) +
=1 {==1 _
1A, ()l s _ J
4+ 0z T 4%t i BF (5., r YD ()1, (13)
j=1 I‘J—GN(Si) (P(KI) i I ' J
From (12) and (13) we get
' KI —-1—-Jj
wz(Ki)‘ = m, -+ z A Co(j) —
jeag (kq)
1Ay (%, )f | \
K,—1—s.
— = 2 =41 7 ipBF (s.,r.)v(r'.))) 14
i=1 (.rj c N(Si) @(Ki) L R (14)



From property 2e/we oblain

1Ay &)
z - =®A
i==1 rjEN{si)
1A, (k) [185(; )]
= = Z g (si‘,rj):rt.Axi’—l_rf C(r,) | =
o i=1 j=1 1 | : -

K4 —1s. — .
1 §; BF‘P(K1) (si,r.j) U,(rj) =

1A3(K1 N1, (ky )

o ‘ Ky—1-r; o o
= 2 Iy () m ATt CRry).
= = .
It follows readily from 2c, that
B, )|
b s w47 pE €s..r,)5(r,)| =
i=1 ry € N(s; ) ' PRy I ‘
_ Ky -1-r; 15
=z @ AT g ), )
j=1

From (14) (15) we have = z(K;) = m,, i. e. 2(K; ) e M. Thus, the proof is -
complete. - ' ’

We now considef the case where,
N(k) = {k} k>0
Then ’
- D (K) =0, (K) = {0,1,.., K -1}; A(K) =8,(K) = ¢ for any K > 1L
As an immediate consequence of Theorem 1 we obtain, '

COROLLARY 1. Let K, be a positive inlegral nurnber such that
a) There exist matrizs F(k), k = 0,1,u., K, — 1 of degree g X p satisfying

K, —1—k _1-
2 A5 T Ry = n 451 ¥ k).
b/ ¥ (K,) <p?, where

Ky -1 |
2 (K ;)= Sup 2 |]0 F@) o(i) I "
.

vli)e QI.

[= 0,1; ep KI —1



¢ = AK1 z, @ G(K, },where

Ky—1 K, -1t . Ky ~1 o 0D 2
GE)= | zr 4% Bu(): ¥ | @] <(p—%E,; ),
i=0 i==0 -

Then the pursuit process in the discrele game (5) —(6) is compleled afler
K, steps.

~ Note that an analogous result for discrete: games with integral constraints
on controls has been obtained earlier by N.Yu. Satimov [3] and Phan Huy Khali,
A.Ya. Azimov {5}, {7]. :

3. APPLICATION

In this section, for making the purpose and usefulness of the result in

§ 2. more apparent, illustrative examples will be given.

1. Asseme that the motions of vectors z,€ RE Z, & R“ are described by
the difference equatlons o

2y (k4 1) = az, () + 1__(2_})_11(]{); 2, (0) =z4 (16)

zolle+ 1) =pz, ()+ok) 5 2,(0)= 2] _ (17)

where 0< < 1, 0<B< 1, zg i zo The controls u, v are vectors of R%
sat1sfy1ng.
Efu i <o s vt IO 18)
, k=0 P
The pursuit process in the discretie game (16) —¢#8) is said to be completed
after k, steps if z; (&;) ==z, (k). Let us calculate the value u(k) of the control
parameter u at each step k, assuming that the Walues v s) of the evasmn control .

are known for all s € N(k), where

(k—1, ky if k is 0dd number

N(k) = g ¢ if k is even number
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Let us denote 7z = (zl, 7, )T € H?“,

«E O | 1- (- nF ' o
A= ; B(l) = — 2 El; Ck)= .
' 0 BE 0 E

where F and O is the unit and null matrix of degree n, respectively and
(27> 2, ' is the transpose of the veclor (z s % ).
We now can rewrite equation (16), (17) as a single difference equation
2(k 4+ 1) = Az(k) — B(k)u(k) 4 C(&)v(k); z(0) = (23, zDT.
In this case we have

M= ,Z='(21,:2)T;21=22£;A’=;Z=(ZI,Z2)T: 2'1=-—-Z2£-

Denote orthogonal projection of the space R?? onto its subspace L by =. Let
I = (E, — E). Then for a suitable system of coordinate of L, the matrix of =
can be written as II.

By a direct computation it follows that
6', if k is even number

nAK~1=% B (k) =
- oK=1=k B if k is odd number,

nAK—1=k((k) = pk—17k |

For any positive even number K* we define a square mairix of degree K* by

(01 00...... 00
‘01 00......00
00 0l......00
pHEY= |00 O1....., 00
00 G0.,.... 01§ . .
00 00......01

Next, we denote

0, if i is even number .
0,if i is odd number and f:-i,or j<i—~1
pE*—1—i

-2 SN = - E, if i is odd numb dj=1i
F(P(H*) ([, j) u!f*—l--—i Iis AEI‘ an ] I
_ o

11 E, lf { is odd number and j= i —1



It should be notec that the assu: mplions 2b, 2¢, 2d, 2¢ in Theorem 1 are [uifile
led. Moreover, we have

LA | A N pE* =1 . gE®-2 2
,-30 jio Fown G No () = N B i
. o 2 2
+ B;_j 0(2) + e B v(3) + o || BY (&% — 2) 0 (K* — 1) U <
_ K—s 1
<@+ ”v(o)ll? + \lvu)jj'? +
a:K 2}
K*~4:12
@2+ 1) K* | b @2 + loo ]+

+ oo @ + D) ok — 22 + Joxx — 1)) <

2 .
B BK -4
2 ] ek LK*'—4

2

< 25% (% 4 |1 + + |5

Then, for g << a, we get

sitegl ’ 952 (a2
2|z F Lpv() | <28 @ +1
o p(aty (L Do ® )1_ﬁ
P

o

Consequently, the assumption 3 in Theorem 1 will be fulfilled if
282 (B2 + 1) o < o® (of — pF).
Hence, if 0 << « < 7 and 0 < B < ¢, we obtain

. . 0 0 0
lm “ raX zo.” = lim || «® z; — g%z} — 0 for any z,= (2,5 73)T € &%,
E—>+ton Koo+ 0a

Since lim ” nA4% z, ” = ( the assémption 4in Theogem 1 is fulfilled,
F¥ + oo
As an immediate consequence of Theorem 1 we have
PROPOSITION 1. Assume that 0 <a<l, O<TB<CT, B @ '26%"* (132—3- 1) <
< p¥ ot — p4). Then the pur'suit process in #he discrefe game (16) — (1‘8) is

completed afte:l- a finite number of steps for any position 2° = (z?, z3)T e Rene
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11, Assume now that the motions of veclors z; & R j=1,2, 3, 4 are described
by the ditfetence equations: : : ! '

&y (k + 1) = 2, (k) + Wz (k); 2 (0) = 2 (19)
2ok + 1) = — aghzy (k) + (1~ by ) z,(k) +Hu (k); 25(0) = 23, (20)
53(1: + 1) = 33(k) -+ Ilz¢(k); % (0) = zg, . (21)

z,(k +1) = —pyleg (k) + (1 —Hpy) 2, (k) + Hov (k) 2,(0) = 2}, (22)

where o4, ag, |31,B3 are real number, M is a small positive paramelier;

z; # 2 The controls u, v are vectors of RM satisfying:

2 ack) 12 <o ok <1 (23)
kﬂ . )

The pursuit process in the discrete game (19) — (23) is said to be completéd
after ki steps if zf(k:,) = 23_(k1). Let us calculate the value u(k) of the
control parameter u at each step k, assuming that the value v (k) of the evasion
control is known. That is, let us compute .

| (k) = u (v (k)). J

Let us denote z = (74, £y, 73 zé).T e Rén,

E - ME o 3 ] (B (&
rar ~ R ,' ~
_ | —aetE (1—”“1)?' 0 O |, p=|=ME|, ¢=| O
0 o E LE 0 o
e 0 —pME (1MW) E] 0 ~ |reE

We now can rewrite equations (19) — (22) asa single difference equation
z(k+1)= Az(k)'— Bu(k) -+ Co(k); z(0) =(2% 25 25 zg)T. :
we have then - '

M::.)zm(zl,zg,z . 2,)T Rm:ziz—.zsg,".) B

: . T 4n B a7
Ls;izﬁ(zl,zg,zs,z{‘) R*" 1Ey =2y 4 2 —_-,z*:;O .
Note that M is subspace of ‘R*" and Lis its ortliogonal complement in R “* The

orthog‘ohal projeciion of the space 'R* onto L is denoted by m. .Let
1 = (E, 0, — E, 0). Then for a suitable systems of coordipate of L, the malrix
of = can be written as /I,

22



Lel 1,:, and A, be the solutions of the quadratic equation

22 +o:1?\,+ot92{}, {‘24)
and v, Yo be'the solutions of the quadratic equation
T'?_ + B1Y + 132 = 0. . {95)
By a direct computation it follows that (see for example [7])
{ -~ = 3 )
x, I Yj. E 0 O
E E 0 ©
Ak = Py k y k=1,2,
0 0 s, B ka
where @, = L y, = M 5, = 1, Py o= { and for k = 2, 3,.. we have

( g (TR )F — hf(dppay ) &

if the equation (24) has real roots 2,, ?12;

X, = f R—
J P ]
? (1 4 asit — (& - 1) kAa#] if the equation (24) has a double root A%,

() K+ ) &
y".- = }\.9
(0 it if the equation (24) has a double root A%

— if the equation (24) has real roots ?\1 , AE ;
]

( Tyt - Ty by )

5 = .
k Yy Ty
é (1 + By®) [T — (k — 1)My*] if the equation (26) has a double reot v+,

if the equation (25) has real rools vy, v, ,

I+ p"Y:} )k — (1 U"Y] )k
I Yo T V1 )
(1 4 W™ if the equation (25) has a double root 7%,

if tle equation (25) has real rools y,, Yo

h,
I

A simple compulation shows that

4k B = -ty E; A% C == —Wor E for any k=1, 2,...
A°B = 14°C = 0.
Putting
ok
Fg=4¢"y, :
0 , it k=0;

9 — 475 | ‘ - 203



e have

%(K) = sup K—1 N ek
[ v(k) < 1 T P& vd)Is<es 2 = .

k=0,... K-1 k=0 k=0 yz

k

Hypothesis 1. The equations (24), (25) have double roots A* and ¢ satisfying
fy <20 and o% < p262, where
: %42
5? —1 — (ﬁ_“L) ]
7+ Has )
Hypothesis 2. The equation (24) has a’ double root A* and the equation (25)

has real roots v, < v, satisfying vy < M0
) {

and o? < p2‘6§ , Where 63 =1 — (w) .
: 14 Ur

' Hypothesis 3. The equation (24) has real roots A, << 7\2 and the equation (25)

' 2
has a double root'y* satisfying v* << 11 « 0and ¢? <f’26 3 , where 6§ =
14 TN 2
=1- ( 1+ ”’7‘1).
- Hypothesis 4. The equations (24), (25) bave real roots Ay hy and Y0 Yo

salisfying A, < Ny o7, <Tg»Ty <hy <0 and o® < %} | where & =

(1 + My, )2
=1-\T7 oA,
As an 1mmed1ate consequence of Corollary 1 we bave

PROPOSITION 2. Assume that one of the hypotheses 1,2,3,4 is fulfilled. Then the

pursuit process in the discrele game (19) — (23) Is completed after a finite
. Fif o __ o 0 0 oNT 4

number of steps for any position z° = (21, 22 » Zg 24) g R¥#n |
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