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SOLUTIONS OF SOME PROBLEMS IN THE RENEWAL THEORY
BY THE MONTE CARLO METHOD
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1. INTRODUCTION

The aim of this paper is to present some new results concerning the

‘ random integral equations in the renewal theory. In particular, we introduce

the new concepts of eifect and potentiality of the renewal process.

Let ;'cn g be a renewal process, i.e. T {n==1, 2,...) are random non-ne-
n—1

gative, independent variables defined on a probability space (V, X , P ) with
P, {'r,n= 0} < 1 (ef. {2, 3].
Suppose that U(#) is the mean renewal guantity on the time interval [0, f].

It is known that U/(f) is a unique solution in %W[O, <) of the following equation:
¢
. 1) Uty = Kty + | Ut —2) P (dv), ¥ 120,

[ I
where K(f) is the distribution function of random variable 7, and APla, o)
(1< p< o) is a set of real function defined on [@, =), such that for any
¢ g(a, ) and [ € XP[q, )
. c

S]f(a:)lpda:<m.,

a

If k(t) is the density function of the random variable T, and
(1.2) Kt = E (), t>0,
1. 3) ‘ Ki)=E_ ~(t), t>0
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where n({) = n(f; u), Y({) = T(t; u) are real random processes on a prohability
space (U, Z , P_), then the equation (1.1) can be written in the following

form:
f

(1. 4) 0@y =E () + | E, (@) U(t —x)dz, t & [0, ).
G
Our aim is to study some problems connected with the above random
integral equation (cf.[7] for the representation of its solutions). Namely, we
shall eonsider the estimation problem for effect and potentiality of the renewal
process.

- Denote by v: the age of the renewal process at the moment ¢ (cf. [2, 3].
Suppose that p(x) is a real function defined on [0, o).
Define
(1. 5) V{ty:=E, p (v ).
The function' V (1) is called effect of the renewal process. Further, if there
exists * e (0, o°), such that

(1. 6 V (t*) = sup V()

o< t=< oo
then V (t*) is called the maximal effect of the renewal process and t* is called
the optimal moment.

The function V (7) and the value V(t*) are used to predict the effect as well
as potentiality of an economic - technological system. Here and in the sequel
by potentiality we mean the quantity

(1.7) W= £ W), t >0.

where

(1. 8) W(t): = f1r N(Ui_(i) du= T ( y—T (v )
' vy . % NIN(HA S NME )

x .
‘ [ p()du, if z >0,

(1. 9) Tx)=0
: ? 0, otherwise;

N(D = max{n: T, -+ T, —|—'.,_—|- T, <t }, Ty = (.
The time t* for which
(1. 10) W(t,) = Sup w(l)

. . ~<{f~<<co

is called the optimal moment for potentiality.
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In the sequel we shall establish an algorithm to estimate V(i), W(t) t,
¢ x by the Monte Carlo method.

2. THE EFFECT OF A RENEWAL PROCESS

Suppose that

@.1) o(z) = 0 if z<0
and y{(x), ®(x) are Hilbert random processes.
Put
1 .
(—n , it xe [0, b], b (0, oo) . —, if(z,y) e[0,b] X [0,b],
(2. 2) o, (@)= E ¢ (z, )= b

0,if z ¢ [0, b]; 0, if (z, 4) 410, b} x {0, 8],

@3) t@) =t w=) @@, ifz>0

{ 0, otherwise ;

Next assume that (R, 3%, P_.) is the probability space generaled by
all trajectories of the Markov chain {9y, ¢} - On the space (RY, B%, PL)
we dqfine the following funetion:

. n;f,;c> :!:and:r;<:c+1

24 d(z)=
3 ©ay ”C x!l >.’Ln+1, n== 0, 1,...

LS

~

(= =]
x = (:vo,:ci ,...,:cn,...) eR, .

In [7] we proved that d (2) is a random variable, i. e.

P_{d(Z)=o}=0,
so on the probability space (@, C, A) we can define the following random
variable :

m

(). ,
(25)E(i)*- py f,1+1‘!](:b‘ su )y (w, — T i)y —xi;aii)g(tmxi;ui+1)
i=0
0D
where
@6 ' Q=RIxU=, ¢€=3,Xx3% ., AI=P.XPy,
and (U, Sw , P%) is the infinite product of the space (U, Z,P).

[+~]

THEOREM 1. Let% T, % be a renewal process with the probability density
' _ =1 :
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k(z)=E, v (x) and the distribution function E(x)y=E n(x), where v (x), u(x}
are random processes continuous in the sense of mean square. Furlher, lel p (x)
be a function in K1[0, o).

~ o] . e '. . f_I
a. If for any xe R+ andi=1,.., d(x),1(wo; uo), ;:y (;z:k—-:l:k_]_1 ; u"‘*'jizk:o

andf;('t—:cl. Ju, ) are independent samples of random variables m(x,) ,

i—1
vz, —z, ) {
(T =Tt 1 k=0

@7 Byt =V (), ¥te[0.b].
b. In addition, if

and & (t—x, ) then

b1, the function o (x) is differentiable, m (x) is continuously differentiable in |

the sense of mean square and

@9 |2 EsE—y) ‘ < Kx+D,0<y<x;L,D — constants,
N

b.2 the condition a) is satisfied when & (t—ux, ) is replaced by ai §(t—z,),
: - .

ok N
b3, the function V (f) has unique stalionary point t* & (0, b) and atfains ils

maximum on (0, b),

then
2.9 kl_:)rixa El..( b, _-\_tf =0
@10 A{ lim b, =t{=1,"
k—>oo
where
(2.11) " bz = b+ 7y 9, (0, b, & (—oe, =)

T5,;,(:17) , if xelob,
(2.12) ) =¢ 1 , if <0,
| | =1, if a>b;’

- o 2
k=0 kom0
,_ @)
2.14) b, (X) = iio O mla, s ;) Vg — 275 1)

o
e,y — ;5 4;) o Eo— x5 u,).
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Proof. From the assumptions it follows that the function k(z)= E T,
‘K(zy=E_m(x) are absolutely coatinuons and U(t) is continuously differentiable

(cf. [5], pages 628—629). Denoting u(f) = U#) we get the equation
t
@15 - Uty = &K + | B Yt —2) ale) dw, 130,

Q

Denoting
Gz, ty = P, ; v;gxe

We have {cf. [2, 3])

t
{2:16) G, By = S — Kit—1))ulty dr, 0z <t
[ —a
1, if x>t
On the other hand
¢

@.17) | V() = E, o o) = fet@) Gz, -
[+]

t
: - = { ol2) [1 — Kim)] ult —x)da
o

i )

e S:p(i — ) [1 — K(t—x)|ulx)dx
4]
t '

= { ot —2) [ — E, 1t — 2] ulxyde
(4] N

;
= S Eu gt — x) ulr) da.
o
By virtue of (2.1, (2.17) and Theorem 2.2in [7], We obtain (2.7). The relations
(2.9), (2.10) are simple consequences of Theorem 3.1 in [7} The proof is

complete
.8, TEE POTENTIALITY OF A RENEWAL PROCESS -
Put
(3.1) ) =t ) =TEl—a@: u}
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- (@) "y ‘ ] ’
3.3) ED)=T(t))+ 2 b7z sn yy@, ~x; 5 )

i=0
T(x_;—z;; u, } e —x, ; u[._[_i)
THEOREM 2. Lef { T, }:; 4 be a renewal process defined on the probability space {eﬂ
(v, X, P, with density k(x)== E v {(x), distribution functz'on K{x = E M {(x),
(x = 0), where v (x), N(x) are Hilbert random processes, contmuous inthe sense of
mean square.
1. If T(z) e%i[o,oa) and for any x e Ry and i = 15, d(z), n (x5 uo) ,

{ y(a:l;-—a:k_l_l S Wy ) }1:1 LB (1 mx. ; u.+1) are independent samples of random

variables 'r](wo),{ y(z,— A+1)} _p » £¥ (t— ;) respectively, then
(3.4) Ey« E(t)_.‘W ), t>=0. ‘ -
2. In addltlon, if

a) thé function T (x) is dszerentmble M (x) is continuously differentiable in the
sense of mean square and

%Eug*(m—y) K Kx+D,0y<x; K, D—constanis ,
T

b) the condition I is satisfied if &"(t—a,) is replaced by

3 L. :
. g —X; ) | w®h

c) the f anction W (f) has the unique stationary point t, & (0, b) and attains its
mazimum on (0, b),

then
(3.5) lim By (C,—tF =0
‘ k—>co
(3.6) M{lmC =1, }=1,
k—roo
where
(3.7 . Crp1= Gt vy, 9(C) s Gy € (mees) <
K 0,(x) , if xe(,b),
@8 7 @@=} 1 , i z<0,
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] d(x) 1
(3.9) b, (*) = z bt s ugy g) ¥ @g—@gitg) e

i=
Y (mf—i —.’L'I. ’ u,’) EE* (x"'xf; ug)'

Proof, We first note that N(#) is the Markov moment for a stream of

¢ —fields & , n= 1, 2.... generated by the random variables T, Ty,. T, i, €.
G, =0 {Ty s Typ» 0=1, 2,
By Waid’s identity, we have
(3. 10) E, )NZ(?T T, ) { =Eui T(t, ) g E ? N {
. =
which implies that |

(3. 11) E ;T(TN(tH—I) ; = K {!T(H) %

By (L. 8), (1. 9), (3. 11) it follows that

3. 12) W =E, ) T (%) {— E, ?T("I)f

- S T(@) B, 7 (x)de — \ T(x) F (dz, b).
1

g e 1}

Erom the above equation the proof can' be completed using the same me-

thod as in the proof of Theorem 1,

Remark. The relations (2. 7) and (3. 4) imply that if 8 k=1, 2, .., m) are

. . . . 1 m 1 m
independent trajectories of the Markov chain then — (k) = ik
e ] " m kz_cz O m zfui ©

are unbiased estimators of V(f) and W(i) respectively:

VO~ = 5w @
A 1

o W(t)N — zr; (k) (1)
3 T k=1



where
~B) .
' (z) ‘
E(]x) ) = E b1+1 l+1( (k).

i

I 5 k (k)
() (( _ (1; ()

o Y (mg*ti)I — m(‘:_”; ”‘)) E({t— x ) u(“) )

M
~A k) ;
ERo=rc+ de ) i+ (2@ a® )yl -2 0 A
=

13

+
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