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INTRODUCTION

]

In recent years the study of controllabilities of linear discrete-time systems
(DTS) with restrained controls has attracted the atiention of many authors. It hag
been motivated, on one hand, by the fact that this study gives rise fo many new
problems and, on the other hand, by the great possibility of applications this
study offers for studying continuous-time systems described by classical diffe-
rential equations and some problems of linear games. Controllabilities with
geometrical constraints on controls has been studied by Sontag [1], N. K. Son
[4]... for finitedimensional DTS, and by N. K. Son, N, V. Chau, N. V. Su [6]. .
for infinite-dimensional DTS. Null-controllabilities with energy constraints op
controls has been considered to study linear pursuit process of games with
many players by N. Yu. Safimov, ... [1]

In this paper we shall consider controllabilities of DTS under constraints
of different types imposed on the controls. The criterions for the locally nuli-
controlable and the globally nuli-controliable are presenied. Then we apply the
obtained results to solve problems of pursuit in the discrete games with many
players. ) :

§ 1. NULL-~CONTROLLABILITIES OF LINEAR TMSCRETE-TIME SYSTEMS WITH
RESTRAINED CONTROLS ‘

We denote the phase vector by z and assume that the motion is described
by the difference equation - _ ‘
z(k+1)=Az(k)+Bu.(k);z(d):ze’, (L1
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where z (k) ¢ R? ;, u (k) ¢ R™ is the conirol, % =0, 1,...; A, B are n X n— malrix
respectively. The controls u (k) must satisfy consiraints of the form

u (I-;) =Q, k=0,1, ..., (1.2)

or

‘ - 1.3)
u(k)eQ; Z lu) PP ¢
k=0 :

where Q is a convex bounded subset in R™ and 0 & Qe>0and p>1
-N . N s s -
We denote by K™ (Q, €) (respeetively, K (£2)) the set of all initial states z,3 0
such that there exists a sequence of controls (o), u(l), ..., u (N — 1) satisfies
N—7

a(l)e® k=0,1, ""N_l;kz; ) 1P <P

2(Ny=AY 7, N A Ba(V—i—Iy=o.
k=0

~ (vespectively, u (k) € 02, k=0,1, ., N—1;z(N)=0).

_ Let

CRE@ = U EY(, ),
N=0

K@= U kN@.
N=o

DEFINITION 1. — The system (1.7), (1.3) (respectively, (1.1) — (1.2) is said to be
{locally null-controlable (LC) zf K (Q, &) (respectively, K (Q)) is a neighbour hood

of origin in R%,

— The system (1.1), (1.3) _(respectively, (1.1) — (1.2)) is said to be globally

null-conirollable (GC) if K (Q, €)= R (respecitvely, K (Q) = RM).

The criterion for (LC) of the system (1.1) — (1.2) had been given in [4],
It is shown that (LC) only depends on geometrical relation between elgenvector
of 4 and B Q,

It is obvious that if the system (L1), (1.3) is (LC) then the system (1.1) —
(1.2) is (LC) too.

PROPOSITION 1. If the system (1.1) ~(1.2) is (L.C), then the sysiem (1.1), (1.3)
is (LC) too,
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Proof. Assume that the system (1.1) — (1.2) to be (LC). It is known in [4] that
there exists a natural number L such that

o o € int KL(Q)
Putting ¥ = sup {Jjul:ue Q}, we have M <C 4 . Denote

1
min j1,¢, M1 , L— p {. It is easy to verify that

¢ =
"aQC 0 and kL (z. Q) KL (= Q, e);
On the other hand, by = <{ 1 we have
_ KL (« ) =« KL (Q),
Hence, 0 ¢ int KL (Q) implicate 0 e int KL(Q, ), Th-e proof is complete,

From Proposition 1 and N. K. Son’s resulis in |4], we have

COROLLARY 1. (The criterion for (L.C) of (he system (1.1}, (1.3)). The system
(1.1), (1.3) is locally null — controllable if and only if the adjoint matrix A* has
nreither eigenvectors with real eigenvalues 1> 0 supporting to B €. at the origin,
nor ¢igenvectors with complex eigenvalues ) == 0 orthogonal to B Q.

‘Note that conditions of Corollary 1 are necessary and sufficient condii:ions
for the system (1.1) — (1.2) t6 be (LC) too. (see / 4 /). '

‘The criterions for (G.C) of the system (1.1) — (1;2) has been studied by
Sontag [1] for the case when {} is a neighbourhood of origin; N K. Son [4] for
the cace when Q is convex set and 0 ¢ B Q; N.K. Son, N.V. Chau, N. V. Sn 6/
for infinite.dimensional DTS..,

- In this section the criferions for (G.C.)' of the system (1.1), (1.3) are

presented. The main result is the following.

THECGREM 1. The sysfem (1.1), {1.3) is globally null-controllablef if and only if.
i) The system (1.1), (1.3) is locally null — conirollable

)6 (A) T {reC:|n|< 1), where C is the set of complex numbers and
6 () is the spectrum of A.

Before giving a proof of. Theorem 1, we need consider some lemmas as
follows. i o
LEMMA, 1. Assume that 0 € inf K (Qe) . Let @ ¢ R® be a state and M bea
consiant, M > 0, such that || Akz | <M for all k =0,1,u., . Thenz'e¢ K(Qy),

Proof. It is not difficult to verify that K(Q,e) and K¥N(Q,¢) are convex
. sets and

EN©Qe ) KN+ (9,0).
. |



By 0 ¢ int K(Q,¢), it follows from Lemma 1 in [4] that there exists a natural
number L such that 0 ¢'int KL(Q,S) , that is, Tor some & > 0 we have )

B(0,8) = {x e R : |z | < d} =K(Qe) o
On the other hand, it is clear that, lor all 0 <= = =<1

aKL(Q,) C KLX(Q,eq) ,

ie
B(0,5a) C KL(Q ), , (1.4
Let g € (0,1) a number defined by
p=| T —| 0 |
=\ Z, | : (1.5)

Take a natural number K and numbers 7&" , n=12,..., K such that

-7 . K
and X 7«.H=1.

n=1

0sCh, < —-.5.pM
) : n

Selting © = A x, we have

|akz, | = ?Ln-]Akx ”g A M <%5-B.

for all n== 1,2,...,K and k = 0,1,2,... ..
Hence, by (1.4) ,
1 .
Akg ¢ B, —90. B C KL((Q,B. —B—)_ .
n v on , n
This shows that for every n=1,2,..., K there exist controls u, (0), 1, (D),e.u (L-1)
auch that -

L—1 - P
w@eR: = Ju @ <P, = ' (1.6)
=0 “nP .
and
AL(AR=DLg 4 "5 4 Ba (L—1—i) =0, .7
i=0

Letv(j)“ u(L—1~-nifj={mn—1)L-+L~1—1i Then we oblain the
controls v(O), v(1),..., (KL — 1).

Since (1.6) we have »(j) € © and
H L-1

””(1)” 2 2 ”H (L— 1—1,)“ pe ep 2 -1—<sP
= a=1 aP
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Consequently, {"v(j)}. j=0,l,.., KL — 1 are admissible controls. On the other
hand, we have - ‘

FEL-1
A¥Ly S AJBy(KL—1—j) =
Jj=0 n

il b=

[ A =L, AL(A(n— 1L xﬂ)} +
1 : :

[ L-1 =
AF-DL " 4iBy (L—1 —=0)| =
L n

i:—aO

R {. L-1 | |
= = ) AF-nL |7y gipy (L —1 - i) AL(A~DL z ) ]g
=1 i=0 R

But in view of (1.7) we have
Ep-1
ALz . '3 AJBWKL —1—))=0,ie xe K, e\
j=0 ‘
The proof is complete.

Let E — R? be an A-invariant subspace, i.e. AE ¢ E. Let R"/E be the
quotient space of R? over E endowed with the quotient norm. Denote by 2.
the guotient system of (1,1), ('1.3) with respect to E be defined by

He + 1) = T () + Balk), -
u) € Q; %

fuk)IP < P,
; k=0 :

where z(k) ¢ R*/E; A is the induced mapping of 4 on R*/E; B = nB with =

to be the canonical projection from R™ to R%/E.

We denote by K (N> ©, ) the set of all initial states z(0) such that there
exists a sequence #(0),..., u(N — 1) satisfies u(k) € Q, k = 9, Lo N —1;

-1 _
% fu(k)liP < eP; z(N) = 0, Denote
k=0

K Q&)= v KN, Q5.
E N =0 E

LEMMA 2. Assume that F C K(%, £). Then
1) 0 & int K (Q, ¢) if and only if 0 € int K(Q, ¢)

" 9) If M is subspace in R® such that n M C K49, ), thea M C K(@, ).
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Proof. 1} It is a simple to verify that =K(Q, ¢y C K (&, c). Since = is oped
mapping, so if 0 € int K(£2, ), then 0 ¢ int KE(.Q, £h

In view of the proof of Lemma 1, we have

0cint K(Q, ¢) if and only if 0 < int K, (n, j__). L8)
V2

On the other hand, since K(Q,¢) is coﬁyex and E K(Q, £), we have E  K(£3,¢’)
for all ¢* > 0, Then it is not difficult to prove that .

n —I(KE (Q,.%__))'c K©Q, . (1.9)
V2
Erom combining (1.8) and (1.9} it implies that if
0 € int K (Q, <), then 0 < int K(2, ¢).

2) Since M is subspace of R” and = M C K (Q, €). Clearly, it follows that

n

———) Then the preoof is immediate from (1.9).

Wy ‘

The proof of Theorem 1. From A(Q, ) - K(Q) and Theorem 4 in [4] it follows
that the «only if» part iz proved. We now prove the sufficienty of the
conditions.Let X denote stable space of the dynamic system z(k-1) == Az(k), i.e.

n M nF(Q,

X = % ze Ry lim Afx =10 f

k>t oo :
Then Xo is A-invariant subspace, It is known that if ¥ is an A-invariant
subspace of R?, E = R" then there exists an A-invariant subspace E' of
R™ such that E E'and E’/E is a minimal invariant space of the linear mapping
induced by A from R%E to R"E. Hence, one allways choise A-invariant
subspaces Xi , i=0,1, ..., s, satisfying
1) XO' C‘XI T e C__.,_ XS =—-, Rfl

2) For each { =1, ..., s X, /X,_, is a minimal invariant subspace of A.

induaced by A from .R"/Xl.__f to R”/X{._ 7 )
Since 6(4) < {» &€ C : x| = 1}, so are 6(4;). Hence, orbits
; Af‘ z,2 k=0, 1. are bounded for all i = 1, ..., s and all z € X, /X, ;.
Now since Lemma.l, the condition if and the definition of XO it follows

that Xo _ K(Q, ¢). Applyi'ng Lemma 2 with B = XO , we have 0 ¢ int K (€2, ).
. . 44

63



Hence, it follows from Lemmas 1, 2 that X, C K(Q, ). By continuing this -

process, on the end, we got R = \ o K(Q, £, ie. the system (1.1), (1.3) is
globally-niull controllable, The proof is comi)lete.

COROLLARY 2 (The criterion for (6.C) of the system (1.1), (1.3). The sysiem
(1.1), {1.3) is globally-null controllable if and only if conditions of Corollary 1
and the condition (ii) in Theorem 1 are satisfied.

The next corollary will be used in next section to build a sufficient condi-
tion for the pursuit process in discrete games with many player.

COROLLARY 3. The system (1.1), (1,3) with & = B(0, ¢) is globally-null controll-
able if and only if

i') range [B,AB,..., A"~1B] = range {B, AB,.., 4n~7 B,An]'
ife(dc {rAeC: “']““<*~1}"'.
Remark 1. For infinite-dimensional DTS whose state space and control space

dre Banach spaces, Lemmas 1, 2 and Theorem 1 stiil hold if 4 is a compact
operator. :

Remark 2. Assume now that M is A-invariant subspace of R® . We denote by
Ky (N, Q, ¢) the setof all initial states z, such that there exists a sequence

- u(0),..,u(N-1) satisties u(k) € Q, k = 0,1,..., N-1 :

N—1
2 atkyl? < ®; %N)e M . Denote
k=10

K (Q: E) == G K (v, Q, €)
M N=g M

The system (1.1), (1.3) issaid to be globally M-controllable if Ky (©,e)=Rn,
As an immediate consequence of Theorem 1 we obtain

COROLLARY 4. The system (L.1), (1.3) is globally M-controliable if and only if
) feC:f+0,f L MFf| BQ; A+ = Kfs k= 0} = ¢,

) feR:f =07 ] M, <f,BO> >0; 4% = 1f, A=0}=g,
iii){feC:A*f:?\.f,f;éO,Ilj,\.-l,f_LM}=¢. '
COROLLARY 5. The system (1.1), (1.3) with Q= B(0, ¢) is globally M-controllable
if and only if .

1) range[B, AB,..., A"~ 'B] 4 M = range [B,AB,..., A"~Ip An] + M,
feC:AF =af, f £0,f L M, |0 |=1} =g,
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§ 2. TUE P URSUIT PROCESS IN DISCRETE $AMES WITH MANY PLAYERS

In this section we apply the above results to solve the pursuit problems in
discrete games wiih many players. Without loss of generality we may consider
the pursuit games with two pursuers and one evader.

. Assume that the motions of the vectors zI.eR" are described by Lhe diffe-
rence equétions

z(k + D=4, z,(k)+ B, u, (k) — C.v(k); z, (0)=z? 2.1)

P
where { = 1,2; k = 0,1,...; u, (k) € R "are the pursuit controls and v(k) is the
evasion controls; A‘. ’ Bi ,Cl_ are matrices of orders nXx n, n % P 1 X ¢
respectively. The controls u;, v must satisfy constraints of the form

5 flu, )< piz .2 vy y? =6°, (2.2)
k=0 k=0

where o, > 0,6 >>0,i=1,2.

‘We shall say that the pursuit process in the discrete games with many
players (2.1) — (2.2) is completed al'tef' ke, steps, if for any admissible evasion
controls v (0),..., v(kl — 1),

ky -1
o o 2
2 lv@j” <6

i=0

2
]

there exist the admissible pursuit controls u, (0),..., u, (k; — 1) ;i = 1,2

kl —1

T oju k) |P= 6P
k=0 t
such that z, (k,)=0o0r z,(k;) = 0.

We shall be interested in computing the value u, (k) of the pursuit control

at each step & when the values v (0),.., v(f) of thé evasion control are known.
In other words, we shall be interested in finding the functions

u, (k) = u, (0(0), v (1),u., v (k)
We are now in a position to formulate our basic hypotheses

Hypothesis 1, For { =1, 2 we have

a) range [B;, 4, B, ,..., A B;] = range [B,, 4, B, ,...,AF_IB 477,

t i [
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4

by (4 )y {re Cridig 1}

. P
- Hypothesis 2. For i =1, 2 there exist linear operators F:‘ : R >R ' such that
B, F; = G,

Hypothesis 3. (p]) + (p2) > 6°
L6 Yo
where v, = F, | = sup {{| F,v{:jv] =1}

THEOREM 2. Under hypotheses 1 — 3, the pursuif process in the discrele games
with many plagers (2.1) — (2.2) is completed afler a finite step for any initial
position 20 = (:(1), :O)

Proof. From hypothesis 3, it follows that there exist a number ¢ > 0 such that

4 2
. Py — € 6y —¢
0<.€<m1n(91’92)§ 2 > 62 — ! = 0.
T2 Y1 .

Assume now that v(.) = (v(0), ¥(1),..., v(k),..) is an arbitrary evasion control, i.e,
S ol < 67
k=0

We consider the following system .
z, (k1) = A (k) + Bl w, (k) 5 2,(0) = (2.3)

(=)

[[mi(k)}P < e . (2.4)
k=0 _

By Hypothesis 1 and Corollary 3 there exist the controls “—’1 (1) EI (N, —1)
such that

N, 1

1 -
E ey () < €2
k=0
Ai :? + Z AI Bi w; (k) == 0. 2.5)

=0

We consider two following cases,

i i .
T e P < .
Y1

k=0




Then the p‘u[-s'ui'i controls EI (0),..,711 N, -1)

are defined as follows

uy (k)= F; 0 (k) + o (k) ~

By Minkoswki’s inequality we have

[Ny~ 9 T [ 2
2 e+ F ool <) 2 el ] +
\ k=0 =
1 1
Nt Yo N
+t 2 P o®dF] <e+ v 2 Jowif|” <
L k=0 T k=0
<ed Py -t 4
St =l
Consequently,
N1 -
: - 2
Z fu (k)< ey

i.e. uy (0),..., U, (N, ~1) are the admissible pursuii controls. By formula for the

solution of equation (2.1} we have

N1 N, —1
23 (Ny) = A?TJ o+ 1}30 4,1 T B, u,(k) _kio Afﬂ o C, v(x) =
N1 Ny—1 9
=Affz;+k=20 ANtk g P ok + Z AN B, o (o —
N, -1
— 2 AT T, (2.6)

'

But in view of Hypothesis 2 we have for all k = 0,.., N, -1

Ng—1-k = N, ==k =
Ali . I}IFIEJ(I{)..—_ AI t sz(k)'

This implies, in view of (2.5), (2.6) z,(N;) =0

2. If

Ny—1
h>

k=0

]

Py~~¢

1o 12> - )
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Ihe number £, (k; <CN, —1)is defined as lollows

— — e\
2 T < (L0,
k=o Yz
k] _ — t\2
Shoone> (21
k=0 Yi

Then the pursnit controls Tz?(k).; k=10,1,..., ki: | = 1,27are defined as
follows
Uy (k)= F olky + w,(k); k=0,., k-1, u (k) =0,

Uy () =11, (1) = . = u, (k) = 0.

We consider the following system

_ — ) ) ! ~q -
Ty(k+ 1) = A,z (k) 4 By wy (k) 5 2,(0) =725 @7 -
S 2 2,
N AT R (2.8)
k=0
where
o 0 L “1 ky—7
Zp=zplky 1) = 4777z, — 5 AT G
=}

By Hypothesis 1 and Corollary ° then there exist controls @y (0), B, (1), vesy
@, (N, —1) such that

N,—1 :
Z o, (T et
k=0
N, ~Q N1 Ny _.1"1‘ —
42 z, -+ § A, B,w, (k) =0, (2.9)

k=0

Then the pursuit controls Ei (1{1 +1+ k), k ="0, eos N2 -1:i=1 2 are
defined as follows:

Uy +14+K) =0,k=0,., N, =1,
Lk 1+ B =Sy (k) - FyD(ky + 1+ k).
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We have

S nM@EY = E 1,0 +14+8) % =
0

N2—1
=

I

1@, (k) +F, 5 (k, +1+ k)1 > (210)
k=0 ’
Ny ~1
5
k=0

Ng -4
X

N Fook, + 1+ k)| 27 < v

k

150, + &+ 112 . @11
G N

On the other hand, we have

Ny -1

ky
=

ok, + k+D 2 <6 — 2 153 1% <
. k=0

'2 [ c E
2 Py & Py — ¢
<6 — ( o ) <{ T ) ' (2.12)

From {2.11), (2.12) we deduce

k%u%5m+1+mﬁ<m—¥-

k=0

(2.13)

By Minkowski’s inequality and (2.13) we have
N, 4k

2 1= 2 g
s My (oy® <o

k=n

i.e, the controls?z (k), k = 0,..., N, 4 k.are admissible.
By formula for the solution of equation (2.1) we have

2y (Ngt ke + 1) = 4y # TNy 1 20 +

+ I 4, B, uytky— £ 4, C,v (k) =
k=o k=0

N, +k | Ng+k -
N 2 !l N, + k,—k 2 I Ngy+k k
2 k+1 o 2 1 — 2 1 _
=4, (4, M A, Byu,(by— = A, C k) =
= 4,(4, zg) — Z A, C, v (k)— by
& k=0 k=ky 1

4, C2 v (k)4
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Nyt+k; N +ky;—1 - Ny k1 K1 =k
t s At Bmu=4, @, £2-3 4, "¢, vw)—
ko4t 2 212 2 Wy 27 = % 2
Notky Ny+by—k .  Netkr Notr-k
~ 3 4, C,7 W+ T A4, B,w , (k—k, —1) +
k=lk;+1 k=k,+1 .
Ny+k ' N, Ng-1 -
2Tk Ny sk -k _ 2 N Ny=1-k
R T R N T A B, &, (k) +
=k, 1 . =0
-+ 2 4, B, Fyo(ky -— A"2 C, o (&),

This impligs, in view of (29) z, (N, + &k, +1)=0.

 The proof is complete. _ %

In /7/were considered the pursuit process with two pursuers and one
evader:

2 (k1) = A, 2, () — 2, (&) - 0 (B); 7, () =20, i= 1,2, (2.14)

where z, € RR, Ai = (a%}}) are triangular matrices of order n and assume that

| a5’3 {<<iforall j=1, ., n;i=12
The controls u; € R", v € R" must satisiy constraints of the form

g wnt<e, § e @<, @.15)
k=0 k=0

where o, >0, 8>0,i=1,2.

Fs

‘We shall say that the pursuit process in the discrete game (2.14) — (2.15) is
completed after k, steps, if for any the admissible evasion controls o (0), ...,

v (k; —1), there exist the admissible pursuit controls u, (k) = u, (v(k)), k= .0’ .
kl-— 1;i=1, 2_such that zl(k1)=0 or 22(1\‘1)____0‘.

As an immediate consequence of Theorem 2 we obtain,

COROLLARY 6 (see [7]). If pff + pg ~. &?, then the pursuif process in the discreté
game (2.14) — (2.15) is completed after a finite step for any initial posiiion
20 = (20, zg).
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Procf. In this case we have B!. = Ci = [I,i=1, 2, where E is the unit malrix

of order n. Then Hypothesis 2 is fulfilled with F!. are identity mappings. Since
Y= {,=1and p? + pz ~ &%it follows that Hypothesis3 is fulfilled. By B, = £,

we have

n—1 ' r-1 n
range [Bi, AI. Bi’ s Al. B!. ] =range [B-i. R Ai Bi s cees Ai bz. > 45 |

On the other hand, sinee AI. is the triangular matrices and | aff} | <1 implies
that Hypothesis 1 is fulfilled too. The proof is complete. )

Remark 3. In general there are many linear mappings F!. : R?—> R"! such that
B,F,=C;.It is a simple matter to verify that there exists linear mapping

¥

F;. re _» R” such that

Bi F;: = Cl. and |} F::‘ i inf =| Fi s
) F:'EAi

where A, is the set of linear mappings ¥, : RY — RPi such that B.F, =C;,

We shall then assume that linear mappings I, in Hypothesis 2 are E* , ;= 1,2,
. I

Remark 4. Hypothesis 2 is eqiivalent to the fact that for i=1,2, we have
C,Ré C B; RPi . This follows from "

LEMMA 3. Let U/, V, R be the linear spaces of finite dimensional and
P:U->R,Q:V—~ R are linear mappings. Then PU = QV if and only if there
exists linear mapping F: U! — V such that P = QF.

Proof. The conly if » part is clear. We now turn to the proéf of necessity.
Let PU C QV and e,y ep are the basicin U, Then there exist vectors fi ,...,fp s
fi €V . iw 12,.. p, such that ‘

Pe;=0f, » i=12.,p.

_ e
The linear mappings F : U — V is defined as follows : Let x¢l, o= X b.e, ,

1
!

then Fx = y =

i=1

bl.fievc

1 P

We have

P B r
i=1 oy U i=

ine. P=QF.The pfoof is complete,
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Now, we consider the pursuit process in the discrete game (2.1)—(2.2) with
the terminal set 3, being A - invariant subspaces. We shall say that the

pursuit process in the diserete game with many players (2.1)—(2.2) is completed
after k, steps if for any the admissible evasion controls v (0),..., (&, — 1), there

exist the admissible pursuit controls u; (0),..., &, (k,— 1), i =1, 2, such that
z, (ke M, or zz(ki) € 111'2.
We are now in a position to formuiate our basic bypotheses,

Hypothesis 1°. For [ = 1,2 we have ‘
a) range [ By, 4, B, .o &7 "B, ]+ M, =range [ B .. ATTIBL AT M,

by {feCr: A fesdf, f£0,f M, Ia|>1)=6.

Hypothesis 2. For i = 1,2 there exist linear operators F: R? — RPi such that

w BF, =m, C,. where =; : X — XM is canonical projection,

2 2
P P
() + (2) >,
Yz Yo

Hypothesis 3°.

where v, = fi F!. i,

THEOREM 3. Under Hypotheses 1'-53, the pursuil process in the discrete games

with many player (2.1) — (2.2) is compleled after a finite step for any initial
FF3 r-'o p— zo zo R '

position £¥ ={ 7 2)

The prooi of the Theorem 3 parallels that of Theorem 2 and will be omitted.

EXAMPLE, Assume now that the motions of the vectors 7, & RR, { = 1,2 are

described by the difference equations

2 (k4 1) = o2l () + gy (R); 2] (0) =20,
i ) i T 11 (2.16)
P+ = e 220 + v (0); 70 =2,
i . i i2
where |e; | < 1, i=12. The controls u., v must satisfy constraints of the
form

-5l if< o, Tiew’< e, | 2.17)
k=0 k=0

We shall say that the pursumit process in the discrete game (2.16) — (2.17) is
3 it . 72 1 — 2
_comple_ted after k, steps if é(kl) =1 (kl_) or z, (k;) = z'3 (kJ ). We skall be

72 ' . -
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interested in computing the value u, (k)of the pursuit conirol ateach step ki when
the value u (k) of the evasion control are known. In other hand we shall be
interested in finding the function
u, (k) = u,; (v(k)).

Letz; = (z], zf )L, |

w.B O E 0

4, ="' ; B, = 3 €=

O o Z - 10 "l —E

Then we can write (2.16) into a single equation

z, (kD) = A, z, (k) -+ B, u (k) —C, 0(k); z (0) = zf:'(z" 0 )T,

i1’ ~i2

where E is the unit matrix of order n, O is the zero matrix of order n and

7 2\T, i 2 .
( z; ,zi) is transpose of vector ( Zi,%; ) in this case, we have

() =
L [ A i i

Itis clear that M are A - invariant subspace of R?"” . It can be verified that
Hypotheses 1’ — 3’ of Theorem 3 are satisfied, where Ft , I = 1, 2 are identity
mappings and then 7; = y,==1, By applying Theorem 3 we get

PROPOSITION 2. Assume that | o, | = 1, i=1,2 and o2 + g5 > 6°.
Then 1he pursuil process in the discrete game (2.16) — (2.17) Is complete after a
finite step for any initial position z? == ( 2?1 , Z?Q)T .
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