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STEIN MORPHISMES AND RIEMANN DOMAINS
OVER STEIN SPACES
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in 1953 Serre [12] posed the conjecture that a holomorphic bundle with a
Stein base and a Stein fiber is Stein. Through the years, various special cases of
this conjecture have been settled (see 4] [10] [13] [14] [15] [18] [19]). But this
conjecture is not true. A counterexample for Serre Problem was given by Skoda
[19] in 1977. Demailly [3] showed that the first cohomelogy group of the bundle
space of the structure sheaf of this counterexample is not Hausdorff in the
canonical topotogy. This can be explained by the first main result of this paper
which gives a criterion for the validity of Serre’s eonjecture:

THEOREM 1. Let X bea complex space having a Stein morphism. Then X is Stein if
and onty if H &, 0_) is Hausdorff.
X

The following are immediate consequences of Theorem 1.

[

COROLLARY 1. Let X be a holomorphic bundle over a Slein space with Stein

fiber. Then X is Stein if and only if a’ (X, 0..) is Hausdorff,
. X

COROLLARY 2. Let Q be a locally Stein open seiin a Stein space. Then & is Stein
if and only if H'(Q,0q )is Hausdorff. '

The second main result of this paper is also closely related with Serre’s

coﬁjecture. It generalizes the well known fact that an open subset Q2 0f C" g

Stein if and only if H7(f2, 0 ) = 0 for ¢ =12,.., n — 1.
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THEOREM 2. Let X be a Riemann domain over a Stein space. Then X is Stein if
and only if HY (X ON) =0 for q = 1,4, ,dim X — 1. ‘

When X is a Riemann domain over a Stein manifold, this result has been
established by Siu [17].

COROLLARY 3. Let £ be a relatively compact openset ina Stein space X. ThenQ
is Stein if and only if HY(Q, O ) is finite dimensional for every q = 1,2,...,
dim X — 1.

Proof. By a Theorem of Siu [16], dim HY(Q,0p) < o= for every q >1. Since X
is Stein and £ is compact, by Cartan theorem 4 there existsan exact sequence

. © —"()Xel-—*... -—)(9;;0__,1\*_)0

on Q, where ¥ is nilradical of J; . Hence, by the hypothesis it follows that
- dim HY(Q2, N) < = for all ¢ = 1 .

Take a holorhorphic function f on X which is not constant on every irredn.

yrovy

cible branch of X. Since dim /74 (2, OQMd } =< oo for every q == 1,2

dim X — 1and H9(Q ., Og d) = 0 for every q > dim X, there exists
Ire . -

m ; )
g= X o f/ < 0 such that qu(Qred » O ; ) = 0 for every q >» 1., Observe
= re

that g is not constant on every irr'educible branch of Qm 4 Therefore, - the

sequence: ,

. ¢ -
0~ Oﬂred - Oured = Oﬂred / gOﬂ'red -0

is exact. Thus by induction on dim X we have HIQro4, Oq 4) =0 for every
re -

q > 1. By Theorem 2, this implies that Q is Stein,

COROLLARY 4. Lef X be a Riemann domain over a perfect Stein space X,
Then X is Stein if and only if dim HY(X, 0~) for every q=1,2, ..., dim X - 1.

Proof. Since OX !gc')g is a Cohen-Macauly ring for every bolomorphic

function g on X which is not constant on every irreducible branch as in;
. Corollary 3 we get /9(X, 0~)— 0 for every y > 1. Hence by Theorem 2,

X is Stein.
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COROLLARY 5. /let X be a_Riemndnn domain over a Stein spuce X of dimen-
sion < 4. Then X is Stein if and only if dim HY(X, 02;) < o= forevery g=1,2,...,
dim X-1.

Proof. Take a holomorphic function f on X which is not constant on every

m
irreducible branch of X. Let ¢ ==X F fi + 0 such that gH9 ()& 0~) =0,
. I= 1

3—_— g, for every g > 1. Observe that g is not constant on every irreducible

branch of ¥. Consider the exact sequence

(p'\J
0—>Kercp—>0ff QOE-»O -

where ¢ is defined by multiplication by g. Since supp Ker ¢ g_i(()) it follows
that dim supp Ker ¢ =<5 dim X—-1= 3 Hence by a theorem of Siu [16],
HYX, Ker ¢) = 0 for every q 2> 3. Then by the exactness of cohomology

sequence it follows that the map?q : HI(X, ) »—»in(:JY, g 0%,-) induced by ¢

is surgectwe for every ¢ > 2. This implies that dim H%(Z, qO ) << for every
q >» 2. By the hypolhesis, considering the exact sequence

FaY 1 ~
0~ g0 OX—*OEIgOii—aO
we infer that dim H%(X, 0y IEO;) < oo for every ¢ >> 1. Applying the induction

_hypolbesis to the Riemann domain (E —'1(0), O)'{’[Q\'O;) over the Stein space
: ! -

(g‘-](O), o /gO ) it follows that Hq()nf, 0,\,/9?0 )= 0 for every g > 1. This

_ x[77x x{77x

implies that the map/z'; : Hq(X, 50%4) - Hq(g,,O\,) induced by 7 is surjective

for every ¢ >»1. Then by the relation Im ?;= _EHq(Ei', 05{) we have (X, Og):o
for every q > 1. By Theorem 2, X is Stein.

The proofs of Theorems 1 and 2 will exploit some techniques of Fornaess
and Narasimhan [5].
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i. DEFINITIONS

Let X be a (possibly non-reduced) complex space. We say that X has a
Stein morphism if there exists a holomorphic map = of X into a Stein space X
such that =~ X({/) is Stein for every open subset I/ of X belenging to a Stein

open covering of X. We also say that X is a-Riemann domain over Xif = is a
local (open) isomorphism.

A sheaf § on X is called a Frechet sheaf if for every open subset Uof X

HO(U, J) has a Frechet space structure such that the restriction map HY

(U, S) - H® (V,J) is continuous for all open subsets V of U. For such a sheaf

d, the cohomology group HY? (X, ) can be equipped with the induction

topology . ' :

HY (X, S) = lim H? (@, &)

. % {

where 9 is an open covering of X, '
HY (4, S) top Ker 89/Im 897

8 : ¢ (U, S) —~ CITL (9, S) are coboundary maps and CY (%, J) are equipp-
ed with the product topology,

§ 2. MAIN LEMMA

In this section we establish the following Main lemma which is basic for
the proof of Proposition 3.1.

Main lemmu. Let .. be a reduced complex space, K a compact set in Z and
f a holomorphic function on 7 which is not constant on every irreducible -
branch of Z. Then there exist a compact set L C Z and a number ¢ >0
such that the folldWing holds.

For every 1] <7 ¢ there exists a constant Mt> 0 such that for, every
constant r >> 0 every holomorphic function g on Z; ;4 (phe re.str‘iction of a
holomorphic function & to Z such that

@Y JGNg< M Ugly o g+ %

The proof is based on the folowing.
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relatively compact Runge domain in z, K, L= U . Let 3 and S be cohe-
rent analytic shaves on = and «: & — ' a surjective morphism. Then there exisls

21 LEMMA [5]. Let Z be a Stein space, K a compact set in z. Let U be a

C ~ 0 such thal for every ¢ e HY (z, 3*) and constant T > 0 there exists a section
g e HY (Z, 3y such that

22) @ =ocand||Bll ,=Clo] +T.
2.2, LEMMA. Let 7 be a complex space, K a compact set in Z. Let f be a

holomor phic f unction on Z which is not constant on euery irreducible branch of

Z. Let
' z,=V({f-t)={reZ:f@)=1ttec C
(A [=‘{~"‘3'EZt:lg(f-')i\.ﬂg”xr\z5
;o ¥ gEeO0Z);}
Let 7 and f satisfy the following conditions
(@) H(Z, 0,)=10
(b) Z, is Stein for t e C.
Then
(i) the restriction map O (Z) — O (Z, ) is surjective fortecC
(ii) there exisis a compact set LinZ such that K C L for sufficiently small i,

Proof Letft =f -t and let ?: : O, ~> O, denote the morphism defined by multi-

plication by ]‘)f . Using the exact sequences.

~~

—~ ff
0> Rer f, — 0,—= f, 0,0

0 ~F, 0,0, 0,/f, 0,250
0,/f, Oy — Ozt -0

and the relation supp Ker ﬂ Z Zi we derive (i) from the Steiness of Zf .

To prove (ii) observe that by (i) there exists a holomorphic map G: Z— Cy
such that g = G | Zo: ZO — CV is proper. Let r=1{ g} Kk nzT1and let \Vt (r
o
denote the union of components of 61 (Ao, D)) Z ; meeting K, where A(o,r)=
. A ’
= { 2= (z/5m zN)ECN:maXIZj | <r}
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Choose a relatively compact neighbourhood V'of £ U W) in 7. We
claim that
2.2 KNZ CcW,@ri2)ycCv
for sufficiently small {, \
Indeed, since K | Z, W (1), it followsthat K N Z, C W, (3r/2) for suff-
iciently small {. Assume now that there exists a sequence { t }- converging to
zero such that W, (31‘/2)\V # (). Then we find a sequence {z }s z; €

L
\1-’Oj(2r) \ V. This is impossible, since W(2r) C V. From (2.2) and the fact that
W, (3r/2) is a Runge domain in Z, we get
K, = (Kﬁ Z);, =& Nz, )z, NW,Gryc Vv
for sufficiently small i,

2.3 Proof of Main Lemma. Let % = {U - } be a Stein open covering of Z. Let

Kj _ Uj, i=12,.., N be compact sels such that K ¢ U KJ By hypothe-
J=1

sis H (U, 0.) =H (Z, ©,) = 0, the coboundary map: o: C°(% 0,) — zl(,

Oz). is surjective.

Put o
W= {(g;)e C% (%, 0): max [[g.]] <1
. {‘ 1 ( 4 1\!\<\N I]KI }

Then, by the open mapping theorem SWOW A Z1 (%, O, ) for some neigh-

bourhood W of zero in = O (U N U ) Take compact sefs: K Cb N Uj .
!’J

i, j=1,2.,N, Ny > N and an < > ¢ such that

W {lgpe =0U;nT;): llg;; lK AK, <e, bLj=1%.,N,}

Since Z, is nowhere dense, the restriction maps O (U, n U ) U; N U '\Zo) ,

are embeddmgs Thus we may assume that K. n z,=Q for ;,j= 1,2.; Wy Put

‘N
Ki= v K UK,) = 1,2, .
i =1 _

W, @3rfd) o V. Let z be a limit pomt of { % ;. Then it is easy to see that z ¢

o
G

<



Then
y K, CU/\ Z, and K!.j < KN K;
and
dW = Zi(q, N & U U g [
1, 0,) A {(g; ) e =0 W, n RTINS
Lhji=1, 2,.,N 1 '
Hence, there exists a constant € >0such that for every (gl.j )eZi(GZg, 0,) we

can find (g, ) e Y, 0,) such that 8(g,) = (gl.. ) and

max i]g | =C max flg;.]
1<I'--.~~ 1 N 1\<\!’J\N

Take gy > 0 such that

UK/‘\K
J

N
“ if(z) > 230 forze (J &

=1 !

Pul x, = for every N < i < N;. Applying (21) to the canonical map «:
OU:' ~ OU:‘ e fi OUi , with K = Ki L K’l., i =1Int L; » Where L; is some compact

set containing (K; v K’i)U. we gel a constant CL > 0 satisfyinlg (2.1). Let
I
Ny .
L'—= v L,C,= max G! and let L be a compact set in Z such that

Ly cInt L for]f[<sl<so,91>0.

Let g< O(z, ). Applying Lemma 2.1 to the canonical map & = Oz /'ft 0, ~0
. . z4,

with K = L; C Int L N Zt we see that there exists ;j'e HO(ZI.,O:,/ft 0,)
such that

@4 ofg)=g  andigl, = Cy ldl, \, +

where C, is-independent of g.

For each i take i1, &« O (U, ) such that 1, | U, N z, =giU; 5 z,

r and

@5 ANy K;_=Cﬁ _",g”L"f‘Zz +T

L= 1, 20 Ny

6—1847 - : ' 81



From (2. 3) and (2. 4) we obtain

(2.6) max [h | '=C,Ch gl +tC,+ 1
1=1=n, KUK 2 LNz, 1t

Now h, — h, = F - b 9ij+9;;€ O(Ul N I.?J.). Since Z is nowhere dense.
RECBE Z1(U, O) and for | Ll <y
”nghKf\K— follh_'h I g "'\Kj =2, max & 0 g

we have

I=i=N i
= 20, ng;s gl LN Z, + (2f,c,”+ 1)/ %,
Hence we can find g, € O (U,) such that & (9,)= ((f } and

max |1 g; I = C max
I={=N S | IS5, f75N

N9l Ak
. i |
=20C, Gy 2 Bagi; ~ z, T (2tCC,, 4-7C)/ <,

If we define G = h, — (f — ) g.on I/, weget Ge @ (Z) G|y =g ana
1

G nK:; 133%{ Wh, i =i —iligllg, i K!_')

=0, Cy ”gf|z.f\7 Ty e+ 20— 1 Gy Gy 2 g,
i f — ] g @CC, + C1y /7%,

" -’\Z'f

=If — 1§ z (20CC, + CT) je,+ TC,, + T

+ (€)= Co+20F— 1] . CC,C /?")”gul‘mzi:

s N
Remark. When 7 is a relatively compact locally Stein open set ina Stein space
the above proposition has been proved by Fornaess and Narasimhan'in {5]. Our

proof in only an adaptation of their proof,

§ 3. MAIN PROPOSITION

-~

Using our Main Lemma we now prove a proposition whlch is basic for the

proofs of Theorems 1 and 2.

3 1. PROPOSITION. Let ¥ be a complex space having o holomorphic map =

of X inio a Stein space X such that t here-exists a holomor phic functionf on X which is -

not constani on every irreducible branct of X. Then X 1s Stein if and only if =4

(V(f — 1)) is Stein for every t ¢ C and ! (;\.\?md . 0; }= 6
) Ted
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Proof. By a theorem of Grauert it suffices to show that ?red is Stein. Since

V {f —1), where )?== fr is Stein for-eVery te ¢, from Lemma 2.2 we infer that
ﬁ‘;b N

O (X ) separates points. Hence it remains to prove that ffr is holomorphically

ed
convex,

. N ‘ N .
Let K be a given compact set in X .4+ Weclaim that K is compact. Indeed,

- - —— —— ——
suppose the contrary. Then, since =K C =K and A is compact there exists a
infinite discrete sequence {z.} C K such that nz, — p e X. We may assume
that f(p) = 0. Obviously 1/ is also non constant on every irreducible branch

of Xred and V(n f — 1) is Stein for all £¢ C, where 7: OX — 0 . denotes the
o : ' Xred

canonical map. Let L C“de be a compact set and lets = 0 such that (2.1)

holds, Take a compact set 1, — ircd such that
Ltcffor[z‘(<s]<e, g, > 0. f
For |#] < ¢, we have
(3.1) EnVOof-HcL, cCi,

Indeed, if g€ V(nf —t)\ L, , then there exists g € O(V(nf — 1)) such that

lg(@} >1and [ g . < 1/2M,. Let '5 be a holomorphic extension of g on
t

Xred such that

190 =M, bl +13.
Then || 3]l x <<1, | g(g)] > 1. Hence g & K.

From (3.1) it follows that z, € L tor sufficiently large n. This contradicts the
choice of {z  }.

The proposition is proved.

4, Proof of Theorem 1,

Let ¢ : X — X be a Stein morphism. By a coveriﬁg lexﬁma of Stehle [20]
we find a Stein open covering % =,{Vj} of X such that



(‘i) Q. = U V iS Siein ihor e‘\rer'y J :;;. i

¥ g |
it (1 is Runge in V for every 7 » 1.
+7 g 7 Y.

(iily 9% = {X’j}, where X’; = =~/ (V) is a Stein open covering of X. Since

x@="{V)aV for every opensel V. Xitiseasytosee that ¥ “/(V)is Stein for

every Stein open set V. U e %. Thas by (ii) we have X; n Xitzis Runge in

X ;i 7» where X, "1(0 ). ' _ -

~—

Let QZ] be a Stein open covering of X such that

Up < €%, %, forms a basis of open sets of X and

= 6251 v &, .. foreveryj»1
|X1+1 IX Ly _

.where @2] 'G ={le 5?,2] U Gl

Adap;ing an argument of Jeannane [8] we get the following

™

4.1. PROPOSITION. Let X be as above and S a coherent analgtic sheaf on
X, Then

&) HYX, 8) =0 for every q > 2. - \

(fi) the boundary map & : CO(@I y &) — ZI(OZI, d) has dense image,

Proof of Theerem. a) From 5.1 and the hypothesis we get:

Hq('}‘f, OE) =0 for éver_y q>1
and : | _
Hq(x, Ny=0 t;'or every q > 2.
Whence, | ;7_ ‘
o Hq('}‘fl;cd, oy ) = 0 tor every ¢ > 1.

red

N -~ o .
b) By a) we may assume that X is reduced. Assume that the theorem has

been established for every subspace of X of dimension < dim X. To prove

the Stemess of X, it suffices, by a theorem of Narasunhan {11]. to show that
- .

every 1rreduc1b1e branch Z of X is Stein.

84



N

¢) Let Z be a given irreducible branch of X, From the exact sequence
{}->JZ—+O%’-—>OZ——% 0
it follows that
HY Z, 0,) = 0 for every ¢ > 1.

if %(Z) = {¥}, then Z is Stein, since 7 is a Stein morphism. Assume now that
m(Z) 5= {¥}. Take f ¢ (X) such that f | =(Z) > consl. Since Z is irreducible
the sequence

fi

where f, = fn — 1, is exact for all ¢ ¢ C._Whence, we have

HIZ AV(F) 0 y = 0 for every ¢ > 1.

ZI(F )
Since = | P ('};;) /Ao V(f; )""V(/;* )is a Stein morphism, from Pmposition

4.1 we get
HUZ n V(?t), Oy E“;l y) =0 for every g > L.

Thus by induction hypothesis, Z N V(;"I) is Stein for every t € C. By Proposi-

tion 3.1 we then derive the Steiness of X. The theorem is proved.

£

5. THE SHEAF F ®0 (x)O

First we recall some facts about the tensor product of ,Frechet modules. All
algebras are assumed to be commutative with unit element. Let B be a Frechet -
algebra. By €(B) we denote the category ot Frechei modules and continugus
B-linear maps. 4 complex X

M, (i‘fﬂ o Sy
” n n—1 ”
in @(B) is called direct if for each n there exists a continuous C-linear map

h :11 —>M such that d 1 n—l—hn 1d id.

n ==
A Frechet B-module Pis called free if it is isomorphic to B'@A, where B® 4

denoteés the projectivé tensor product of B with A, a Frechet space, and the

B-module structure on B @ A4 is given by the formula,
L :



B(u®@v)y=bn @vlorbcBandu®@vecB @ A

™
We say that P is D-projective if for every direct sequence M 9, M __ 0in &(B)
the map g : HoM ,(P,M) — H,M ,(P,M") induced by g is surjeclive. '
Let £ € €(B). A complex’

dth di
P(E} i.. = Pn -—)-Pn____,] = .= Py S PO — 0

in € (B)is called a D-projective resolution of E if.

(i) D, is D-projgctive for every j > 0.

(ii) theEre exisis a continuous B-linear map ¢ : Po — E such that
P(E) —Ep E -» 0 is exact. Moreoyer, if (P)E S E —0is di'rect,theﬁ P(E)is called
a direct D-projective resolation of E.

Setting

P =B®..QBRE
T

n
™

a @)

nt 1
! n . .
d(2,® ..® a, @ u) =j:2-1 (=1 T2, ® .. ® a;_sa, ®®
a @ u.—l— (-~ a4, ® .. ®a, u
h @)+ 1®u:(a®u)=a
we get a direct free resolutidn of F, ’ !

o~ e~ ] —~ €
KE):..~B®@BR®E-B® E—~E—-Q
T

T, T -

Hence for the covariant functor

Al

/‘; - .def /\. l
E®@: 6By MDBYy: M -E® M = E®@M /Imd
B B T '

where H(B) denotes the category of ‘B-modules and
d: E®B® M - E® Md(u®a® m),=~au ® m— u®am

Y T i
‘we can construct the left derived functor

™ N )
TorqB(-'E,.) : € (B) — W(B)



of E® by putting
B
Tor2E, M) = H (F(E)® M).

" it is known (7] that
G) Tor(E.)=E®
7 B

(ii) Tor (E, F) — Tor, (B F, E)

(iii) For every direct sequence
0> M MM =0

in € (B) there exists an exact homology sequence

. — TorB (B ¥ —ED M —» EQM > By M7~ 0.
B B B

(iv) If P(E) is a nuclear DD —projeciive resolution of E,i. e P j is nuclear for

every j = 0, then TOI‘? (E, My ==H_(P(E) @M).Now let X bea complex space
' B : ,
having a countable topology and F a Frechet B-module. We denote by F ® 0

0 (X)
the sheaf on X given by the formula:

1y, (X) for every open subset I/ of X,

5.1, PROPOSITION. Lef S be an analytic Erechet sheaf on X, Suppose that for
every relalively compact Stein open sef U C X there exists a Frechet O (U)-modale
-k (U) such that

G Sly = FU) @ 0 and T %) (5 (1), 0wy =0
oW - ‘

for all Stein open subsets V C U.
Then for every Stein open subset G C X there exists a Frechel © (G). module
E(G) such that

(6.2) Sl = F(G ®)0 and Tor9(®) F(G), 0 (V)) =0
G -

for all relatively compact Stein open subsets VCaG.
We need the following . . : o
5.1, LEMMA. (Mitlag-Leffer [6]. Let .
0~ { B}~ { £}~ {E} >0



be an exac! sequence of projective systems of Frechel space such lhat the
canonical map EJ , 1‘—>E}has dense image, T hen he sequence

0§ ——=Ilim E’-————-Izm E —=lim E”—=e§

Pl i -—

is exact.

From the definition of the projective tensor produci of Freche\t spaces we
get the following
5.2. LEMMA. Let{E } and { F } be projective systems of Frechet spaces such
that the maps E 1= E and F -—>F have dense images. Then

EE“%®Eﬂ==QEI¥)®QE'%?

Proof of Proposition 5.1. a) We first show that for every -félatively cﬁmgact
Stein set U (Z X and for every Stein open set V .= U/ the following holds
5.3) HO(V, &) =~ He (U, &) GO (V).
o)
‘Obviously (5.3) holds in the case where F(U) is Iree. In the general case, consi-
der the direct sequence
(54) 0—->F -~ P,_q —>F 4 —0

i=1, 2, where F0= F(U), and PO and P, are free Frechet O(U) — modaules.
From (5.1) and the exactness of the homology sequence associated with (5.4)
we get the exact sequence

65)  0-FB®O-P,_00~F ;00
: ‘O ()] 0 a O U)
Since ' (U, F, ® 0) =0 (PI‘OpOSlllOD 5.2) we obtain the commutalive and exact
oW '
diagram:
Fi@ O(V)—)Pi—l ) OW)—-F. (U(V)-—>0
aw O (O(U)
3 1z ! :
HO(V,F/® O)—>H(V,P; ;. ®0)>H(V,F,_; 2£0) —0
(OU) Ow o))

4

Therefore H°(V, S) = F, ® 0 V). -
® 0w

b) We write & = U G - where {(1 } is an increasing sequence of relatively

n=1
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compact holomorphically convex domain in G with V = G,. For each n consi-
der the canonical free resolution of O(G )—and O(G)—modules O(V).
dy N i
. = 0(G) @; HV)—->OV) -0
“I o
vee =+ O(G ) ? oV) - V)—~0.

By a) -fgr?“;n) (H® G, S)H OV)=0 and the restriction maps H(G it J)—

- H%G , J) have dense images. Hence, applying Lemmas 5.1 and 5.2 to the

exact sequence of projective systems

[06)B 0GB 0GR HG,, Ht—{06) ® 06, BH (G, )

-»{0G) ’@‘HO G, S} =HI(V, ) —~0
we obfain (5.1).
5.9. PROPOSITION. Let o§ be a coherent analytic sheaf on a Stein space X. Then:

6.6) S = H(X, &) ® 0 and Tor, @ (H°X, ), OVy) =0
O

for every relatively compact Stein open set V C X
Proof. By Propesition 5.1it suffices to show that (5.1) holdsfor e;'ery relatively
compact Stein open set U C X and for all Stein open subset V (C U. By Cartan
theorem A there exists an exact sequence

6.7) 0-— QPl—s . — 0P — I — 0
onU. ‘

The by Gartain theorem B and by induction on [ we obtain (5.1).

~ ¥
5. 3. PROPOSITION. Lzt X be a Riemann domain over a complex space X such
that‘Hq‘(/X\,()) = O for every q >> 1. Let F be a Frechet 0(X)—module such that

Taz(x) (F,O0V)) = 0 for every sufficiently small Stein open set V. X . Then

HY(X,F ® O~)=0 foreveryg>1.
o) X

Proof. a) We first assume that F == O( X)@ A , where A is a Frechet space.

Then F @0} f‘=-‘0X @A. I_;et {/ be a Stein open covering of X. Then U is a
O(X) g "
.89
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Leray covering for OXN and O;@ A |2]. Hence, by hypothesis the sequence
g :

0— O(X) — CU, 0%) — w
is exact . Therefore, the sequence
0——0®) 84— W, 0F & HH—> ..
is also exact. Hence HY (X Fg& O%)=0forallg > 1.
Xy

b; In the general case, consider the direct sequences (5.4), where i=1,2,...,. By
hypothesis the sequences (5.5) are exact. Hence, by a) we have:

HI X F ® O)=..=HI"PX,F @ 0) =0
O(X) X)
for every g ;» 1 and for p sufficienily large . ' \
" 6. Proof of Theorem 2.
a) Let N and N denote the nilradicals of 0% and Oy respectively By Pro-

position 5.4 we have N=N(X) ® N and TorI(X) (N (X)), O(V)) == ( for every

O(X)
relatively compact Stein open set V — X. Since 7 : X ——— X is locally isom:
- orphic it follows that
' N =N = (NX) & 0 =NX &0y .
x Tox O(X) X?m o) Xx

~
for every x € X

Hence N = V(X)O%)Om ‘By Proposition 5.5 we have

HQ‘(X,N = 0 foreveryg > 1.
This yields HY (X g, O~ ) =0 for every ¢ >1.
Xred
b) Take a holomorphic function § on X which is not coustant on every
irreducible branch of X. Then f = fx is also nonconstant on every irreducible
branch of X. Consider the Riemann domain = : V(}'---t) — V(f-f. As in a)
we have ’
~ 0 ® 0 .
V- = Tvi-n O®(X)OK red

Y



Hence Hq(V(f"; 1), OV(}\‘; )) == 0 for every ¢ ;» 1. Thus by induction on dim X

it follows that V(f —1) is Stein f01 every { € C. From Proposition 3.1 we derive
" the Steiness of X.

+ The proof is complete.
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