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_1. INTRODUCTION.

Tt is obvious that a lattice L determines Sub (L) (the lattice of all sublattice
of a lattice L), that is, if L is isomorphic to L' then Sub (L) is also isomor-
phic to Sub (Z’). The converse is mot true. L.N. Sevrin [1] and N.D. Filippov
[2] (1964 and 1966) give necessary and sufficient conditions for Sub (L) is
isomorphic to Sub (L’). George Gritzer in his book ¢« General Lattice Theory »,
1978 has given the following problem: «Find conditions under which Sub
(L) determines L up to isomorphism» ({3), Problem I. 4). This' problem is
one of the basic (,an:d important topics in studying Sub (L).

Observe that for an’ arbitrary lattice L, if L* is the dual lattice of L then
~ Sub (L¥) is isomorphic to Sub {L). Therefore, this work will g’ive‘conditions
under which Sub (L) determines L up to isomorphism and dual isomorphism.

In this paper, among others we shall prove the important result: ¢Let L’

be a modnlar lattice of locally finite length which has no linear decom posi-
tions. Then Sub (L) determines L up to isomorphism and dual isomorphism ».

2. CONCEPTS AND RESTLTS.

Let a, b, ¢, d be elements of a lattice L. A symbol {a, b; ¢, d) is called a
square in L itf a//b and {a\/b, a/Ab} = {¢, d}. Thus, {a, b, ¢, d} is a sublattice
of L, {a, b, ¢, d} == D, and Sub ({a by <, d}) o2 Nyg, (a2 = ¢ isomorphic to »)

Fap b ——( ab— —(aVbin L, then the square (a,b; a)b, ayb) is.
calléd unit. We often say that a,b,c,d are elements of {a,b; c.d).

For the professional symbols and definitions of Lattice Theory, see
G. Grétzer [3]. S .
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THEOREM 1 (see also L.N. Sevrin [1}, N,D. Filippov [2D.

Let L and L' be arbitrary laftices. Sub (L) is isomorphic to sub(L’) iff
there is a one-fo-one and onfo map ¢: L— L, such that, {(a,b; c,d) is a

square in L iff {o(a), ¢(b); 9(©), o(d)) is a square L.
' Proof. Suffciiency. We define a map f: P (L), — P(L) P(L) is the st of

all subsets of a set L), as follows: f: 4 e P(L)—gp(A)e P(L). 1t is obvious ’

that f: P(L)—P(L’) is one-to-one and onto. Now we show that 4 e Sub(L)
iff f(4) € Sub(L’). Suppose A ¢ Sub( L). If p,q € f(4) (we canassume that p//q),
then (p.gs PG PV Q) is a square in L', so (o7(p) ¢7'(9); ¢ (P A
(pV @) ) is also a square in L, that is, {p7'(P) A @7 ¢ (P)Vo™
()} =4~ (PA @, ¢ (pV )} Hence 9= (pAg), 9=* (pVg) & 4, and 50, pAQ,
pV q € ¢(:A) = f(4). This means that f(4) e Sub(L’). Likewise, we verily that
f(A) & sub(L’) implies that A € Sub(L). Thus, fo 1 1y* Sub{L)—Sub(L’} is one-

" to-one and onto. Moreover, for 4,B e Sub (L), A © Biftfg (A& fSub(L)(B)

This'means that g, is an isomorphism, that is, Sub(L)== Sub(L).

Necessity. Let f be an isomorphism from Sub(L) onto Sub(L’). We define a
map ¢: L—L' as follows: ae L—a’e L’ ilf f({a}) = {a’}. 1t is easy to see
that ¢ is one-to-one and onto. Suppose e, hW=4{a}, i =12..,n, Then
Fagera D= FAQ} V o Vi Dt Vo V Fda D={a} ¥ o ¥ {a} =
[a;,...,a’n]= [e(ag),s @(a,)]. Because the height funéﬁon h is finite length-
preserving for the isomorphism, so h([a,b,c,d]) = a(f([a,b,c,d)) = h([oa), o(b),

_Jggcp(c), p(d)]) for a,b,e,d & L. Therefore,, {a,b; c,d) is a square in L iff 4 =
Ch(ab.cd) = h(ab)) it & = k{e(a), @®) olc), od]) = bile(@), @)

itf (pla), o(b); ¢lc), @(d)) isa square in L. This completes the proof of
the Theorem, ’
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For gelting at the main result we have to prove some lemmas,
LEMMA 1. Sub(L) is isomorphic to Sub(N5) iff L is isomorphic lo N.

Proof, Itis easy to see that there are only five non-isomerphic lattices of five
elements, as shown in the following figures ; '

o - ! "
,.cs Ds Ds Mo Uit =3

It is clear that in C, there is no, in D; and Dj there is one, in M, there are
three squares, while in N, there are i{wo squares, Hence by Theorem.1 we
obtain-at once that Sub(L) == Sub(¥ 5) implies that L= Ny. The converse is
trivial. -

LEMMA 2. A lattice L is modular iff Sub(L) does not confain a principal ideal
which is isomorphic to Sub(N ). (A lallice Lis called modular, if it satisfies the

identity (@ A g) V@A D=2 AWV (A 2) forz y, z€ L) ,
Proof. A lattice L is not modular iff L contains its sublatiice N, Thus, by

Lemma 1, L contains its sublattice N, iff sub(L) contains a principal ideal
which is isomorphic to Sub(N,}." 4

‘A linear decomposition LI. , i €I, of a lattice L consists of a chain I and
suhlhgtices L, of L(i €I), such that, if i, j € I, i < j, then @ < b in L for all
ac Lfémd beLj and L =U (L, li€ D). If|1| > 2, we say that L has a
proper linear decomposition. If for any linear decomposition L,, i el of the
laitice L, we have |I| =1, then we say that I, has ng linear dgcompositions.'
LEMMA 3. Let L be a Iatiic‘e\and let L., '{ & I be e linear- decomposition of L.
Then Sub(L) is isomorphic fo T1 (Sub(L, )i e I),
Proof., If D is a sublattice of L, then D ~ Li is a sublattice of Li for each ie‘I

Moreover, it is obvious that if D, is a sublattice of L, i e, then U (D; liel) R
is a sublattice of L. Define a map ¢: Sub(L) — N(Sub(L,) | i € I) as follows :

for D& Sub (L), ¢: D> fDell(Sub (L) |« <), where f2@)=DAL, for every
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!-= . Because L, r\L =d¢, i i, jeland D =Dn L—DA(U(L lie D)=
u(D AL | zel), we see that if D, E € Sub{L) and D r\L = E N, for every
iel, tnl,n D — E. This means that o isone-to-one. If feH (bub (L, ) i e Iy,
where f(l) =D D, e L, for every iel, then D= v (Di i eIy Sab (L) ‘éﬁd"
D Li= D foreveryie I, andecce o) .ell(Sub(L;)|{ € I) From this it
follows that ¢ is onto. Besides, for D, E € Sub(L), DS E'ilf D {\-Li SE n Li
for every i e [ iff ¢ (D) S ¢(E). We have thus .proved the isomorphism
of ¢, Hence, Sub (L) == I1(Sub(L, ) | i< I} R

‘Lemma 3 shows that to solve the prohlem we have to consider lattlces

which have nc linear decomp051t10ns

Now we iniroduce some concepls which we shall need in the sequel. An
element a (a & L) is called linear iff a is comparable with- b for every b6 L. An
atom element a € L is called isolated iff a \/ b)—= a, b for every atom b & L. Itis
easy to 'see that a ¢ L is linear iff {a} & Sub(L) is isolated. A lattice L is calléd
‘to be of localiy finite length, 11 every interval {p,g). pige L is of finite length.

LEMMA 4. Lef L be a lattice. If 1 L|> 2, then the followmg condtt:ons are
equivalent ;

(i) Lis of locally finite length and hag no linear decomposiiions

(ii) L is of locally finite length and if cis a lmear element of L and ¢ =,E 0,1,
then there are lwo squares {ayb;; c,dyy and (az, s od ) such ihat al,b]‘
are comparable with a,, 0, b,.

(iii) Every Boolean principal ideal of Sub([p, q]), p» g €L, is finite and if
{e} is an isolated element of Sub(L) and {c} {0}, {1} then there are two Nyg
principal ideals coniaznmg ¢, such that, if {a}, {b;} and {a } {b Y are their
atoms, respectively, and h({a;} vV {b}) = h{{ay } V{b, D=4, tben h({a} v {a, )=
— h({abV {6, =h({b:} V {a,h = h({B}V B, =2 -
Proof. K is a chain of L iff Sub(K) is a Boolean (principal) ideal of Sub(L), and if
Kisa finite chain, then | Sub(K)| = 9lk], Hence, L is of locally finite length iff
every Boolean principal ideal of Sub (|p. q]), p, ¢ € L, is finite.

(i)=>(ii): We observe fhat if < is a linear element of L and if { a,, by; ¢, d;)
and {(a,, 2, ¢, d ) are Squares in L, then only one of the followmg condi-
tions hold: ' :

Condition 1. a;, by = ¢ > 4y, b (or a3, by < ¢ < ay, b ) This - means . that
ay, b, are compal able with a , bz‘ ‘ :

Condit_wn 2.¢> ap, by, a,, b, (or c<ay, by dy, by).-
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It is ohvions that 0 and 1 satisfy Condition 2.

Let us assume that ¢ + 0,1 and c satisfies Condition 2 for every pair {a;, b;;
¢, d) and (a,,b,;¢ d,). Hence, we can assume that ¢> a, b for every
(a,b;-¢c, dyin L. Then Ky={t|t>c, teLllandK,={t|t<¢c, gL} are

sublattices-of L and they form a proper linear decomposition of L, which con--
trad1cts (i) Thus, Condition 1 is satisfied for some pair << g, b;; ¢, d; > and
(ay, bys ¢, dy).

({i) > (/) By hypothesis L is of locally finite length, hence, every its interval

[ps q] is complete. Suppose that L has.a proper linear decomposition. Then, we
bave L = Ky v K_, where K; and K2 are sublattices of L satisfying a > b for

every ae Ky, be Kz' Thus, inf K, > Sup K,. Since | L |> 2, we can assume
that c=inf X, + 1 (or ¢ = sup K,5 0), Therefore, it is clear that for every

{(a,b;¢,d)in L we have c <a, b hence c¢ satisfies Coudlhon 2. This contra-
dicts (ii).

(i) e (iii) Because a ¢ L is linear iff {a} € Sub(L) is isolated; (a, bj¢c, d) is

square in L iff Sub({a, b, c, d}) == Nygi and a, b are comparable with a,, b,

iff A({a;} Vi, }) = B({a} V {b,}) = h({b1} V fa, }) = h({bs} V{bs}) = 2 From
this it follows at once that (ii) and (iii) are equlvalent
Using Theorem 1 we see that two non-modular lattices L, and L shown

in the following figures are neither isomorphic nor dually 1somorphlc, but
Sub (L,) = Sub (Ly)

y

e .

From Theorem 1, Lemma 3 and Lemma 4 we observe that only modular
lattices of locally finite length which have no linear decompomtmn; are
interesting for us, first of all.

Before expressing and proving the main theorem we have to introduce some
necessary concepts and to prove some auxilinary statements,

‘Now we assume that L and L’ are lattices and Sub (L) == Sub (L*). Then
we have '

Statement 1. Let {ay, a,; e, a,}} be a square in L, If aio<djo implies that
9 (aio) <@ (aju) for some i, joe{1, 2,3, 4, },then the lattice {a

12 %2 930 9 }
is isomorphic to the lattice {¢ (g;), ¢{ay), p(a) 9a, )}
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Proof, It is obvious by Theorem 1.

1

We say that finitely many squares (q;, b, ;¢;, d;)in L (iel, I being

finite) are associate, .if-forvany pair (a;, b;; ¢ d;) and (a d_ )

J K k’ck’
bys e dyd=1{ . b

kel there is a serle.(aj, s Cig? di1 Y seen (ain, b, ;

i R
1 L

cin, din y = ak‘,—bk : ck,'dk > Iy seeey z'n € I, such that, either ait A bit ==

=a, vb"t+1 (or a!.t v b!.i _hait_]_ ; Ab,  Yorl{a , b ,c dit} N

141 t+1 AL L

N {a

di }l>2,t=1,.--,n'—’1-
i+1

. , Ty G,
Y L/ L

Associate unit squares are associate squares, each of whmh is unit,

Statement2 Assume that {(a,b;a ¥V b,a A b)and(p,q; PV g, p A q)are
two squares, such that, a ¥V b=p A ¢. If {a, b, e A b, a V¥ b} is isomorphic
to { o (a), o(b), o(a V D), gpa/A\b)} then { p, .P Y @&. P A g } is also isomorphic
to { ¢ (p), o(a)s ®(pV 9 9P AD}-

Proof We have show that ¢{p) A cp(q)’_ ¢{p A q), Clearly, p, g = a, bimply
that ¢(p), ¢(g) are comparable wilh cla), @(b). Because o(p)fio(g), ola)lo®),
we have either ¢(p), p(q) > o(a).9(b) '
or @ (Pho(@ < ¢(a) ¢(b). But
o () ¢(@) < ¢ (a), ¢ (b) imply that

cpg)) N oD < ng))) Y, (qa(q) < o) P b Peqp
() < ¢la) V' o(b) = ¢(a V b), whic ‘

is impossible for ¢(a V b) = e(pAQ)- CP(avb) %’ma
Thus, we obtain ¢(p),o(q) = p(a)X.e(d), _ ‘
hence o(p) V ®(@) > o(p) A @(q) > NG Ub)

> plaVb) = o(p /A ¢), which means
that o(p) A @(0) = o(pA9)-

Statement 3. Let(a, , b,; ¢, d;}iel (I being finite) be associate squares in L
If there is jy € I, such that, the lattice {a. 2 bjs €y J } is isomorphic to the
lattice {cp(a ) @by 0w (c; ) @ (d; )} then the lattice {a » b, ¢, d; Jisisom-
orphic to the Iatt:ce {o (a, ), ®(b, ), cp(cl. ) 9.4, )} for every i I.

Proof. It is derived imniediately from the deflinition of associate squares,
Statement 1 and Statement 2 N

‘Statement 4. Let L be a modular latlice and {a,b; aV b, a A b} be a square in

L, such that, a A & —( b (or dually, a —( a\/ b). Then from a serie aAb =a,—( a
o —( a, = a, we have;
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(ai, b;a,, a\/ by, (ag, a, V b a, a2\/b),.. “
(0, a4V b g0,V b,y Vb
@1 a, V b) are associate /’L’lnitt squares.

Proof. It is evident.

LEMMA 5. Assume that L is of locally fmz e length
modular latiice and has no linear decompositions.
If{a, b: a-\y b, a A D) is a unit square in L, then
for each s & L there are associale unit squares °
in L, one of which is{a, b; aV-b, aA b) and
amongst which we can find a square confaining s.

Preof, Here we have four cases: T

—Case1:5f/a,s>a /b (or dually, s/ a, s<aVb)

—Case 2:s// aV\/ b,s> a (or dually, s f a A b, s-<a).

—Case 3: s<Ca y b (or dually, s < a A b).

— Case 4: s /i a,b, a\/b a A b. o .

Case 1. Because s /[ a, s > a A\ b, we have a square (s,a; a A b, s V @) with
a A b—=( a. Thus, because of finte length of [a A b,s ] and Statement 4 we
have found the desn'ed associate unit squares (see Figure 1).

* | s P

ar ((avYb)AP)
ﬂgure 2 Figure 4 -
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Case 2, Because s [/ a V b,s > a, we have asquare{s, a\/ b;a, sV (aV/ b
with a —{ a \V b, Thus, because of [inite length of [a, s] and Statement 4 we
have found the desired associate unit squares (see Figure 2).

Case 3 It is proved by finite induction on the length of |a V b, s]. For
hifa \/ b,s]) =1, the statemen! is clear, because it @ \V b is a linear element,
then there is an element D, such that,_ p)— a\/ D and p = s, and we obtain the
desired unit square (s, p; a V b, s V p )(see Figure 3); or if a \/ b is not linear,
then by modulanty and locally finite length of L there is an element p, such
that (a Vo) A p —( a\/h, p—({(a vy b) V p» and so, we obtain at most three
desired unit squares: (a, (a V b)) A p; —, =), {(a Vb, p;—, —) and {5,
(ay/ b v p, —, =) (see Flgure 4y, '1hus we have proved the statement for
h(a v b, s]) = 1

Now we assume that s¢ L, s a\/ b and h(ja V b, s]) = n. Then, by locally
finite length of L there is an element r, such that, r ¢ [a\/ b, s] and r —(s. Since
A([a\/ b, r]) = n-1, by the induction there are associate unit squares (ai,bi ; Ci’di M

i € I (I being finite), such that, r is an element of some square (a 1 ; d )
with iy e I (We can assume that 54 {a,b ¢, d; Hie ). Here we have three

'posmbﬂmes
(yr= ai0 A bio‘ This is Case 1
(i) r= a (bio)' This is Case 2.
(i) r=a, v b This is proved by an argument ana-
sviavb) = logous to that used for the proof of Case 3

for A(fa A b, s]) = 1.

‘Case 4. Because of modularity of L we
have either s \/ a # s V (a Vv b) and
($Vaayyb;ely (aVb), a)is a square (see
Figure 5); orsya=s\/(a\/b), but sA(a\/b)
=sAaand {sA @/ b asa\/b s\ a)is a
square (see Figure 6), Hence, from State-
ment 4 and Case 2, the desired conclusion
follows at once.

We are now in a position to formulate
the main result of the paper.

THEOREM 2. (main result),
Let L be a modular lattice of locally finite .
length which has no linear decompositions.
Then Sub (L) determines L up to isomor phism
and dual isomorphism..
By Lemmas 2 and 4, this resu[* can be
restated as follows: o '

THEOREM 2. Let L be a lattice. I fi Sub( L)|==
= 2 or SubrL) satisfies condition (iii) of
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Lemma % and does noi confain a principal ideal which is tsomorphic lo
Sub (N ), then, Sub(L) determines L up lo isomorphism and dual isomorphism,

Proof of main theorem.

CIE | Suh(i) | =2, then | L] =1 and the proof of the theorem is trivial. Thus,
let us assume that | L] > 2. As for the proof of Theorem 1, we define the map
¢: L — L as follows: g(a) = a’ iff f({a}) = {a’}. By the supposition of the
theorem there is a unit square in L, for example, {a, b; a\yb, a A\b). Consider
two cases:

Case A: The lattice {a, b, a\/ b, a A b} is isomorphic to

{#(a), 9(b)s @ V/ b), gla A b)} that is,
pla 'V b) = o(a) V o),
, ola A b) = o(a) A ().
Case B: ¢{a VV b) = ola) A ¢(b), :
ela A B) = ¢(a) V o(b). ! ‘
For Case A we shall prove that L is 1somorphlc to L’. By Iocally finite
length of L it is enough to show that forr, s € L, r —< s implies that ¢(r) <
< @(s). Thus, let us assume that r,s € L and r -—< s. By Lemma 5 there are
associate unit squares in L, one of which is (a, b;a ¥V b, a A b) and amo-
ngst which we can find a square {(a, b,; a V b;, a; A b,) containing r.
Taking account of Statement 3 we see that { ay, b,y ay V by, Gy A by} is isomor-
phic to {p(ag), @by, ¢ V by)s ¢(a, A b,)}. Because r —< s, we can-apply
the argument used in the proof of Lemmab to Casel, Case 2 and Case 3; shown
in the Figure 7.

Sv(a,vhy)
|V a5 vb,
’ / htd, r %VBO
ra dld\bo 5
%bo :
Cased ' \
Figure 2

So we obtain an unit square
(ag, 53 1> a9 \/ s) for Case 1, ' R
{s,a, VV b,sr, s\ (ap VV bg)y for Case 2,

(; p; T, sV p) or (s, (4, V Bo) V p; 1,8V ((a V bg) V P)> for Case
3) which is associate to {(a,, by; ag V by, ag A by). Hence, by Statement 3 we
get o(r) << @(s). We have proved that L is isomorphic to L’ for Case A.
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For Case B the argument used above shows that L is isomorphic to thé
dual lattice of L', hence L is dually isomorphic to L’. The proof of the main
theorem is thus complete. * '

Quesiion, Is there an infinite lattice L (L is not of locally {inite length) for
which Sub (L) determines L', up to isomorphism and dual isomorphism ?

y
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