A LOGARITHMIC CRITERION FOR THE CONVERGENCE OF MULTIPARAMETER RANDOM SERIES

TRAN QUOC VIÉT

In many limit problems the investigation of the convergence of random power series of the form

$$\sum_{k=0}^{\infty} t^k z_k \tag{1},$$

where z_k s are i. i. d. r. v. s. and t's are real numbers, is of great importance. The first and well-known result of Zakusilo (Cf, [5]) asserts that if 0 < t < 1 then (1) is convergent with (P. 1) if and only if

$$E\log\left(\left|z_{o}\right|+1\right)<\infty\tag{2}.$$

This logarithmic criterion was generalized by Jurek [2] to the multi-dimensional spaces and by Thu [3] to the multiparameter case. Our aim in the present paper is to give a unified approach of the above-mentioned papers. Namely, we shall prove the following theorem:

THEOREM 1. Suppose that $T_1,...,T_d$ are some invertible bounded linear operators on a separable Banach space X such that

$$\lim_{k \to \infty} \|T_j^k\| = 0, j = 1, \dots, d$$
(3)

and z_1 , z_n , $n=(n_1,...,n_d)\in N^d$ are i. i. d. X-valued r. v'. s. Then the random power series

$$\sum_{n \in N^d} T_n Z_n \tag{4}$$

where

F

$$T_n = T_1^{n_1} \dots T_d^{n_d}$$

whenever $n = (n_j, ..., n_d) \in N^d$ is convergent with (P. 1) if and only if

$$F\log^d\left(1+\|Z\|\right)<\infty$$

To prove the above theorem we need several lemmas.

LEMMA 1. Let V be a bounded linear operator on X. Then the relation

$$\|V^m\| \to 0 \text{ as } m \to \infty \tag{6}$$

holds if and only if there exist $\alpha > 0$ and $\theta < \beta < 1$, such that

$$\|V^m\| \leqslant \alpha \beta^m \qquad m = 1, 2, \dots, \tag{7}$$

Proof. Obviously (7) \Rightarrow (6). We shall prove the implication (6) \Rightarrow (7).

From (6) it follows that for some constant $0 < \beta < 1$ there exists a natural number p such that

$$\|V^p\| \leqslant \beta^p$$
.

Hence, it follows that

$$\|V^{kp}\| \leqslant \beta^{kp} \qquad , \qquad k = 1, 2, \dots,$$

For arbitrary m = kp + r, k = 0,1,2..., r = 0, 1,..., p - 1

We get

$$\|V^m\| \leqslant \|V^r\| \|V^{kp}\|.$$

Putting $\alpha = \max(1, ||V^r|| \beta^{-r}, r = 0, 1, ..., p - 1)$ and taking into account the above inequalities we get (7). Thus the Lemma is proved.

LEMMA 2. If $T_1,..., T_d$ are operators as in Theorem 1. Then, for every $x \in X$

$$||T_n x|| \geqslant \gamma^{|n|} ||x|| \tag{8}$$

where, for $n = (n_1, ..., n_d) \in N^d$, $|n| = n_1 + ... + n_d$ and

$$0 < \gamma = \min \left(\|T_f^{-1}\|^{-1}, \quad J = 1, ..., d \right) < 1$$
 (9)

Proof. Since, for $n = (n_1, ..., n_d)$ and $x \in X$, $||x|| = ||T_n^{-1}T_nx|| \le ||T_nx|| ||T_n^{-1}||$ and

$$\|\,T_{_{D}}^{-1}\,\| = \|\,T_{_{d}}^{-1}....\,\,T_{_{1}}^{-1}\,\| \leqslant \|\,T_{_{d}}^{-1}\,\|\,....\,\|\,T_{_{1}}^{-1}\,\|$$

We get

$$\parallel T_{n}x \parallel > \parallel T_{n}^{-1} \parallel^{-1} \parallel x \parallel > \parallel T_{1}^{-1} \parallel^{-n_{1}} ... \parallel T_{d}^{-1} \parallel^{-n_{d}} \parallel x \parallel$$

Consequently, if the condition (3) is satisfied then

$$||T_i^{-1}|| > 1$$
, $i = 1,..., d$ and (8) holds.

Thus the Lemma is proved.

Proof of Theorem 1.

Suppose first that, the series (4) is convergent. Then as $n \to \infty$

$$T_n Z_n \to 0$$
 (P.1)

which, by virtue of Lemma 2, implies that

$$\gamma^{[n]} \parallel Z_n \parallel \to 0 \tag{P.1}$$

Consequently, by Lemma 2 in ([1], p. 228), for every c > 0

$$\sum_{n \in \mathbb{N}^d} P\left(\left\{\gamma^{|n|} \mid \mid Z_n \mid \mid > c\right\} < \infty$$
(12)

where γ is the same as in (9).

Then by the same method as in [3] we infer that (12) holds if and only if the condition (5) is satisfied.

Conversely, suppose that (5) is satisfied. By results from [3] it follows that

$$\sum_{n \in N^d} \beta^{[n]} \parallel Z_n \parallel < \infty \quad (P.1)$$

$$(13)$$

for every $0 < \beta < 1$. Further, virtue of Lemma 1 there exist numbers α_j , β_j such that $\alpha_j > 0$, $0 < \beta_j < 1$, and

 $||T_j^m|| \leqslant \alpha_j \beta_j^m$, m = 1, 2,... and j = 1,..., d. Put $\beta = \max(\beta_1, ..., \beta_j)$. By (13) and by the above inequality we conclude that the series (4) is absolutely convergent with (P. 1). Thus the Theorem is fully proved.

Directly from the proof of Theorem 1 we get

COROLLARY. (i) If (4) is convergent with (P.1) then it is absolutely convergent with (P.1).

(ii) The series (4) is convergent if and only if $T_n Z_n \to 0$ as $n \to \infty$ (P.1).

By the same method as in the proof of Theorem 1 and Theorem 2.1 in [4] one can prove the following

THEOREM 2. Let T be an invertible bounded linear operator on X, such that

$$||T^m|| \to 0 \text{ as } m \to \infty.$$

Further, let Z_1 , Z_2 ,... be a sequence of independent X-valued r.v's. such that for every k=1,2,... the distribution of Z_k is $\mu^{*^T k}$, α , where μ is an i.d. probability measure on X, $\alpha>0$,

$$r_{k, \alpha} = \begin{cases} 1 & k = 0 \\ \alpha & (\alpha + 1) \dots & (\alpha + k - 1)/k! \end{cases}$$
 $k = 1, 2, \dots$

and the power is taken in the convolution sense.

Then, the random series

$$\sum_{k=0}^{\infty} T^k Z_k \tag{14}$$

is convergent with (P.1) if and only if

$$\int_{X} \log^{\alpha} (1 + ||x||) \, \mu \, (dx) < \infty \tag{15}.$$

Acknowledgement. The author would like to thank Dr. Nguyen Van Thu for many suggestions and help in preparation of the paper.

Received January 23, 1984.

REFERENCES.

- 1. M. Loéve, Probability Theory, New York 1950.
- 2. Z. J. Jurek, An integral representation of operator selfdecomposable random variables, Bull. Acad. Pol. Sci. 30 (1982).
- 3. N. V. Thu, A characterization of some probability distributions, Lecture Notes in Math. 828 (1980), 302 308.
- 4. N. V. Thu, Multiply c-decomposable probability measures on Banach spaces, Preprint Institute of Math., Hanoi 1982 (To appear in Prob. Math. St.)
- 5. O. K. Zukusilo, On classes of limit distribution in some scheme of summing up, Prob. Theory and Math. Stat. 12 (1975), 44 48 (in Russian).

DEPARTMENT OF MATHEMATICS, UNIVERSITY, DALAT, VIETNAM