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CONVEX PROGRAMS WITH SEVERAL ADDITIONAL
REVERSE CONVEX CONSTRAINTS -

PHAN THIEN THACH

1. INTRODUCTION

This paper addresses the general problem of minithizing a convex function

subject to convex and reverse convex consiraints. Here by a reverse convex

constraint is meant any constraint of the form

| g@ <0, -
where g: R® — R is a concave function (i.e — g is a convex function), Clearly,
a reverse convex constraintdetermines a closed subset of R", whose comple-

ment is an open convex set (therefore, in the literature such constraints are
also termed «complementary convex»). '

Optimization problems with reverse convex constraints are encountered in a
number of economical and engineering applications {(see e.g. [1], [3], [12], [13],
[14] and also [11]). In recent years they have received an increasing attention
frem researchers, because of their importance for the applications and perhaps
also because of their intrinsic dilficulty which, for a long time, has seemed to
defy any attempt to-solve them numerically. Among the worksdevoted to special
cases ol this class of problems let us menfion Rosen [5§], Avriel and Williams
(1], Ueing [12], Hillestad and Jacobsen ({2}, (3D, Tuy ([9], [11]), Vidigal {13].

In the present paper we shall focus our atlention on the most ty plcal pro-
blem of the mentioned class, namely the [ollowing problem
(P) Minimize f(x), s.t. x & D, g(z) <
where f: R* — R is a convex {inite function, D is a closed convex subset of
R™ given by a convex [inite function &: R" - R:
D={xe R i h(x)<L 0},

while g: R® — R is a concave finite funclion.



The case of several reverse convex constraints: - *
9, (@) <0, g, (@) <0 9, (A <O
with g, (i = L..., m) concave finite functions, can easily be reduced to the
previous one see [11]. Indeed, the above sysiem can be written as a single
Ineqguality:
g(x) < 0,
- where g(x) = max {g; (@), g5(&) »oes 9, (z) }. But it is not hard to see that

glx) = plx) — qx),
with . '

p(x) = g;(®) + 9o @) + v + 9, (=)
gx) =min{ 2 g @:j=10b.n m}
o i
Since both p(x) and ¢(x) are concave functions, by introducing an additional
variable { we can now rewrite the primary system of reverseé convex cons-
trainis in the form
p)y <t q(x) >t

Here the first inequality is obviously reverse convex, wiile the second being
convex could be incorporated into the constraint x € D.

Thus, at the cost of at most one additional variable, any convex program
with several additional reverse convex constraints can be converted into the
form (P). Also note that, as-shown in [11], a very wide class of mathematical
programming problems can be cast into this iramework. In particular, to this
class belongs the problem of minimizing (or maximizing) a d. c. function (i. e.
a function which can be rewritten as a difference belween two convex functionsj
under d. ¢. constraints (i. e. consiraints of the form g(x) < 0, with g(x) ad. c.
function).

A first systematic study of problem (P) is provided in the recent paper of ‘

H. Tuy [11]. There, using a general duality relation betwecen constraints and
objectives in mathematical programming problems a global optimality eriterion
is established for problem (P) which reduces the tfe,stin,r_g'i for the glcbal opti-
mality of a given feasible solution of (P)ioaconcave minimization (i. - convex
maximization) subproblem. On the basis ol this fundamental result a solution
method for problem (P) is developed which consists in solving, e. g. by the
method of Thien-Tam-Ban [6], a connected sequence of linearly constrained
concave programs. ' )

Our purposé in the sequel is to present a different, and perhaps more
direct, approach to problem (P). By restating he problem appropriately, we
tirst - convert it into a problem of linding the lexicographic minimum of a
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function vector over a compact convex set. Since this function vector enjoys the
basie property that its lexicographic minimum overa polyiope is always achieved
in at least one extreme point, the lexicographic minimization problem can be
treated in much the same way as a quasiconcave minimization problem. Thus,
from the conceptual point of view the solution méthod to be proposed is very
simple, From the computational point of view, our algorithm, while sharing
several common features with the algorithm developed in [11], differs in fact
substantially from the latter, offering several improvements upon it. In . particular
unlike the algorithm in [11], our algorithm will work without requiring any,
stability condition for the problem, '

The paper consists of 5 sections. After the Iniroduction we shall establish
in Section 2 the reduction of the original problem (P) fo a lexicographic mini-
mization problem. In Seciion 3 we shall present in detail the proposad solution
method. Section 4 deals with convergence properties of the algorithm. Section
treats the case where the objective funclion is linear. Section 6 discusses the
relation of our method to the method in [11]. Finally, some illustrative exam=
ples are given in the Appendix,

The author is grateful to Prol. H. Tuy, T.V, Thieu and other participants
of the seminar on Cptimization Methods at the Hanoi Mathematical Institute for
many suggestions which have helped to improve a first draft of this paper.

2. REDUCTION TO A LEXTCOGRAPHIC MINIMIZATION PROBLEM

For the sake of convenience, let us rewrite the problem we are concerned
with : '
(P) ‘ Minimize f(z), s.t, € D, g (%) < 0,
where
D={zxeR":h@) <0},

" f, h ¢ R" — R being convex finite functions, while ¢ : R® — R is a concave finite
8 ,

function. As is well known from Convex Analysis (see e. g. [4]), all the functions
[, i, —g are then continuous and subdifferentiable everywhere.

Throughout the paper we shall make the following assumptions:

(i) There exists at least one feasible point, i.e. a point x satisfying
x €D, gx) < 0; ’
(ii) The set C = {x € : g(x) > 0} is bounded;

(i) Inf {f(z): z € D} < Min {f(z): x ¢ D , gx) < 0}.
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Condition (i) is quite natural. In any case, it can be checked by solving the

concave minimization problem: P

Minimize g¢(x),s.t. x€D
¢see e. g. [97) Condition.(ii),. which gegerally holds in practical applications,
rules out some technical complications connected with the presence of infinite
rays over which g(x; may be unbounded below. As for Condition (iii) it simply
means Lhat the reverse convex constraint g{x) < 0 is essential : it fails to hold
enly if the problem reduces to the classical convex program )
Minimize f(x) , s. t. ¢ € D. '

As an immediate consequence of the above assumptions we have

PROPOSITION 1 Problem (P) has an optimal solufion and every optimal
" solution T of (P) must salisfy g(z) = 0.

Proof. In view of (iii) liere is a point w such that
w e D, glw) >0 - ©
_ f(w) < Min {i@): x € D, g(x) < O} (2)
For any z € D such that g{z) < 0 denote by w(z) the point where the line seg.-
ment [w, z] meets the surface g{x) = 0 (since g is concave the existence of =(z)
follows from the inequalities g(z) < 0, g{w) > 0; moreover, w(z) is nniquely
delined). From the convexity of f we can write, for n(z) = 8 w4+ (1—0)z,
0<<o<l: ' \
f(r(2) < of () + (1—0)f(z) < f(2).

This means that z cannot be optimal. Therefore, every optimal solution of ™

must lie on the surfare g(x) = 0. Then the compaciness of the set {re D:
g(x) = 0} together with the continuity of / ensure the exisltence of an optimal
solution. [ ' . ’

We are now in a position to formulate the key idea of our approach.
Let :
ht(z) = max {h(z), 0} S (3)

C={zeD: g >0 = {r: g@) >0, h¥x)=0} ()
and consider the problem: -
(Q) Find the lexicographic minimum of the function vector ( g( x) — ht+ ()

f(x) ) over the compacl convex set C.

Recall that a vector {ay, ay) € R? is said to be lexicographicaily greater
than (b;, b,) if either of the following alternmatives holds:

1) a'1>b] 3 2)q; ﬂbz and a, > b_zc
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THEOREM 1. Under Assumptions (i) (il) (iii) problem (P) is equivalent io (Q).

Proof Since r € D implies A+ (v) = 0, we have for all * ¢ C: g () —
—h*(x) == g(x). This being so, if  is an optimal solution to (Q), then
Dzeh, g =0,
. 2) g(x) = min { g(z): x e D, J\x) 033

3) f(@) < Hz) for all o € I) such lhat g(r) = g(x).

But by Proposition1 there exist points & € D satisfying g(x) = 0. Therefore,
we must have, from 1) and 2): g(x) = 0. Next it follows from 3) that f(z) <
< i(®) lor all x € D satisfying g(x) = 0. By Proposition 1 we then conclude
that = is an optimal solution to (P).

Conversely, if « is an optimal solution to (P) then by Proposition 1 g(x} = 0

so that x satisfies 1) and 2). Since 3) is obvious, x is a lexicographic minimum

of (g(z) — A+{(x), f(x)) over C, hence an optimal solution to (Q). [].
Problem (Q) is merely an allernative restatement of the original problem,
However, it is more amenable to solution owing to the following fact.

PROPOSITION 2, Assume that either g(x) is sirictly concave or f(zx) is linear.
Then the lexicographic minimum of (g{x)—h+(x), F(x)) over any polylope S is

‘achieved in af least one vertex of this polytope.

Proof. Since At(x) is convex, if g(x) is strictlly concave then so is g(x) —
—h+*(x) and the minimum of g(x) -- A+*(x) over a polylope S can be achieved
only at some verlex of S, Hence the lexicographi¢c minimum of (g(x) — h+(x),
t(a:) ) over S must be attained at gsome vertex of S. If ¢ (x) is concave but not
necessarily strictly concave, the set where g(x)— At (x) attains its minimum over
Sis aunion of faces of S(see e.g.[4], Corollary 32.1.1). Therefore,if f(x)is lirear,
the lexicographic minimum of (g(x} — A*(x), f(x)) must be achieved in at least
one vertex of a certain face (among the above mentioned faces) of S. By a well
known property of convex polytopes (see e.g, [4], Section 18), this vertex will
also be an extreme point of 8. [

The above f’rOposition shows that problem ({Q) is essentially similar to the

/- problem of globally minimizing a quasiconcave funclion over a compact set.

This suggests to adapt to problem (Q) the outer approximation method for
solving concave minimization problem (see [9]) In the pext Section we proceed

to describe in detail how this idea can be realized. *
N 3

3. SOLUTION METHOD

Let us first recall the scheme of onter approximation (see [9]). Given a

. compact convex set C (= R"and a function ¥ (z), with the property that the
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minimum of F over any polytope is attained in at least-one vertex (exireme
point), we cen find the. global minimum of F(z} over C by the following
procedura.

-~ LetW be any fixed compact convex subset of C confaining at least one
point achieving the global minimum of F(x) over C.

We start from a polytope S, O W and solve the first relaxed problem:
Min F(z), s.t. x.€ ;.
(Since the minimum of F(x) over S, must be ac}:ueved at some vertexof S,, we

have only to search through the vertex setV, ot §,). Let ! be an optimal solu-

tion of the first relaxed problem. If it so happens that e C we are done: z”
is an optimal solution of the original problem. &therwise we construct an affine

function [, (x) (i.e. a hyperplane) strictly separating z?from W, i. e. such that
1(~1) > 0, while I, (x) < 0 forall @ & V. This is always possible since Z¢C
implies z/ ¢ W. Adding to'S, the constraint

1 (x) <0

we define a new polytope 82 D W smaller than S, since z¥ has been cat away
from S,. Then we consider the second relaxed problem
Min {F () : x € S,}

and repeat exactly the same procedure as before.

Continuing this way, we may arrive, after a certain number of iterations,

at a point zX (the optimal solution of the k& — th relaxed problem) such that

zk e C: then we stop, having obtained a global minimum of F over C. Other- -

wise, the process will generate an inlinite sequence {zk}, We can then prove
the following proposition, which is a specialized form of a general theorem
established in [9].
PROPOSITION 3. Let [ (v) = (p*, xy + v, bethe affine function such that
L (Fy>0,ard | (@) < 0V x & W.~Assume:

a) There is a constant r such that for all k:

by, 1< rlpf

b) For any subsequence {k,} < 1k}, if =& —z¢ W, pkv = p, Vi, = Vo then

(2 = {p» 2 + v > 0.



-

Then every cluster point z of fkhe sequence zF will belong to W.
Proof. Since lk(zk) >0, ik(z""‘“f) < 0, we must have p¥ -0 and so we can

assume that | p¥' | =1, Let z= lim z&, In view of a) we can assume, by taking

Vi
subsequences if necessary, that pfv — p, Ve, ~> Y» 8o that [ (x) - l2) =
/ . v vy

= (p, *) + v for every x. For all { > k, we have zl ¢ 5, T S, 1. e. L, (zy =
Therefore, fixing v and letting { = ku, i — <, we obtain L, () < 0 then,
letting v — = we obtain I(z) = 0. In view ol b) this implies z € W [,

Thus, if the separating alfine functions [,() are consiructed in such a way
to satisfy a) and b), then every clusier point z 9f the generated sequence {:k}
will belong to W  C. Since F(z¥) < F(z) vx & S, and W = Sk it follow il-at
F(z) < F(x) ¥ x e W, heace z is a global minimum ol F over C,

Let us now adapi the above deseribed method to problem (Q), where the
function vector (g(x) — h*(x), f(x)) is given the role of F(x) and the set W is
taken to be ‘

' : W={xeD:flz)< o} (5)
with : .

w=min {f(x):x €D, g(x) <0} (6)
Note that we actnally have here W C, i. e. g(z) > O for every z ¢ W, for if
g(z) < 0 for some z ¢ W (— D then the point =(z) defined as in the proof of
Proposition 1 would yield f(m(z)) <Zf(z) < «, contradicting (6). '

In view of the specilic features of problem (Q), two basic pointé should be
clarified for the concrefe realization of the above scheme,

The first is concerned with the relaxed problems to be solved in the itera-
tions. Following the above scheme, we generate a nested sequence of polytopes
§, enclosing W along with the sequence of relaxed problems

Lex-min (g(z) — h¥(z), fl@)ys.t. v e S, . 7
According to Proposition 2, these problems can be replaced by
Lex-min (g(z) — h+(@), f@@), s. L. x Vs
where V, is the vertexset of S, . However, exploiting the fact that every opti-

mal solution to P must lie in the region {x:gx) < 0}, we shall replace {7) by
- (@) Lex-min (g(z} — f+{z), f(x), st eV, g(a) < 0. (8

.Actually, it will be shown later (Lemma 2) that any oplimal solution 7% 1o (8)

such that % ¢ € will solve the original problem (P).
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' The second point relates to the constructlion of the separaiing hyperplane
when z¥ ¢ C. This can be done in several different ways. Of coursc, the simplest

way is to construct a hyperplane separating 2% strictly from C. However forour
method this kind of cuts would be poorly efficient. In fact, cince W is convex
and in general much smaller than C, it would be much better to separate zX from
iV, But then the difficulty is that «, and hence the set W, is unknown as long
as the problem has not been solved yel.

|
To get round this difficulty we proceed.as follows. For the sake of simpli- .
city assume "

(iv) int D 2 ¢
so that we can pick a point w & int D satisfying (1) and (2), i. e. such that .
hw) < 0, gw) > 0, f(w) < o | (9

At iteration k let T ¥ be the best feasible point known so far, i. e. a feasible
point such that f(x ¥y« i(x) for all feasible points encountered during the
.solution procedure up to this iteration. Let '

B =N F)W, ={zeC:/@)<B } (10)
' i <~ e S
Obviously W, isa compact convex set such that
' Wow, C C.

As the algorithm proceeds, W, yields a better and better approximation of W,
1f z¢¢ C then zF § W, and since w € int W, (see (9)) the line segment [w,z5]
meets the boundary of W, at a unique point u® such that

' max {huk) , — g(uk), faky — g, } =0

A

"Clearly ak lies outside W or on the boundary of W, so we can always draw
a hyperplane through uk , strictly separating =k from W . Specifically let
1

1:,\_ (x):‘<pk!m_uk>: !

I

where p¥ € ah(uk) if h(uk)=0, or p*eaf(u¥) otherwisé. Later we shall show
(Lemma 1) that the function e, (T) constructed this way actually separates

2% strictly fom the set |
W'om {z e C: f(x) < BlDOW, ' (10.)
where § = lim B, (this. limit exists because f, == and B st S [3]‘_); Furthermore,

these functions and W, will satisfy all the requirements of Proposition 3.

We thus come to the following algorithm.



#

ALGORIT!IIN 1. (Assuming inl b = ¢)

Ipitializaiion. Select & point w salisfying (9). For each point z such that
g{z) < Q denote by =(z} the pomt on the line seoment [w;z] such that g(w(<))=0.
Seiect a feasible solution 'z: , and lef g, = f (T ) . Select a polytope Sy cone
taining {x @ D :f {x) B, }» such that the vertex set V,ofS, can readily be

computed.

Iteration k =1, 2,..., This iteration is entered with a polytope Sk, knowledge

-k
of the vertex sect Vk of Sj_ , A current best [easible point  and a current best

value == f(:;:k)
Solve the subproblem: _
(@) Lesx-min (g(@)—h*(@), f(z)),s.t.xcV, ,gx) <0 (11)

obtaining an optimal solation of it: k

ke €@ e g(zF) = h+(zF) = 0) , stop .

Otherwise, compute the point u¥ onthe line segment [w; z¥] that satisfies

Max {h(a¥), — g(u*) , j(u*)—p } =0. (12)

Pick p e h(uf)if A(u*)=0, or p¥<d f (uF) otherwise, and generate the new
constraint

L@y = (p*,x—uk)<0 — (13)

Form a new polytope S"-l-f by adding this new constraint to §,_. Compute the

vertex set V]_I_I of & PR Cpdate the current best feasible solution and the

current best value' by setting %71 equal to the best among =%, uf (if u* is

feasible) and all points of form =(z), z € Vk+1 AN Vk , §(z) < 0, that are feasible.
Go to 1terat10n k1.

Remark 1. A point @ satlsiymd 1) and 2) can be obtained by solving the

CORVeX program _
Minimize f(z), s. t. x ¢ D.

I{ there is 2n oplimal solation w to this program such that g(w) << 0 then w also
solves problem (P). Otherwise we, shall find an optimal solution w such that
gw) -0 and then @ satisfies 1) and 2}, Assumingint D -=¢, we can thenslighlly
move w to satisly also (9).

Remark 2. 5ince the polytope S] A1 differs. from S . by justone additional cons-

traint, VA-Li can be computed from 1 using e.g. the procedure elaborated by

" Thieu-Tam-Ban in |6] (see also [9]). .
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Remark 3. A common drawback of ¢nlerepproxivation meiheds e Algorithm
1 is that the number of constrainis 12(.) < 0 iner:ases as the algorithm proceeda,

This drawback can however be paviiaily orsrcome by using constraint dropping
techniques of the type developed in [9] and jI10L

4. CONYERGENCE PLROPERTIES

This section is devoted to the prooi of the convergence of the above
Algorithm. ‘

First we observe the following.
LEMMA 1. The affine functions I, (), gwen by (13) satisfy all the condilions of
Pro position 3 for W, ={x e C: f(a:) B}, where B = lim By -

Proof. If p* €3 h (¢*) then from the definition of the subdifferential
[ @ =% e — k)< h(@) —hk) =hz)

hence [, (z) = 0 ¥z ¢ W . Since [, (") =0, (w) < h(w) < ¢, and - since
uh = tw+ (I—-—tk)zk with 0 < £, <1, it follows frem the linearity of lk(.)
that [, (zF) > 0. If pk e of (u¥), then either flu¥) — B, =0, or g(u¥) = 0 and in
the laltgr case f(u.‘l‘) = Bk+1 = [ because u* is feasible, Therefore, lk (x) <
= f(x) — f(u*) = f(@) — B =0 w ¢ W _, and since Ik(r’l") =0, I, (w)
= f(w) — B < 0, it follows that [, (zF) > 0. Thus the function [, (.) strictly

separates z¥ from W .

Now, since lk (x) = (pk, x) -+ Yy with v, = (pk, uky, we have h’kl =] pkl .
| #* |, and the set € being assumed bounded (assumption (ii)), it follow; that

| uf | == r Mk, for some r > 0. That is, condition a) in Propesition 3 is
fulfilled. It remains to check condltlon b)-.

k
Let zV —>z¢ WO. Then, noting that the sequence Vah(u*), Uaf(u*} are
. k k '

bounded (in view of the boundedness of the sequence {uk}; see e.g. [4] we can
assume, by taking subsequences if necessary, that either of the foilowing
cases occurs
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ke ke, ks, k : fs
1y p edh{u ) a¥ - i, (s0 h(u V)~ h{u) = 0), p’\\, — p e oh(u);

k&

£, ! , &y
V—u p¥ - peafiu).

2) p ¥ = of(u '-), u
Then lk‘_(x) > () = (p, x—u) with p € 3h(u) or p e 3f(u), according (o the

case. In the first allernative [{w) =< A(tw) — h{u) == h(w) << 0; In the second
alternative, {(0) = f(w) — flu) = fw) —— p < 0. Since # lies in the line
segment [w, z], since {w) < 0, (u) = 0, while z o= u (for z ¢ W, u g V), it
follows that I(z) > 0. Thus, condition b) is satisfied as welil. [,

CONSEQUENCE. We have W S, for every k, and any cluster point z of

the sequence {z*} satisfies
zeD, g(z)=0, f(x=s. (14

Proof. The inclusion W _cC Sk follows from the fact that W fre D:
 f(x) = B} < 55 and lj. (¥) =0 for all x e W, all j=1, ..., Icr— 1. Further,
from Proposition 3 and the above lemma it lollows that z & Wo, ie. z e D,
g(z) > 0, f(z) = B. But, since g(z¥) = 0 for all &, we also have g(z) = 0. Hence
g(z)=0.0 | '

At this point, it is worthwhile pointing out a peculiar feature of the lexico-

graphic minimization problem (Q). While in the outer approximation scheme

for quasiconcave minimization any cluster point z of (zF) necessarily solves
the original problem (provided, of course, the objective function is continuous),
this may not be trué¢ for the lexicographic minimization problem_{Q). More

precisely, from the fact that z¥ solves the relaxed problem (Q]‘) (z% achieves
the lexicographic minimum over §; D C) it does not necessarily follow that z

solves () ("z: achieves the lexicographi¢c minimum over C), In other words, we
may have p > «. This umpleasant feature is due to the possible noncontinuity

of the lexicographic ordering with respect to the asual topology of R,

Fortunately, we can prove the following theorem. Let

vk = arg min {f(x): z ¢ V,, g(@) < 0}.

Clearly v exists, for otherwise Vk  {x: gla)> 0}, hence Skc {z : g(x) > 0},
contrary to the inclusion W < Sl;’ and the fact that W confains at least one

optimal solution to (P), i.e. at least one point in the region g{x) < 0,
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THEOREM 2. Assume ({) through (iv) and, moreover, lhat the funciion glx) is
strictly concave. If Algorithm 1 terminales af some ileration k, then z =k — vk, and
this yields an optimal solution to problem (P). Otherwise, every clusler pozm v of

the sequence {v*} yields an optimal solulion to problem ().
The proof of this fundamental result. will follow from several lemmas.
LEMMA 2. If an optimal solution z* to (Qk ) satisfies g (k)= h+ (zF) = 0, then

K

=% solpes problem ((Q) and 7k = pk |

Proof. We {irst show that z¥ solves the problem
Lex-min (g(z), f(2)), s. t teV, {15)
For any z & V, if g(z) <{g(z*) =0, then
9@) — hH(2) < g(z) < g () = g(F) — h* (),
contradicting the assumption that z¥solves (Q, ). Furthermore, if 9(z)=g{z¥) =0,
then g{z) — flvl‘(z) < 9(2) = gz 2k ) = g(z¥) — h*(z¥). Since z solves (Q,), this

.implies f(z) > f(zX). Therelore, z¥ solves (15) and hence, by Proposition 2,
',k solves the problem

Lex-min (g(z), f(£)), s.t. z € S,

From the inclusion W C S, and the fact that g (z) =§(zk) = 0 for every

optimal solution 7 of (P) (Proposition 1) it then follows that f(z*) < «, and
hence that z¥ isan optimal solution to (P), becaunse z% is feasible. Further,
since g(zf) = 0 = min {g(2) : ze Vi g(z) < 0}, we have ¢(z) =0 for all zer
satistying ¢ (z) < 0. This implies ¥ = arg min {f () 1z €V, 9() <0} = vk,
completing the proof. [J
LEMMA 3. Any cluster point & of {v*} satisfies
Proof. From the definition of v¥ it follows that f(uF) == f(zF), hence f (7) <
< f(7) < B (where T is any cluster point of the sequence {z¥ )., Farther,
since z¥ solves (Q,) we have

g (%) — b (oK) > g (zF) — h* (25,

hence, in view of (14): _
g (7 —Rm (B)>g(7)—h* (7)) =0

But from g (0¥ )<< 0, A* (vk) > 0 we get g () < 0, b (7)) > 0. .

Therefore, g (v ) = 0, T (i_;‘):O., i.e. v e D. 0O
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LEMMA 4. For every ue W stich that g(u) ==0 there exisls a sequence {uk} such
that uk g Vi, g*) <0, v¥ - u (k- o).

Proof. Consider any hyperplane / = {x: <T p, 2 — 0 > = 0}, with
ped(—g (). Let 6= {z: g(x) >> 0}. For any x « H N G we have g (x) __

and 0 = < p,x — u > = —g(x) 4 glu) = —g (x), hence g(z)=0.1f x £ uthen
obviously x’ = 1/2(x + u) € H n G, and therefore g (x’) = 0, but becanse of
the strict concavity of g, g(x') > (¢ (x) -+ ¢ (0))/2 = 0. This contradiction shows
that H n G = {u}. For any x ¢ G, we have < p, z — u > < —g (z) <. 0. Since

e W S the linear function < p, & — u > attains its maximum over §, at

some vertex u* eV such that << p, u¥— u > > 0, hence g (%) < 0. Let 7 be
a cluster point of the sequence {u"}. Then »

<pou—u>0g9(a)0 (18)
On thé other hand, from the definition of z& we have '

g (@k) — B+ (k) = g (%) — h* (2F),

hence g (W) — A (u)=g(z) - A*(Z) = 0 with Z being some cluster

point of {zk} (see (14)). Therefore g () > At (u) > 0 and bence, T ¢ G,
<< p, u — u > = 0. The latter inequality implies, in view of (18),
<p, u —u> =0 Thus w € Hn Gand consequently w = u. This shows

thatuf >
LEMMA 5. Every cluster point v of thesequence { v* } solves problem (P),

Proof. By Lemma 3, v &'D, g(v) = 0. By Lemma 4, for any u € W such that
g(u) = Othere is a sequence u satistying the conclusion of Lemma 4. But from
the definition of v , f(v* ) ' f (uX ), hence f() < f(u) Therefore, by Propo-
sition 1, v is anoptimal solution to (P). [J.

Theorem 2 now immediately follows [rom Lemmas 2 and 5,

In actual practice, we must, of course, stop the solution procedure at some
iteration k. Theorem 2 ensures that for k sufficiently large v* will be sufficienily

near to an optimal solution. However, it should be borne in mind that v*¥ may
not be feasible, even though it is nearly feasible as the following lemma shows

LEMMA 6. If. )
| g@E*)~hr(Fy> - (19)
then —s < g(v¥) <0, h(v¥) < ¢ {in fact these inequalities hold for every v e v,

such \ihpt gy 0
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Proof. If v e V, is such that g(v) < — = then g(v) — AWy — e — hH0) < —
contradicting (19}, and the definition of ¥ Therefore.

gy > —c N rveV, ‘ (20)
Since v € V, , and g(v) < 0imply g(v) —h+(®) > @(zF) — bt (%) > — e it
follows that it(v) < g(v) -+ = < e. [

Thus, for k large enough, pXis nearly feasible and approximately optimal.
However sometimes we may want {o have an approximate oplimal solution
which is feasible. This motivates considering in each iteration the current best

feasible solatlon ¥ . We can then prove the following proposition.
THEOREM 3. Under the same condilions as in Theorem 2, for any givenc > 0
the situation (19) must occur after finitely many iterations. If (19) holds then the
current best solution T is appré:cimafely optimal in the sense that. )

' f(2"y <min {f(2) -z € D, glay + e <O} (20
Proef. That (19) necessarily occurs after finitely many iterations follows f\rom

the fact (14) (consequence of Lemma 1) Suppose now that (19) holds. First
from (20) and the concavity of g it follows that.

g(z) > —= forallzeS,. o (22)
On the other hand it can easily be seen that '
D, ={zxeD:f(z) <B }CS,. - (23)

Indeed & C S and for amy j < k, either h(u)) = 0, and then p/ & ah(a),
1(x) = {pl, = — ufy < (&) — h(w)) < h(@) < 0, for all z& D; Or h(ul) < 0
and then p/ e af w/), \ .
Lz) = (Pl 2~ ul) < (@) — f(u)) < f(z) =B, <0

for all  such that f(x) < B,- Here we used the fact (established in the proof
of Lemma 1) that either‘f(uf) = Bj > B, or fu)) > ]3}.4_1 > By

From (22) and (23) it is easily seen that for any x € D such that g(zx) < —-¢
we must have f(z) > B, . This proves (21). O

As a consequence of the above Theorem we ,obiain for anye ~70:

B< min{f(x): xe D, glx) +¢ 0},

(recall that B = lim f(z*)). |

Fhe question arises as to under which conditions we have

min {f(@) : = & D, g@®) + ¢ < 0} ————s a
g - 04
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-or equivalently, B = «? If this holds, then following [11] we say that the

problem (P) is stable. It has been shown in[11] that stability is ensured, provided
the following condition is satisfied : ‘

(v) No point x € D with g(x) = 0 is a local minimum of g over I). Thus

we can state 3

THEOREM.4. Assume (i) through (v). Then any cluster point x of the sequence
zk generated by Algorithm 1 is an optimal solution fo problem (P).

. 5. CASE WHERE THE OBJECTIVE FUNCTION IS LINEAR

If the function g(x) is concave but noi strictly concave, while f(x) is linear,
then to guarantee convergence, the algorithm should be modified as follows.

- Consider at iteration k the set
*
V)'\‘ == VI.‘ N Uk
where ¥V, denotes, as previously, the vertex set of S,, and [/, is the set of all

points x such that x is'the intersection of the surface g(x) = 0 with an edge
of §, joining two vertices v, v’ satislying g(v) < 0, g(v*) > 0.

Let us call Algorithm 2 the algorithm which proceeds exactly as Algorithm

1, except that we use V7 instead of V, in the definition of the. subproblem
(@) In other words, the subproblem.to be solved in iteration k is

(@) Lex-min (g(z)—h*+(z), f(z)), s.t x Vi, gz) <. : (24)

THEOREM 5. Assume in addition to (i) through (iv) that the function flx) is
linear. Then the conclusions of Theorem 1 hold for Algorithm 2, with

v = arg min { f(x) ‘v e Visgx) <0} (25)
Proof. The first part of the Theorem (asserting that when the Algorithm
stops at iteration %, 2= p* is an optimal.solution) ia proved exactly as before,

replacing everywhere V, by V;‘;. To establish the secohd part of the Theorem,
we proved the following property as a substitute to Lemma 4

For any u € W such that g{u) = 0, there exists a sequence { u¥} such that

ake Ve, glu*) <0, f@@h) < f). 7 (26)
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Indeed, consider any p €8 (—g(u)), so that ¢g{(z) < 0 for all = of the halfspace
{p, r—u) > 0. Then the linear function f achieves its minimum over the convex
polytope '

T, ={xeS, :(p, x—u) > 0}.

at some vertex af of T o which is either an element of Vk, or the intersection

we let 4 ¥ = uX. In the latter case, if g(v) <0, g(v") < 0, we take as u¥ the
vertex v or v’ that corresponds to the smallest value of f{x) over [v, v']; if

-of the hyperplane (p, x—u)= 0 with two vertices v, v’ of S).+ In the former case

gv) > 0 then necessarily g(v") < 0 (otherwise [v, v’] would lie outside Tk)' so

* — .
that o* g Vk and we take zX = u¥. In any case we thus have for each k, a point

uk satisfying (26).
Now suppose that the algorithm is infinite and let » be any cluster point

of v*. Then, by the same argument as that used for proving Lemma 3,7 & D,
g(¥) = 0 and f(v) < 8. For any u € W such that g(z)= 0, we have, as shown

just above, a sequence. u® satlstylng (26). Since
%) < f @* < fa),

by passing to the limit we get f(v) < f (u). Therefore, by Proposition 1 v isan
optlmal solution of (P). O

6. DISCUSSION

!

1) In contrast to the method of [11] the method presented above does not

require stability condition (v). For the convergence of Algorithm 1, we only

need, aside from condi‘tions (i) through (iv), that the function g(x) be strictly
concave (Theorem 2). Note that the latter condition does not imply stability, as
can be shown by simple counter-examples.

For the convergencé of Algorithm2 we only need that the objective function
f(z) be linear (Theorem 4), Alsc note that ai the expense of an additional
variable, every problem (P) can be converted into one witha linear objective
function, since it can always be written in the form.

Minimize £, s, t. f(z) <{, €D, g(x) <O ) ’

Therefore, Algorithm 2 can be used to solve tj:ie problem in the general case,
even if the stability condition (v) is not satisfied.

We need condition (v) only whenwe wantto produce a sequence of feasible

?

solutions x* converging to an optimal solution (Theorem 3).
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2) The basic idea underlying the approach in [11] is the following. Using

- a general duality principle between objective and constraint, a global optimlity

criterion is established which says that, in the presence of stability, a feasible

point z is globally optimal if and only if

0 = min {g (x):zeD, f@)<F(x)}
Now, giving a point x 1 & D such that g(:r: } = 0 we can check whether x1'ig
optimal or mot by solving the concave program

€Q (7)) Minimize {g(x), s. t.ze D, f(2) < f(:t:i)}

1

If the optimal value in this coneave program is zero, - is opfimal to (P}

(assuming the problem stable). Otherwise, a point zl & D is obtained with

1

g (z1) < 0. Then 22 =x (z j is a feasible point better than !, and the proce-

dure can be repeated, starting from z” ..

Since each subproblem (Q (z¥)) is solved by the outer approximation
method, i. e. by replacing its consiraint set' with a sequence of polytopes ap- -

‘proximating it more and more closely from the outside, the procedure in this

primary férm would imply solving a double sequence of linearly constrained
concave programs. Therefore, to make the procedure more implementable, the
double sequence is replaced by a adiagonal» one. This leads to a procedure
consisting in solving at iteration & a single concave program of the form
min {g(x):x &S

or, equivalently

min {g@) : x eV }, : (27)
where V, is the vertex set of §,,and §,_ is an outer approximation of the

co nstraint set

D, ={zeD :f(x)<B} (28)

(B being the best feasible value of f known up to iteration k).

Thus, as regards the formal structure, our Algorithm 1 shares many
common features with the algorithm developed in [11}], inasmuch as both
proceed through a sequence of concave minimization subproblems over
polytopes. The conceptual bases, however, are quite different: while each
subpréblem in the algorithm of [11] is conceived primarily as a test for global
optimality, it is in our Algorithm 1 a relaxation of the equivalent lexicographic
minimization problem (Q). Since the test is sure only for stabie problems, the
algorithm in [11] does not work for unstable problems. On the other hand,
the possible discontinuity of the lexicographic mmlmlzahon in our algontnm

is overcome by the devise of the % sequence.
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FIG. 1

3) From a computational point of view, the two algorithms (Algorithm 1
and the one in {11]) are not equivalent to each other. First, even if at some
iteration k the polytope Sk happens to be the same in both methods, our sub--

problem  (Q,) (11) differs from (27) (the corresponding subproblem in [11]) by

the objective lunction as well as by the constraints. For ezample, in the case
of fig. 1 where a part of the set g(x) = 0 lies on the boundary of D and the
broken lines represent the level sets of the function g{x), the optimal solution
of the subproblem (Qk) in our algorithm is e, whereas it would be b in the

algorithm of [11]. Under these condltlons, the algorithm of [I1] would generate
asequence tending fo a poxnt x satisfying the criterion

0 = min { g(x) : x € D, f(z) < f{®) },
without being a globzl optimum, whereas our Algorithm 1 will neeesssarily
produce a sequence convergingto a global optimum v (Theorem 2). Furthermore
if at some iteration k the optimal solation z¥ to the subproblem at iteration k ‘
satisfies z8 € D, g(z% ) = 0, then for the above Algorithm 1 we are sure that

z¥ is already a global optimum, but this may fail to be true tor the algorithm
of [11] unless the problem is stable.

The second differénce lies in the construction of the cutting planes. In our
method, the cutting plane at iteration k separates-the set

D, ={xeD:f(x) <B}

from the portion of [w, z¥ ] outside the set

= {zeD :g(x) >0, flz) < B b
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(see (23)), whereas in the method of [11] it separales D, from the portion
[w, z¥] outside the set _
Fp={r:g(x) >0, f(2) <B, }

Since W, C Fk , our cuts {are generally deeper, which may result in a 1ﬁ6re
&  Tapid convergence.”

Thus, in a "certain sense, the present method coitld be considered as an
improved version of the method developed in [11], ’ °
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APPENDIX !
ILLUSTRATIVE EXAMPLES

- EXAMPLE 1 _ _ _
Minimize f(z, », ) = (¥, — 3 . 68)° +(&; — 19%,8. 1. (29)
h(x,, x,) = maz {x, + x, — 30, (0. e, — 3)? + 0.1z, - 2.5y
11,25, — =z, 4182} /484 — 10, —wy s — 3, <O . (30)
glz, ,xy )= (——x? ~ xg + A84)10 < 0 - (31)
It is easily seen that f(x, , x,) isthe distance from (z, , , )to w=1(3.68,12)
(Fig . 2), so wis an optimal solution of the convex program (29) — (30):
Minimize f (x;, z,), 5. LA (Z; S 2,) < 0.
Now, we apply Algorithm 1 to solve the program (29) — (31).

Initialization
w=(3.6812),
S, ={@, »x) s 3, + %, < 30, x, >0, z, > 0
Vv, = {(0,0), (30,0), (0,30)}
Tr,= (21.6697, 3 . 79801)
B, = 390 . 905,  (Fig.2) .

Iteration i.
2! == (0,30) solves(Q 1)
glzly, —ht(z') = — 650711




ul = (2.3969, 18.2576)
11(3:1,:1:2) =—3, + L 3581‘2 — 22,4

Sy = 8; N 1xTys 29) ¢ L(x,,2,) <0}

Vy == {(0,0), (30,0, (7.78,22. 22), (0,16.49)}

p? = (7. 78,22. 22)

@’ = (7.2,20.79), B, = 89.63; (Fig. 3).
{ieration 2, ) ‘

2% == (30,0 solves (Qy)-

9(z%) — B+ (%) = — 41.6

u? = (12.2943, 8. 0725)
l(xpxy) = 17. 232, — 7. 855z, —~ 148.505

Se =8, N {{zg, x,) : Lz, z,) < 0)
Ve = {(0:0), (15.31,14. 69), (7.78,22.22),
(0,16. 49), (8. 61,0)}
v} = (7.78,22. 22)
z? = (7.2.20.79), B, = 89.63 - ‘ _ (Fig. 4).

Continuing in this way we obtain the results, given in Tableau 1. (z* de-
notes the current best ieasible solulion, B, the current best value, vX the

current best approximate solution, zX ihe solution of-(Qk ) Nk the number of
constraints of (Q,) ; the étapping criterion is g(z¥) — h+ (_zk) > — 0,001),
EXAMPLE 2. _ ‘
Minimize f(%;, 2,) = (z; — 3.68)% + (x, —12)?, s.t. (32)
h(zy, %) = max {z; + x, — 30, (0.1z; — 3 + (O.1z, — 2.5
2
—11.25, — x, + 1841:2/48#—10,—_:1:1,—- .1 <0 (33)
8(x,>7,) = min {(~ ) — 22 + 484) /10, — 1z, — 6
— (1z, — &* 445} <0, (34)

This problem is not stable. Note that Program (32) — (34) differs from
Program (29) — (31) only by ihe reverse convex consgtraint.

The computational results are shown in Tableau 2. T



Tableau 1

v, N, — B8 g g(zk )
k| Vel f N ok k ok (%) bk )
1] 4 4 (21.6697,3.7980} 390.90 | (0,30) 337.54 — 65.07
21 51 5 (7.2044,20.7870) | 89.632 | (7.7794,22,2208) 121,27 —~ 41.6
3 6 6 » » > » -~ 7.6108
40 7.1 7 3 » (6.3161,21.1432) - | 90.548 - 6021
5{ 7 7 (6.4907,21,0207) 89.273 | (6.5052,21.0674) 90.199 - 5458
6| 7 7 » » » » - 2162
7| 8 8 > » (6.4516,21.0329) 89.275 - .0808
s| 9 9 » » » » - .0059
910 | 10 » » » » - .0013
1011 |11 (6.4520,21.0326) 89.272 | (6.4520,21.0328) | 89.275 - 0006
Tableau 2. ®
V.0 k - glz¥y —
k 1“ N xk B v¥ £(+%) R )
1 4 4 (21.6697,3.7980) | 390.90 (X)) | 16754 | — 65.07
2 5 5 (7.2044,20.7870) | 89.632 (7.7794,22.2208) | 12127 | - 41.6
3 6 6 » » » » -1
4 6 6 » » (0,9.5655) 19.469 | — 7.6108
5 717 » » » » - 6021
6 | 8 8 (6.4 -07,21.0207) | 80.273 » » ~ 5458
7 7 7 » » » » - 3949
8 | 8 | 8 » » (0,9.99566) 17559 | - .2182
9 9 9 » » > » - .0308
10 |10 |10 » » » » - .0059
1 1 |1 » » 7 » » - .0039 .
12 |1 |u > » (0,9.99999) 17.542 | - 0013
13 |12 [12 (6.4520,21.0207) | 89.272 » » -

0006

&
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