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REPRESENTATION OF EXTENDED SUPERALGEBRAS
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L INTRODUCTION®

One of the major problems in physics is to search for an unified theory
4 of all interactions in nature:. gravitational, strong, weak and electromagnetic
ones. Recently many physicists hope that such a theory might be found in the
framework of extended supersymmetry. Many models of supersymmetry have
been proposed. But is still unknown that among them which is the law

of nature.

bras in

the following form :
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In a previous studry [1], we have presenied a class of extended superalge-

S (1.1.a)
(1.1b)

(1.1.¢)
(1.1.d)
(1.1.)
(1.1.9)
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{Here the two component Weyl spinor formalism is used, o, B =1, 2 deno'e
the spinor indices; L, K, M,... = 1,..., N denole the extended indices, while
l,m,.,. = 1,.. n denote the internal ones) - :

Because we neglect some constraint, this class of superalgebra includes all
the extended superalgebras considered up to now in the literature [1-5]. So
we would have a larger choice for a true unified theory. '

The Jacobi-identities involving the above extended superalgebra tell us that
its structure constants must satisty a system of self-consistent conditions (see
- Appendix), This schem is very elegant for classifying the models of extended '
superalgebras 1

With certain values of the numeric matrices a;, 8, d, ¢ satisfying the self-
consistent conditions, we have the well-known models of extended superalgebras.

In this stqdy we consider the problem of representing all these extended
superalgebras on the space of superfields (i.e the functions defined on the

extended supersf)ace (X, oL, 8Ly, L = 1,..., N)

Up to now, the method of representing the extended superalgebras is not
uniquely determined. In the case of the simple supersymmeiry (N = 1), some
authors considered the action of one-parameter group elements on the unitary
element: : |

L(xp',ﬂ,'ﬁd) = expiPPxexpi (81Q + _QE) o (1.2)

Applying the group elements on the left of this wnitary element, the follow-
ing relations have been suggested :

expicy P* Lix, 8,7) = L(x + ¢, )
g - L= —_ i i . . _ _ -
expl (€Q + Q€) L(z, 8 8) = L (xu - E eﬁpﬁ + —;— Bﬁue,ﬂ—l-e, 9'+ €) (1.3}

Consider this expression as the action of the group elements on superspace(l),
the transformation law of superfields is presented in the following way:

expicy P* (= 6, 8) exp-icyP¥ = @(x +¢, 0, 8)
cxpi (€0 -+ TE0(x,0, § oxp — i(e @ + QI—0(xp— S0 +
+%€6ue’9+és'€ +9 . | (1.4)

Expanding both sides in terms of infinitesimal parameters we have a repre-

sentation of Pp,' Qi in the form of differential operators.
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_ If so, we can easily generalize this method fo the case of extended superal-

- . v v
gebras, Howe:er, because of the formulas {3y, x ]=6p_, {8, BB}E 5@:3 the re-

lations (1.3) are xpi-stake'n. So many authors avoid (1.3) and fry to come {o (1.4)
by some special assumptions or by the intuition. However, with such a general
algebra as (1.1) to find the actions of supergroup on superspace is not an easy
work. Some other authors want to overcome difficulties in the matter of repre-
sentalion by adding to extended superspace some special exira dimensions.
But then the mumber of field components in a represenlation increases
fiercely.

In this paper we give a complete representation of the superalgaera -(1.1)
without any extra-dimensions. Using this result we define superfields and
consider the transformation law of its components.

2. REPRESENTATION OF EXTENDED SUPERALGEBRAS :

In certain simple cases, we will show the method as formally as possible
so that the method can be generalized easily to more general cases (e. g the
semi-simple algebras, the conform space-time symmetry, the impulse space
with more dimensions)

2.1 Tsp extended superalgebras:

Tsp extended superalgebras are those superalgebras (1.1) in which ¢ =0.
Geometrically speaking, those models have some advantages: superspace is
linear, supertield is determined uniquely, ... [2] i

First, we represent this kind of extended superalgebra in the simplest case
when a,=d =0. ~

Generally, an extended superalgebra G has its Levi-Malcév expansion

| G = H @ M, where H is a semi-simple Lie-algebra and M is a solvable
radical. H has its Cartan expansion H= 3 __ H,, where H, are simple Lie-
algebras,

In our matter H=s0 (3,1) & I (I is a certain internal algebra), while
M=POHRDRIsa graded commutative radical (P is the commufative ideal
of Boson-type generators, R is the anticommutative ideal of Fermi-type gene-

rators, while B is its conjungate)

Let M0 denote the tangent space of B, then we represent M by the deriva-

tions on M
P Hom
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R Hom

"Hom

R — i3

Re {210
Using the Jacobi-identities we can easily verify that the element g, H

then can be represe nted by
* g
9= "% T % %

— _ V] 'u, ,
ron— o 3 A 2.12)

where re RO, r € R% x € PO; ¢°
|

are siructure constants of G, A are the
Pq 1

-

hermifian complex matrices satislying:
k : '
[/\i » A_]] = ij /\k (2.1.3)

'In the case of Tsp extended superalgebra (1.1) when ¢, =d=0, we have
the following representation :

Pyp= idy
My, = i(xuavu.- x\,ag) + %BLﬁuvﬁ — .32._314'3”\, ?_::—l— Ay
B — LTI "

Mo then is the extended superspace (Xg, 0L, 00) L=1,\, N

Due to the presence of A, in (2.1.4) supertransformations can act on the
indices of superfields. If superfield has no index (the case of scalar superfield,
see Section 3.) A; = 0 and supertransformations aet only on the extended
supers pace. If s; = 0, internal trapsformations act only on the indices of
superficlds as in the usual non-unified theories. '

2.2 Extended superalgebras of Wess — Zumino *
. | .

¥

This kind of superalgebra was suggested firstly. in an original paper of
J. Wess and B. Zumino [3] (in the case of simple superalgebra V = 1), Extended
superalgebras of Wess-Zumino are those special models of (1.1) in which
a, = d = 0 and ¢ 5= 0. They have been used widely in the most models of
superunified theory because of their simplicity. ' ‘ '

' In this case M_in the above Levi-Malcev expansion is a solvable radical and
has a commutative ideal P, ' '
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P={R,R!; (P,P|={R, B} =[P, B]= (R, R} =[P, B]=0 (22.)

M° — P° @ R° @ R® is the tangent spaceof M =P @ R @ R. We have
the following representation: |

Hom
P}J. 1 au
t H cu. .
R“ om —i BB - «B rB ai’
T
P-
= Hom . 8 ¢,
) R. i s —-—2" o, (2.2.2)

It is easy to verxfy that the representation (2.2.2) satisfies the relations
(2.2.1) by nsing:

B, LB ,
) C.=¢Cs (2.2.3)
Then we can represent the generators g; € A by
: P B * I3 . . .
g; =——ci? r Eirm—c‘.B r ar "_Ciil 9, + Ay (2.2.4)
1 [T
A; are the c—number matrices satisfying:
k ;
[/\is /\j} = cij/\k ' (2.2.5)
The commutator :
9, 9]—0“9k . (2.2.6)

has been proved in 2.1 because there is no chanse in the expression of Ay

Using the Jacobi-identities and the conditions (2.2.1) on the structure
constants

B TR
— J —_
C. cB—cl_] ‘ caﬁ_o

G

2.2.7)

weget:  [gn Ru]=c R, | T (@28)
So the relations (2.2.2) and (2.2.4) are, indeed, the representation of the
algebra G = H @ M -

~ In our matter, when H = so (3,1) @landM =P @R @ R, we have tbe
following representation:
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1, . a - cLﬂI WA
QO: =] l“—__; + g“ o ~
on - 2 A /"
. _ 1 3 1 =~ )

M, = — — gL — — 0L

e = L0y = %00 + 806y — — - 0RF -+ Ay,

e LM gL _ ;LML 8
By = — L ¢ P AT (2.2.9)

M® then is the extended superspace @y, 04,00y L=1,., ¥

2. 3. Extended superalgebras wilh central charges:

Extended superalgebras with central charges are those superalgebras (1,1)
in which a = 0. This kind of superalgebras have been suggesied firstly in the

- paper of R. Haag, J. Lopuszdnsky and M, Sohnius [4) Some authors had

presénted this algebra by extending the extended superspcce with some extra
dimensions. )

[y

In the superalgebras (1.1) if we introduce ZLM:af‘M Bl then it is easy to

verify that Z LY commute with any generator of the superalgcbra (1.1) and form
the center of these algebras (ZLM are called the central cha{rges)

We present a representation of this kind of extended superalgebras on the
space of superfields defined on the extended superspace (“’u Lok 'é“L)’ L=1,.,N
in the following form ' '

PP« = foy

~

LM M ;
L , B c o i LM M
Q =i — (aﬂ )u‘l“—fez " =
“ ool 2 2 of

N Y/ 2 2 Ter gt
. . 1 oL R R 4
Muvml(!uav)”xvauj+-§e Opy 5 = 9‘ S Lty —-—+/\u.\,

B :QSLMBL d — S;—LM fE‘L
l ! aa M !

Because of the self-consistent condition (see Apﬁenplix)

%ﬁ"""z . @ 3:1)

¥ an S;LM =0 - (2.3.2)
4



we have:
LM _ LM K’H K 8, —KH—K @ _ e LM
2" = a M 8 51 aFH-’r-/_\l)—-Za, Ar

So ZLM can be represented by complex antisymmetfic matrices

LM _Hom M A, = pLY _ ML 2.3.3)
Using the following self-consistent conditions (see Appendix)
LM _ ML - )
a = = —-q (2.3.4)
S, c=—cs (2.3.5)

we can verify the commutators (1.1.g) and {1.1.i) while the rests have heen
proved in the previous paragraph.

2.4, Extended semi~simple superalgebrﬁ:'si

We nse the word semi-simple to mean those extended superalgebras (1.1)
in which d 0. Indeed, in this class of superalgebras only the models withont
central charges are semi-simple in our meaning (i. e they have no commutative
ideal). The models with central charges are reductive (they have the form of
G = G, + G, where Gy is semi-simple and G, is abelian), A version of this kind
of extended superalgebras was suggested by Dao Vong Duc to unify sources
and fields into an 1r1educnb1e representation [5].

- We represent the general extended superalgebras (i.1) on the space -of

superfields defined on the superspace (xu , 85,9L) in the following form:
Py = id, + idLM g Lo, QM _idl¥ QLley, ¥ = iay, — dl¥p Lou —

+ —;- (de)My Lsu(eﬂf?) + 2l (da YL p 6% 6, (e 8) ~

_gt D g 6 0 4 — (dC)ML( 5 85) 6,9 LN ;(jai YEM oM L

aol

o elM o~y

L_._;9% &% FXC) My salM
Qg=—tim—g (8t L (@0 sl A,
. :

_ LM
QL—I~—+— (Ma)a _"_(59 )o: Za /\1
=] agL

e

. 1, 3 1 ~r- 8 7
My, = i(xy 9, —x9y) + -2~ 6“068—!4—-53 b, =T App -
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B, = — s gk 2 _SLugl 2 (241

¢ oM L g
. _ - R
where En =g = €y, = €55 =10
€12 T Sp2 Sgp = —&1 =1
-
and 0 = Gu au

Because the expression of B, ,MU—V,QGL:" and QX remains the same as it was
2 _
in the previous paragraphs, we must verify only those commutators, in which
there is the presence of Py. :

It is easy to vefify them, if we use the folldwing self-consisient conditions
(see Appendix):

dd =0 (2.4-.2)
de =0 (2.4.3)
d.a, =0 (2.4.4)
d.s; == —5,.d _ : (2-4.5)

Note that the representation (2.4.1) of the general extended superalge-
bras (1.1) with certain vanishing values of each numeric matrices will turn into
the form (2.1.4). (2.2.9) and (2.3.1} of its special cases, We can see that the

extended superspace (xyy, 828%) L= 1,..., V is large enough to represent the

extended superalgebras (1.1},

3. THE ACTIONS OF SUPERGROUPS :

Basing on the results of the Section:2., we can derive the actions of super-
groups on the extended superspace, then write the transformation laws of
superliclds components uander the actions of supergroups.

3.1 THE ACTIONS OF SUPERGROUPS ON THE EXTENDED SUPERSPACE 3

Having the expression of the above superalgebras generators in- hand we
can set up all the possible symmetry transformations corresponding fo the
following one parameter groups of:

!

Lorentz — transformations - exp i’ My, (3.1.1
Internal symmetry transformations exp igiB _ (3.1.2)
Generalized space-time translation exp ity PP h (3.1.3)
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Extended spinor coordinate translations

| exp i (S Q40 J) ' (3.1.4)
Now we proceed to consider their actions on the extended superspace.

$.1.1 The actions of Lorentz-transformations
Zy 3= AL @)
L L g Aﬁ(/\)eé‘

—_ - ;) ke
R KON - (3.1.5)

where A is space-time rotation matrix in Minkowski-space, AE (A) is its

spinor representation, while ELB (/\) is its conjungate. -
o

3.1.2 The actions of exiended spinor translations

X!J' —r—— Xp_ + -%- (.‘.Ll\rI (CSL 6}1 FM-—*BM 6;_1 ZS.L)

L L L
B —= 0y + Sy
S I W (3.1.6) _
=2 o 4 N

3.%.3. The action: of the internal transformations

Ty ——o'.rl_,_ !

-~L | . ML
0. — Bf-"ﬁmls[ g,

Y (3.1.7)
&

R
I3

when $, = 0, as in the usual non-unified theories these transformations do not

action the superspace, but only on the field functions.
3.1.4. The uclions of the generalized ;pace-fime transiations
i L M~ i o~ M =L
Ty —y + tu——g(dc)LM o6y (0 7) +~§-(cd)LM (T 57) 6,8

0L e 05 TLM (TTF

-

M

%




FL o 4+ oM @) o (3.1.8)

o - &

where T = ty, 6t ,If d = 0 wé get the usnal space-lime iranslations,

3.2, SI\JPERFIELDS AND THE IRREDUCIBILITY CONDITIONS y

As we mentioned in the Section 2., the generators My, and B, are deter-
mined exactly to a complex mairix A.A maltrices are finite dimensional linear
representations of My, and B, This complex part of My, and B, does not act
on the superspace, but only on the form of field functions. As [Mp,,, B =0,
we can see that Ap, and A, matrices act independently. So we can represent

Ay == |
7100 n
m . n
0 0 \m _
and Ajp = |-
0 ¢ As a
"o 3.2.1)

So the field functions can have two kind of indices corresponding to the
Lorentz-transformations and the internal transformations. We can define super-
fields as functions on the exiended superspace with two kind of indices. So

. we have:

Tensor superfields @ (zs, 97,57)

Spinor superfields ‘I’Zp? "t (T, eL, ﬁL)_

" In general, tensor superfields and spinor superfields are reducible so some
irreducibility conditions must be required.

Here we consider only the simplest and most interesting superfield : the
scalar superfield. This kind of superfield has no index. Itis to say, all the ma-
trices are chosen to be 0. We come to the conclusxon that the scalar superfield
has no central charge.

Expandmg o] (xp, ', EL) into the polynomial series of BL"and EL, we get:

N N
L =L R H O . sH\m
O (x,,0, 0)= mHEO,IQ UL S 7)™y,
B , H=1" (m_1) H=1 —FT -
m* = 0,1,2 H C(me LY .
H o
) ®
oD ) H
(Mg My 5 MY oo mN) ‘ - (3.2.2)
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where the field fanctions ® (1 5.0y My M yeeny M T) {(x) have their compo-

nents
m :
H H
.wAsym TI aH. Asym H o
o =1 =11 (@) o =12

(Mg 5ees My s MY ey m}q)

The symbol of antisymmetrization is there because of the anticommautation
of Grassman variables, . ‘

The scalar superfield {ransforms as follows under the supersymmeiry trans-
formatxons 3.1)3

o(xjy, 0, B L) — ®© (xy, 05 1) =

N H.m N T -
=T g OO H g (G)H’@( - s
m.=1 92 0 =1 (mH) H'=1 (mpg,!) My wevs Mpgs My ves AN (3,2,3)
H _ 3 3 . "
m,=12,0
o

In the next paragraphs we derive the transformation law of the superfields,

components @ .y (x) under the action of (3.1.1) — (3.1.4).
(ml,---, m 3 ]nN) -

N; m;, bae
Note that © (xy, 0&,0 1) in general is reducible. To get the irr'edu cible parts

we must iniroduce the covariant derivatives:

L 90 i LM =y
C.Da = —a—BT—[- —2--(.‘. (o0 ),
o
A : b 0 _ Lmgra ,
2, T H%E T3 % 8.24)

- The covariant derivatives commule with all the variations of superfields
under the actions of (3.1.1) — (3.1.4), so we have the irredacibility for
superfields;

Dro(xy, 070 H=0 ¥ L o (3.25)

CJ) @, (zy, 0 Lé Y= 0 ¥ L (3.2.6)

4 - 'In the case of s:mple supersymmetry (N = 1) the equations {3.25), (3.2.6)
have the solutions:

Oy, 8, §) = y(z, 0) (3.2.7)
@ (6, B) =¢ar(a:,‘§) o (3.2.8)

9—1847 : 129



3.3 THE ACTIONS OF SUPERGROUPS ON THE COMPONENT FIELDS:

The action of Lorentz-transformations on the fields has been known sé
well in the literature, we do not discuss it here.

3.9.1. The infernal symmetry transformalio!ns-'
We have the transformation laws as follows: 4
P’ = exp ig1B, O exp — ingl } L 3.3.1
Ignoring the high-order terms w

D= P + Igl [B[ ,CI)] ’ (3.3.2)

. : LM, L 0 LM_L 0O L
Hence &® = igy [By, P] = —igs (5 My s +§ 1M —7) T(T 8 0%, )
o

(3.3.3)
Puting the expansion (3.2.2) into (3.3.3) then comparing with(8.2.3) we get

mH o H ‘5
wedsym Tl o o Asym [T a7 .
S T =1 i=t 1 (@)=

_ '(ml yeuey My S m;,.., m;q)

m

AsymITel L. Asym el

MM M " i i
=— 91M2 (S (D(m - m,‘) (=) +
=1 . b R . -
e Asym TleH .. Asym T1H .,
TMM *M : . .
+Sl m- ¢ . l-m" - @+
- (ml ] I N* 1’"" N)
... Asym TieH ... Asym TT<H
LM i ym e -
+ z (m’+if)aS @ ) +
LM (m M. 0 e, IN? "I" 1 weey 12— I * e m )
1!"'! N! 1{’ 23 f M EARET ] L (9. ] N
L, « Asym Hm?... Asym Tla®'... . .
1 Y.
+ I (m +1)S . . @
L+M ‘ . ( 1 ILITT) mM "l_ arsrp mL = dyieey ! N > mi,.u, mN)
/ | o (3.3.4),
(note that & . y=0if m;=0,12) |

-
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3.3.2, Extended spinor translations
‘Starting from the following equation

, L 1 1 ‘ e LM
8 =is" (@ ®14 [T @]csL=1csL(~ —:i“% 3 eM) ® -+
” o
; o | LM - e
- +i (% 4. S ;) oSL (3.3.5)
@l 2
then puting the expansion (3.2.2). inte (3.3.5) then comparing with  (3.2.3)
we get:
) n m 'y L]
.. Asym HHdtiH... Asym HH 0.? esn
5 j=1 i=1 (x) =
(mi,..., Oy, mi,u., mh)
wAsymTIlaf.,. Asym [ a2 ..,
¥ + 20 ) ’ -
| (my,..., my + 1,...., My ; mj,..., M)
i ~ - Asym [Tl A o 1
Sl san gy T YR oo (x)
2 - (my,..., My; M}, My — Im;;)
_ . Asym II 8., Asym II B o
~Z8 . @+
o {My,..., Mg M]seees my + 1,0 myg
< ,

IR o e Asym [T eH . Asym I o2,
+ _E;L?L CS (n]M + 1) 0 (I) , 1 , . 1 . (x) (303.6)
’ (ml 3ee 4y mN; mp"" mii"_ 1,... D'H) ..

3.3.3 Generalized space-time Iranslations

Starting from the following equation

-

3 =i tH[Py, @] =1t" [i oy + id¥er 6y Q¥ — 1dE¥ QL 6y M) (3.3.7

{ with the same procedure as above we get

w. Asym TTo ...’Asyml’l&‘i*... e Asym el . Asym H&?... '

3@ (x) = _ tudt @ (x)+

' (11.11. R ] mN; mi’ AL mN

] . E]
(my, ..., My; M,y o0, m_

i3l



A oo Asym I1eH. . Asym a¥... _
A1t [ZdMM my ® ! (w4,
o {mgy.., my; mi, .., m;) '

v AsymIledl.. Asym I'I:ziH...
+ Z @ ,(®+

LM (my, ..., my+Hl, o, m;—1, ..., my; I_n'l, wies M

LK . As_')'rm Mef...Asym [Ta¥,.. '
+ 2 Y™ ) (41 @ i i (@)
K (mypen, my— L., Ty 5 Mllgeees m R T m‘ )

«o Asym [T, AsymlIlo® ..,
— A W L@+
L L (my, v, Mx; Ml ..., M D

. . Asym Hcc?..._Asyran.c?’... & -
+ 2 (m+41) @ R (x) —

M . 14 L ’ ]
L.M>=L (my, ..., My Mi, ..., mM 1,.. ,mL+1, ,_mN)
: . v AsymITefL.. Asym Tt .., C
(d") F) (m +1)(mgf-1) @ b ! . (x)

Mgy e Mp—1, 0, Wy ; Iy veey m’L—l, ers m;\,)

!
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Appendiz (from [1D

The system of self-consistent conditions of the general extended superal-
gebra (L.1) ‘

dd=20
< dee' =0
‘ al.gz 0

d.;l + Sl.d = 0\

-k
[51 S]] = 1 ¢ Sk

sl.'ak —a ?I_ic:( a
m in
ot
is;.r: = .8
& EaKL SNM b LN EM
' 1 1 1 i
ZaLM sKH. 0
1. 1 .
¢ME gLH _. (LK gME
gIM ML
i 1
clM . LM



