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ON THE NULL CONTROLLABILITY OF INFINITE DIMENSIONAL
DISCRETE TIME SYSTEMS

NGUYEN KHOA SON* and LE THANH**

I. INTRODUCTION

We shall be concerned with the control system (A, B, Q) of the form:
' x, ., = Az, 4 Bu, , k= 123,. ' (1)

where the state vector z, & X, the conirol vector u € Q U, X, U being real
Banach spaces, and A: X — X, B: U —» X are bounded linear operators.

Throughout this note we assume that Qis eonvex and satisfies the condition:

Ju, € 2 : Bu0= O ; {2)

For the motivation of qualitative investigations of infinite — dimen-
sional discrete — time sysiems of type (1) the reader is refered to
[1]—[3]. We recall only that (with the aid of a natural method of steps) it is
always possible to represent control systems described by equations of retarded
type by discrete— time model (1) where the corresponding operators 4, B have, -
in addition, a nice analytic form. This gives, in particular, a good possibility
for studying the controliability of hereditary differential systems with restra-
ined control — one problem still rarely considered up to the present in the
literature. '

In [4] we have studjed the local reachability of system (1). In [5] some
criteria for global reachalibity and global controlability of the system with
bounded  have been proved under the assumption that this system is locally
reachable or, respectively, locally controllable. It is the main purpose of this
paper to obtain the necessary and sufficient conditions for local controllability
of the system (4,B,0). Also we shall present some criteria for global controle-
ability for the case where € i3 not necessarily bounded.



The results ol this note ‘can be cqnsider‘ed as an extension of the corre-
sponding controllability properties of (4, B, L) investigated in [6] lor the linite-
dimensional case.

. LOCAYL NULL—CONTROLLABILITY

We recall that the polint xz & X is said to be controllable (respectively,
reachable) by system (1) if there exists a finite sequence of controls u, € Q,
{ =1, k, such that :

: ko ki " : '
(respectively, x = = 4 Bu). -
i=1
We shall say that the system is locally (respectively, globaly) controllable
if the set S of all controllable points contains some neighbourhood of the origin
i.e Ogint §, (respectively, if S coincides with the whole state space, i.e S=X),
Similarly, the notions of local and global reachability are defined, respectively
by the condtions ¢ int R and R = X with R denoting the set of all reachable
points, A ,

In [6] the following criterion of local controllability has been proved.

THEOREM 2.1. For the system (A, B, Q) with X = R® [ — Rm tobelocally
controllable il is necessary and suf ficient that the transpose matriz A* has neither
real eigenvectors with. positive eigenvalues sup porting to BQ nor complex eigen-
vectors wilh nonzero compler eigenvalues orthogonal‘to BQ af 0,

The result just mentioned can be reformulated in the following equivalent
form V'vhich seems to be more convenient for studying the case of infinite
dimension.

THEOREM 22. The system (A, B, Q) with X — Rr, U= R™2, s locally con- -

irollableif and only if :
(i) the system

Trot = AT + By, vy €U = 550 (@ — 4 )s 3
is globally controlluble. i |
(i) There is no real eigenveclors of A* corresponding {0 positive eigenvalues and
supporting to B Q at 0, !

Proof, Let 0 ¢ int S. The necessity of (i) being obvious, for: the necessity

of (ii) we assume the contrary: there exist a nonzero vector feR”and A =0
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such that A F=A and <<f, Bu> <0 (v u e Q). Then, for any z, ¢ § we

have — Akgz, = LAR i Bu, withu, e Q (' = I, k)and hence < f, dkz, > —
i=1

= a."'-: fome > = — Zpk~i - f. B”i > > 0 contradicting the assum-

i=1

ption that O € int S,

To show the sufficiency, suppese that (i), (ii) hold. If there exist a nonzero
complex vector f € C"and A = 0 such that A*f — Af and < f, Bu > =0
(FueQ then, since (3) is globally controllable, for any 2z, B? we derive eas-

- ily, as above, that A << f, 25> = 0 which is, clearly, absurd. This shows, in com-

bining with (u) that the sunificient conditions of Theorem 2.1 are satisfied and,
consequently, the system is locally controllable. S

1t is well known that the system
bt =A% FBG .3 ¢ g6 g
is globally controllable iff:
rank [AP 1B, An—2 B,... AB, B] = rank [4", An~1p . 4R B],

with this remark we can state some direct .congequences of Theorem 2.2,

COROLLARY 2.1. Suppose that Q- has non-empty inferior in R2,i.eint Q o« .
Thenthesystem (4, B, Q) is locally controllable iff : (i) rank [B, AB ., AR B]

rank [B, AB,...A®” 1 B, A" I (11) There is no real eigenvectors of A* corresponding
to positive eigenvalues and supporting lo BQ :

COROLLARY 2.2, The system in R™ with single non-negaiive inpuf
. xk—!—i—Ax +buk)u >0

is glqbally controllable iff . 7

(i) Every columns of matriz A" can be written as a linear combination of b, Ab,...,

An—1p ‘ '

(ii) The mai}-ia: A has no real posilive cigenvalues.

THEOREM 2.2, however, does not hold, in general, for mflmte—dimensmnal

systems, as shown by the following, : .

EXAMPLE 2.1. Consider the system (4, B, @) in X = L, with 0 — {ueX:

ha —u] <1, 5= (1,0, 0, "T)} and with 4 = B, where A is defined as:

1 i
_A’(C:l’ §2 '") = (O’EEI: '3_22 "“)



It can be verified tha! the operator A is.compact, ker 4 = {0} and 6(4) = {0}.
‘F'hus, A has no nonzero eigenvalues and, thereby, conditions (), (i1) of Theorem
9.9 are fulfilled. However, this system is not locally controllable, To see this

we note first that ,
AX n Q = {0} )

Indeed, if = (0, L1 Lz, ) € AXNQ, then o —ull =1 + T 19 <
| _ i=1

which implies x = 0. Now for any x € S we . can write 0 = Af gz 4
Ak 4 e b Al = AAF-Ta 4 Ak_1u1 + . 4 u;), where u, eQ(i=1%).
Smce Ker 4 = {0} we obtain u, € AX N} which by (4) follows that u, = 0.
Repeating this process we nnd in the end that T = — u and hence S — Q.

Actually, we have § = — Q and therefore 0 & int S. It is, therefore of interest
to know under that additional conditions on the system data (4, B, Q) the
above criterion of controllability can be extended to the case of infinite
dimension, i .
To this end, we first estabhsh some. auxiliary facts. Let denote by Q¥ the
set of all vectors uk = (g, gy s k) € Uk such that u; € Q,i=1, k and let
consider the operator F : Uk — X, defined as F (u¥) = 2 Ak— ‘Bu .Denote
i=1
by SJ.- the controllable set of (4, B, @) in k steps, i. e.

S, ={reX:— Akm e F (%)}
Obviously, S = UIS and R = U E, (QF).
k=

LEMMA 2.1. Suppose int Q 4= ¢ and A is an isomorphism of X onto X. Then the
system (4, B, &) is locally conirollable if and only if it is locally reachable,

Proof. By definition, — Ak S, CF, (Q ) and hence S, = — ATk F, (k). It

0 e int R then by Theorem 1 of [4}, 0 ¢ int F L (@F) for some k > 1. It follows
) that 0 € int S and therefore 0 ¢ int S. Conversely, suppotmg 0¢int S, it is
readily vermed_ that the system (4, B,Q)is globally controllable or, equivalently,
by Theorem of Furhman {7}, 4k (X) < F, (U¥) for some k> 1. Since 4 is onto,
it follows that X = F7, (U¥) and hencei, F, is onto. By the open -mépping
Theorem, int F (©k) + ¢ which shows again int S, < ¢. Applying Lemma 1
of [4] we have that there exists m such that 0 ¢ int § which implies readily

0 ¢int (Qm),
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x| <e, we have Pz e S and hence,

Now let i/ be a closed A-invariant subspace of X. We denole by X the
factor space X/M equipped with the usual factor norm and by P the canonical

projection P: X — X. We defi;le the factor system (?1: ﬁ: Q) ol (4, B, Q) with
respect to M as follows ‘
- Eh e Lt - -
Ty =Aw, By x, eX,ueQCl
where 74 Pz, ' @ A P (Az), Bua P (B ).

LEMMA 2. 2. Let M be a closed A-invariant subspace contained in the controll-
ability set S of (4, B, Q). Then system (A, B, Q) is locally conlrallable (ff the

factor system (;1: f?\, ) with respect to M is locally controllable.

Proof The «is» part is immediate from the fact that P is an open operator and
PS belongsto the controllable setS of (Zi: a Q).

To prove the «only if» part, letting 0 € int . We take ¢ > 0 such that
- e -~ . . .
xre § whenever || @ || < ¢, and we set ¢y =2/ P|. Then for any ¢ X with

Ak Py - Ak—1 /B\ui N - —l—/ﬁu; = 0 for some k and some izi €Q, i =1, k. This
implies Ak 2 4. gkl Bu; 4 .. + Buk € M C S and, therefore, x ¢ S, comple-
ting the proof. ' '

We are now in a position to prove the following assertion which géneralizes
Theorem 2.2 to infinite dimensional systems.

THEOREM 2.3. Suppose int @ <= ¢ and there exists n = 0 such that

 Ker AN — Ker A" qnd ARX — An+ly (5)

Then for the system (A, B, Q) to be locally controllable it is necessary and suffici-
enl ihat :

&y A™ (X) C F_ (U™ for some m > 0 and

(i0) There is no eigenveclor of A* corresponding o positivé eigenvalues and suppor-
ting lo B Q. ‘

Proof. The necessity of (i) follows immediately from Theorem Furhman [7]
while the proof of the necessity of (ii) is analogous to the one in Theorem 2.2.

To prove the sufficiency, setiing [ —= max (m,n)\and M = Ker A!. We firstf

L observe that the conditions (i), (i) are also fulfilled for the factor-system

@, B, ) with respect to M. Indeed, siace (i) holds, clearly, for m = I we car



PA'X = XX PR,y = F, ') with P,: 0! —» X being defined as

-~ Lo, o~
F, (uh) = i=21 .%_11‘" Bu, for it = (uy,.. ) e v!. Further, according .to.

Theorem 4.9 of [8], P is an isomorphism of X" onto ML and the tollowmg
diagram

uLl A ml ,
*_g ] 1h.
R
X X

P

- commutes. Consequently, if there exist f & X* A > O such that A* F = }\.’f\
and < f Bu > <L 0for all uegQ, then for & P* fwe have (P* A P®7Y)
P*f = AP']C,WOI"A f =2Af and <f, Bu > < 0, \#u € Q, contradicting (ii).
This means that (ii) is satisfied also forﬁthe system (’A\,--@, Q). On the other hand

Ais readily verified to be an isoﬁorphism of X’ onto X. Therefore, according

Lemmas-2.1, 2.2, to prove the local controllability of (4, B, .O.) it su1f1ces to show

that (A B Q) is locally reachable. Now,. since Ais onto, by (i) we have
AX =X =7 (T'1). Moreover, since 0¢ 6 (A) we can assert, in view of (11),
that A has no eigenvector with nonnegative eigenvalue, supportmg to B @ at

 the'origin. Consequently, by Theorem 2 of [4] we conelude that (A B Q) is
locally reachable. This completes the proof.

We note that for finite-dimensional systems, the additonal conditions (5)
are trivially satisfied (by taking ! equal to the dimension of the stdte space X).
In general, while the second condition in (5) can appear rather restrictive, ihe
first one, called some time «the finiteness condition »,is fulfilled for the discrete
time models of delays systems (see, e.g. [1]) ’

The condition (9) is satisfied tor example, when A = I — A w1th C bemg of
Rlesz type and ?L e 6 (0).

.Besides, it is worth remarking that for the neeessity of Theorem 2.3 we need
not assume (5) to he satistied. Theorem 2.4 below will give other _sufficient
conditions for local contrellability without the mentioned additional assump-
iidn‘s "We first prove the following

LE\ﬂIA 23 Suppose that f01 some k> 1 _
""" e F, (U*) and F (zm‘ QFy A A¥X 5 ¢, (6), then mtS +¢.




Proof. From the first condition in (6), by the factorization theorem of Donglas
[0], there exists an operator C & L (X, UX) such that 4¥ = F,. G From the

second condition in (6), on the other hand, we have (uﬁ):Ak y for some

k _. k 5 s . .
u, €int Q" and some y ¢ X. Hence F, (ufj) = F, Cy which implies (Ker Fk 4

4+ intQf)y A CX = ¢, Cdnsequéntly‘, the inverse image €~ (int 0K 4 Rer “k )
bas a nonempty interior in X,

The assertion now follbws immediately from the fact that
C (int 0% .. Ker F,)cs,.

Réma'rk that the second condition in (6) is satisfied when, for example
B (int Q) N A¥X L ¢, Indeed, in this case we have Buo ¢ A*X for some u e int
. o

I k . ; L
Q and thus Fk(u;) € A" X with u; =(u0, a .. uo) & int Qk. The second con-

dition in (6) means that there exists at least one point ix € X which is controllabje
{o zero by a sequence of inferior conirols.

THEOREM 2.4. Suppose that ini © += ¢ and (6) is satisfied. then for the system
(A, B, Q) to be locally conirollable it is sufficient that A* has no eigenwecior
corresponding to non negative eigenvalue and supporting to B €,

Proof. (6) implies, in view of Lemma 2.3, that int S, # ¢. Let define, for every

[ > k.

8= [zeX:— ko eF, (Qz)}

It is easy to see that S c 8 S Is convex and int S # ¢ for alll > k. Besid-

14 1’
es, AS C St (> since for any:ceS — Ak (A7) = — A (AdFx) < 41F @y ¢

C Fhi(QH'i) setting 8 = U S we prove that 0 € int §’. Assuming the con-
1>k

trary we readily vemfy that the cope €= U A >0 5 is convex, not dense in X and
A-invariant, i.e AC ¢ C. By I;rcm-Rutman Theorem [10] there exists A 2> 0 and
f e X* such that A%f = Af and {f, ¢) <C 0 for all ¢ ¢ C. on' the other hand,

since, clearly, AkBQ ¢ F (Qk+1) it follows that — B Q ¢ SL L <8 cce

and hence (f, Bu) >0 for ali uell, conlfhctlng with the assumption of Theorem,

Thus 0 € int S'. In view of Lemma 1 of /4], there ‘exists m > k such that

0 ¢ int bm If m = k then the assertion is immediate since ‘SA = S,,. If m > k&,

we consider the operator Aam-k. x — X, Since o € int S;n it follow o & int



-\ ’ —yn—1
(Am k)~ (Sm). On the other hand, for any x in lhe inverse image (4m &y
S;n we have y = AM-F y JéS:n and hence, by the definition of Sl‘n,i

——Akg — Ak (Am_.fcx) = AWy ¢ Fm (_Qm) ,
This means = ¢ S8 Therefore, 0 < int S _and Theorem is proved.

We illustrate the application of the above criterion by the following two -}
simple examples.

. EXAMPLE 2.2. Consider the system (A, B, Q) with X =U = Iy, A(EI’ Zo e} =

1 1 .
= (51- —> ——3;3,,..), B=A.1f we take @ = {u ¢ [, : fju — uf| < 1

with 1 == (1, 0, 0...)} then for any r e B Q, its first coordinate g, () > 0,

Hence eigenvector f = (1, 0,0,...) of A= (corresponding to 4 = 1) is supporting

to B Q and, therefore, the system is not locally controllable. If we take:
Q={uel,:|u—u,) <1 with uy = (0, 1, 0,...)}, then since B Q containg

~

vectors (1, —1/2; 0...) and (—1, —1/2, 0...) we observe that no eigenvector of A%
corresponding to A = 1 supports to B Q. Since ali conditions of Theorem 2.4
are fulfilled we conclude that the system under consideration is locally
controllable,

EXAMPLE 2.3, Consider a control system described by the folldwing integro-
difference equation of Voltera type | |
t ) ,
Ty = S M (@,() + u, () ds, 2 () & Ly(0, 1], B7)
0
_ u, € Q¢ LQ([O‘ 1], B?).
M being n X n matrix with det &/ = 0 and .

t .
Q= { u() € L0, 11, B%) : {[[u(s) — upfs) [ ds < 1}
. o
 with —
t
{lu(ol? ds = 1,
. o]
It can be seen that the adjoint A* of the system’s operafor is also of Volterra
type and 0 is an only point in 6(A4*) moreover, 0 is not an eigenvalue {11].
Thus, by Theorem 2.4. This system is locally controllable (in fact, this system .
. in o "[‘1
Is, actually, globally controllable since for any z¢ X, A% x | gé"_fTﬂ_ ~ 0, S

as n -» oo ),
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It is worth noticing that the systems considered in the above two examples
are not locally reachable (i.,e 0¢intR) because, in these cases, the operators
F_ are compact and hence int R = ¢J.

We conclude this section with the remark that Theorems 2.3, 2.4 can be

'strengthened by assuming only that Q) has a non-empty relative inlerior. We

formulate for example, the strengthened version of Theorem 2.4,
THEOREM 25. Suppose ri(Q —u,) + & for some u,e Q.
If there exists n > 0 such thaf ‘

() A"X C F_(V"), where V = span (Q —ug),

(@) ARX AF_ (ri (Qr—ul)) # O,
(i) there exists no A >0 and [ e X* such that

A*f = A and < f, Bu > > 0, YueQ,

then the system (A, B, () is locally controllable

III. GLOBAL CONTROLLABILITY.

In this section we shall assume B = [ (the identity operator in X). Thus,
let us consider the control system (4, Q):
k+1_A:c + ug, :c]eXu eQ U, (N
where A e L (X), © is a convex set with int & # @ and 0 € Q.

The criterion of global conirollability obtained in this section involves the
following notions from convex analysis [12]

DEFRINITION 3.1. Let Q be a convex subset of X coniaining 0. The set G (&) =

= {f e X*: sup < f,u> <o} issaid to be 1he barrier cone of Q and the set
nell
C (Q)== ~ A issaid lo be the recession cone of Q.
d A>0 . '

‘In [6] we have proved the following result.

THEOREM 3.1 For the system (4, Q) in X = R" to be globally controllable, it is
sufficient and, in the case where
€)= —(C () (8)

necessary that

(i) (A, Q) is locally controllable,

(iiy The transpose malrixz A* has neither real eigenvector f with » > 1
supporiing to Cr (€2) nor compie:t:'c:'genuccior f with { A | > 1 orthogonal lo
C, ().
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Remark. In t. ¢ above statement we understand by a complex eigenvector of a

real inatrix A corresponding to A = « 4 B(x, e R)a vector f ¢ R+ i R"
such that . |

A(Ref) = a(Ref) — p(Jmf),

A(Jmf) = g(Ref) + o(Jmf).
Generally, let X be a real Banach space dan let ¥ A X' 4 i X be the complexi-
fication of X with the norm: '

| =iy j,= sup & €08 0 45 sin 0.

Then every operétor AeL(X)hasa uﬁique complex; extention 4 e L (X) defined

~as A (Z 4+ iy) = Ax + {Ay, and we can define the terms spectrum eigenvalue, ‘

eigenvector, ... of 4 to be the corresponding objects for A (see, e. g. [13]).

In the sequel, for convenience, we shall identify A, X with their complex
extentions wherever the complex spectral objects are involved.

" The main" goal of this section is to extend the above criterion of global
controllability to the class of infinite-dimensional systems (4, Q) with A satis-
fing the following spectral condition, g

Assamption 1. For some positive number r < 1the set 8,=6 (A)\{ze C:

21l <<r} consists of a finite number of points and the corresponding eigens-
pace X, is finite dimensional (where, by definition,

X, = PX; P-=~2L.-S (A—2DyT g ©
Tl

L
and Lis a closed simple rectifiable curve on the complex plane C such that
8, contained inside L). '

Note that many systems of praétigal importance can be deseribed by the
discrete — time model (4; @) or (4, B, ) with a compact operator A wich,
clearly, satisfies the above assumption. Such are systems of Volterra integral
equations and functional-differential equations,

We can now state the main results of this section as follows.

THEOREM 3.2. Suppose A satisfies Assumplion 1, Then_ for the system (A, Q) to

be globally controllable it is sufficient and, in the case where(8) holds, necessary
that

(i) (4, Q) is locally con!ro:"lable, .

(ii) The adjoint operator A4* has neither elgenvectors f € X* with eigenvalues
A > 1 supportting C,. () nor eigenvectors f < X* with eigenvalues | A | > 1, such
that {f, u) = 0 for all u < C_(Q), '

12



e gey

Praof. The necessity of (i) being obvious, to prove the necessity ol (ii) assime

' the contrary that (4, Q) is globaily controliable and (8) holds but (ii) is not

valid. Then there exists f, € X* such that A fp =1 for A>1 (ort ] >1)
and —f e (C_ ()" (respectively, (f , u)==0, ¥ ue C,. (). Then, for any x&3,
in view of (8) we have, in the first case '

k . ‘ o .. ) )
—<fgrz>= 3 2 I<f0’ui>‘<*( 2 ATH)y sup <fp,u> < o,
i=1 i==1 uee .

and in the second case

J

| <BRefp, 2> 1< i<fpe>1<Zin T <fa>|<

SO A1) (sup | <Befyy o> |+ sup | < Jmiy, 1> | )< on

i=1 7oueR oen
{since, obviously, + Ref and * Jmf ~belong . to (€, (£1))*), both conflicting
with the global controllability of (4, Q) '

To prove the: sufficiency we observe that, by Assumption I, there exists a
decomposition of* X into the direct sum X — X1 @D X2 such that Xl. (t=1, 2)is
a closed A-invariant subspace, dim X; <C o=, and the speectra of the restrictions
4, of Ato X, (i= 1, 2) coincide, respectively, With 6, = 6(A) \ {z& CJz| < r}and
6= 6(A)\6;, r <1 (See, e. p. | 14)). Accordingly, the system (4, Q) is decom-

posed into 2 subsystems
1 1 1 1 . 7
Tt 4 Tt Vp Xy, v ePO

2 2
Tppq = 97

2 2 2
+ Ve 76X, v, e(—-DP)0
P being the specral projection defined by (9). Observe that (dg, (I - P) Q)is -
locally controllable (by (i)_) and A, is asymptdticaly stable. This. implie\s th%{t
(4,5, (I — P) Q) is globally controllable and therefore to. establish the sufficiency
it 1s enough to prove that (4;, P Q)is globaily cdvntrollabl.e.

On the other hand, since this subsystem is of finite dimensional and ig

.locally controllable (by (i) ) our task is reduced, by virture of Theorem 3.1, to

showing that the condition (ii) remains valid for (-AI’ £ Q). Indeed, suppose

1
onto we have P"‘-fj <+ 0 (by Theorem 4.15 [8] ).Besides, notice that A* Px fqo=

there exists O ==f,¢ X* X > 1 (or || > 1) such that A%, =f,. Since P is

=PA*fy =P ASf, =0Prf,,
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According to (ii) there exists u eC (@) such that < P*f, q) = (f} Py )0
(respectively, = 0). Since P’ ue I’ C (T C (P Q) we conclude that (ii) is
salistied for subsystem (4, PQ) This completes the ;;root' of the Theorem.

Theorem 3.2 yields the following result which has been proved in {5] by a
different method.

COROLLARY 3.1 Suppose A satisfies the Assumption 1 and < is bounded. The
system (A, Q) is globally conirollable iff

(i) .(A, Q) is locally controllable.

() M<<1foranyhe6 (A).

Proof, It suffices to note that, Q being bounded, ¢, (Q) = {0} C,(Q) = X and
hence (8) is satisfied,
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