APPLICATION OF THE HORMANDER - METHOD TO PROVE AN EXTENSION - THEOREM FOR VECTOR - FIELDS

LE HUNG SON

Let G be a domain in R^3 and K be a compact subset of G such that $G \setminus K$ is connected. Consider the system of partial differential equations:

$$(1) \begin{cases} \operatorname{div} \cdot \overrightarrow{U} = 0 \\ \operatorname{rot} \overrightarrow{U} = 0 \end{cases}$$

where $\overrightarrow{U}=\overrightarrow{U}(x)=\{u_1\ (x),\ u_2\ (x),\ u_3\ (x)\}$ is a vector — function of $x=(x_1,\ x_2,x_3)\in R^3$. This system is called the Riesz — system: in R^3 and has applications in mathematical physics.

In the sequel we shall be concerned with the following extension problems for the system (1):

Let $\overrightarrow{u} = (u_1, u_2, u_3)$ be a given continuous solution of (1) in $G \setminus K$. Under which conditions can \overrightarrow{u} be extended to a solution over G?

For the case where $G=G_1\times G_2\times G_3$ is a polycylindrical domain in R^3 . This problem has been solved with the help of the integral formula — method (see [1]). The aim of this paper is to show that in the general case it be solved by means of the Hormander method (see [5])

Let $\varphi \in \mu_0^{\infty}(G)$ be a function such that $\varphi = 1$ in a neighbourhood of K (the existence of such a function has been proved in [6, 7]. Denote

$$(2) \overrightarrow{u^0} = \begin{cases} (1 - \varphi) \overrightarrow{u} & \text{in } G \setminus K \\ 0 & \text{in } K \end{cases}.$$

We wish to find a vector — function $\overrightarrow{v} \in C_o^2(R^3)$ such that the vector — function

$$(3) \qquad \stackrel{\rightarrow}{u} = \stackrel{\rightarrow}{u} - \stackrel{\rightarrow}{v}$$

Solves (1) and is an extension of \overrightarrow{u} to the whole of G. The vector — function \overrightarrow{u} is a solution of (1) if

(4)
$$\operatorname{div} \overrightarrow{u} = \operatorname{div} \overrightarrow{u^o} - \operatorname{div} \overrightarrow{v} = 0$$

 $\operatorname{rot} \overrightarrow{u} = \operatorname{rot} \overrightarrow{u^o} - \operatorname{rot} \overrightarrow{v} = 0$

oг

(5)
$$\operatorname{div} \overrightarrow{v} = f$$

 $\operatorname{rot} \overrightarrow{v} = \overrightarrow{F}$

Where

(6)
$$f = \begin{cases} \operatorname{div} u^{o} & \text{in } G \\ 0 & \text{otherwise,} \end{cases}$$

$$\overrightarrow{F} = \begin{cases}
\operatorname{rot} & \overrightarrow{u^o} & \operatorname{in} & G \\
0 & \operatorname{otherwise.}
\end{cases}$$

LEMMA 1: Assume that the system (5) has a solution v in the whole of R^3 , such that $\overrightarrow{v} \in C^2$ (R^3) and

(8) $\overrightarrow{v} \equiv 0$ for all sufficiently large $|x_3|$.

Then any given solution \overrightarrow{u} of (1) in $G \setminus K$ can be extended to a solution over G.

Proof: By assumption the vector — function \overrightarrow{v} is a solution of the Riesz — system (see [2]) in C (Supp φ) = $R^3 \setminus$ Supp φ . From (8) and the uniqueness theorem for the Riesz-system we get

(9) $\overrightarrow{v} \equiv 0$ in the unbounded connected components of the complement of Supp φ .

Since the boundary of this set belongs to $G \setminus K$, there exists an open set $\sigma \neq \phi$ such that $\sigma \in G \setminus K$ and

$$(10) \overrightarrow{v} = 0, \overrightarrow{u} = \overrightarrow{u^o} \text{ in } \sigma$$

Clearly, the vector — function u defined by (3) is a solution of (1). In view of (10) we get

$$(11) \qquad \stackrel{\sim}{u} = \stackrel{\rightarrow}{u} \text{ in } \sigma.$$

On the other hand, since $G \setminus K$ is connected, it follows from (11) and the uniqueness theorem for the solutions of (1) that

$$\overrightarrow{u} = \overrightarrow{u}$$
 in $G \setminus K$.

This means that u is the extension of u to the whole of G.

q. e. d.

The converse of Lemma is also true:

LEMMA 2: Assume that \overrightarrow{u} can be extended to a solution of (1) then the system (5) has a solution \overrightarrow{v} such that condition (8) is fulfilled for all sufficiently large $|x_3|$.

Proof: Let \widetilde{u} be the extension of u to the whole of G,

Denote:

(12)
$$\overrightarrow{v} = \begin{cases} \overrightarrow{u^0} - \overrightarrow{u} & \text{in } G \\ 0 & \text{otherwise.}, \end{cases}$$

It is clear that $\overrightarrow{v} \in C^2$, v = 0 for all sufficiently large $|x_3|$ and \overrightarrow{v} . is a solution of (5). Q.e.d.

Now consider the system (5). From a theorem of potential theory (see ([3]) p. 161) it follows that the system (5) is solvable if

(13)
$$\operatorname{div} \overrightarrow{F} = 0$$

This condition is fulfilled if \vec{F} is given by (7). Hence we get from [4] (chapters 3), and 7, the following lemma

LEMMA 3: The system (5) is always solvable, and the vector-function

(14)
$$\overrightarrow{v_0} = -grad \int \frac{f(\xi)}{4\pi r(\xi, x)} d\xi + rot \int \frac{\overrightarrow{F}(\xi)}{4\pi r(\xi, x)} d\xi$$

is a particular solution of this system, where $r(\xi, x)$ is the distance from x to ξ in \mathbb{R}^3 .

Remark 1: Let $\overrightarrow{v_0}$ be a particular solution of (5) defined by (14) and $\overrightarrow{v'}$ be a solution of the Riesz — system (1) in the whole of \mathbb{R}^3 . Then

$$\overrightarrow{v} = \overrightarrow{v'} + \overrightarrow{v_a}$$

is also always a solution of (5).

If we assume that a solution \overrightarrow{v} of the Riesz — system (1) exists such that

(15) $\overrightarrow{v_0} = -\overrightarrow{v}$ for all sufficiently large $|x_3|$ then this solution \overrightarrow{v} satisfies the condition (8) (the existence of such a solution \overrightarrow{v} is not obvious. Consider now the following

EXTENSION - PROBLEM

1) Special: Let T be a domain in \mathbb{R}^3 of the form

$$(16) T = \left\{ x = (x_1, x_2, x_3) \in \mathbb{R}^3 / |x_3| \leqslant c_0 \right\}$$

where $c_0 > 0$ is sufficiently large. Can every solution $\overrightarrow{v_0}$ of the Riesz — system (1) in $T := R^3 \setminus T$

be extended to a solution over R3?

It turns out that

17)

THEOREM: If the special extension — problem is solvable, then the above stated extension — problem is solvable, i. e every solution \overrightarrow{u} of (1) in $G \setminus K$ can be extended to a solution over G

Proof: Given a solution \overrightarrow{u} of (1) in $G \setminus K$, we can define f and \overrightarrow{F} from the above mentioned function.

Further we choose $c_0 > 0$, such that

$$f = 0$$
 and $\overrightarrow{F} = 0$ in c_T .

then the system (5) is the Riesz — system in ${}^{c}T$ and the vector — function $\overrightarrow{-v_0}$ is a solution of (1) in ${}^{c}T$, where $\overrightarrow{v_0}$ is the vector —function defined by (14). From the assumption it follows that $\overrightarrow{v_0}$ can be extended to a solution of the Riesz — system (1) over T, such that

$$\overrightarrow{v} = \overrightarrow{v_0}$$
 in ${}^{c}T$ or $\overrightarrow{v_0} = \overrightarrow{v'}$ in ${}^{c}T$

Now consider the vector - function

18)
$$\overrightarrow{v} = \overrightarrow{v'} + \overrightarrow{v^0}$$
.

It follows immediately from (16) and (18) that \overrightarrow{v} is a solution of (5) satisfying $\overrightarrow{v} = 0$ in $\overrightarrow{c}T$

or
$$\overrightarrow{v} \equiv 0$$
 for sufficiently large $|x_3|$.

Therefore, by Lemma 1 \overrightarrow{u} can be extended to a solution of (1) over G.Q.e.d. Thus, the above extension — problem can be reduced to the special extension—problem 1. If this special extension — problem 1 has a solution then a solution \overrightarrow{v} of the Riesz — system exists, such that condition (15) is fulfilled.

Received November 20, 1983

REFERENCES

- [1] Le-Hung-Son, Fortsetzungssatze fur quellen und wirbelfreie Vektorfelder. Mathematische Nachrichten (to appear).
- [2] E. M. Stein and G. Welss Introduction to Fourier analysis in Euclidean spaces.

 Princeton (N. J.), 1971.
- [3] M. Lagally, Vorlesungen uber Vektor Rechnung, Leipzig, 1934.
- [4] R. Mises, Integral theorems in three dimensional potential flow. Bull. Amer. Math. Soc., vol 50, 1944.
- [5] L. Hormander, Einführung in die Funktionetheorie mehrerer Veränderlicher. Springer - Verlag, Berlin - Heidelberg New york 1974.
- [6] H. Grauert and K. Fritzsche, An introduction to complex analysis in several variables. Princeton, 1967.
- [7] W. Tutschke, Partielle komplexe Differentialgleichungen. Berlin, 1977.

DEPARTMENT OF MATHEMATICS, POLYTECHNICAL INSTITUTE, HANOI, VIETNAM