TOPOLOGICAL DEGREE OF PSEUDOPOSITIVE MAPPINGS

DUONG MINH DUC

The topological degree of analytic compact vector fields has been studied in [1, 2, 6, 9]. These elegant results suggest the possibility of defining the topological degree for a larger class of mappings.

In this paper, using the techniques of Hirsch [10], we shall establish a topological degree for a class of mappings which contains all proper analytic Fredholm mappings of index 0.

The values of this topological degree are positive integer numbers, therefore we can extend the Cronin's theorem [2]. In [4, 8, 11] we can see the other methods of defining of topological degree and the Mod 2 — topological degree.

For the definitions of Fredholm mappings, proper mappings we refer to Smale's paper [8].

In this paper let E and F be two real separable Banach spaces and D be a nonvoid open subset of E. We shall use \overline{A} , ∂A and Card A to denote the closure, boundary and cardinal of A.

Let L(F, F) be the set of all continuous linear mappings from E into F, and put

 $S(E, F) = \{ T \in L(E, F) : T \text{ is a Fredholm operator of index 0 and the dimension of Ker T is even. } \}$

DEFINITION 1. Let $f: \overline{D} \to F$ be proper and continuous on \overline{D} and twice continuously differentiable on D, then f is said to be pseudopositive on \overline{D} if $f'(x) \in S(E, F)$ for every x in D. We denote the set of all pseudopositive mappings on \overline{D} by P(D).

Remark 1. Suppose that E and F are two Banach spaces over the field C of complex numbers. If $f: \overline{D} \to F$ is continuous on \overline{D} , complex continuously differentiable on D and Fredholm of index 0 on D, we say that f is an analytic Fredholm mapping of index 0 on \overline{D} .

Now let f be a proper analytic Fredholm mapping of index 0 on \overline{D} , we shall show that f is pseudopositive on \overline{D} .

Indeed, by Theorem 8.1.5 in [5] f is twice continuous differentiable on D. For a given $x \in D$ we put $E_x = \operatorname{Ker} f'(x)$. We shall show that E_x , as a real vector linear space, has even dimension.

Put Tx = ix for every $x \in E$. Because f'(x) is a complex linear mapping, we have $T \cdot f'(x) = f'(x) \cdot T$. Then $T(E_x) \subset E_x$. Suppose by contradiction that the dimension of E_x is odd. Since E_x is finite dimensional, it follows that T has a real eigenvalue. This contradiction shows that the dimension of E_x is even.

Therefore all proper analytic Fredholm mappings of index 0 on \overline{D} are pseudopositive on \overline{D} .

We shall define the topological degree of pseudopositive mappings, at first we need the following lemma.

LEMMA 1. Let a and b be two real numbers such that a < b, and let $H: (a, b) \times \overline{D} \to F$ be continuously differentiable on $(a, b) \times D$ such that $H(t, \cdot) \in P(D)$ for every $t \in (a, b)$. Let K be a compact subset of $(a, b) \times D$ such that the derivative of H at (t, x), DH(t, x), is surjective for every $(t, x) \in K$. Then there exists a positive real number d, such that for each (t, x) in K there exists an unique continuous mapping $g: I_t \to D$ such that g(t) = x, $(s, g(s)) \in (a, b) \times D$ and H(s, g(s)) = H(t, x) for every $s \in I_t = (t - d, t + d)$.

Proof.

Let $(t, x) \in K$, it is well known that there exists $c \in F$ such that

(1) $DH(t, \mathbf{x})$ $(s, k) = sc + D_2H(t, \mathbf{x})k$ for every $(s, k) \in \mathbb{R} \times E$, where $D_2H(t, \mathbf{x})$ is the partial derivative of H with respect the second variable at (t, \mathbf{x}) .

Then

(2)
$$F = DH(t, x) (\mathbf{R} \times E) = \mathbf{R}c + D_2H(t, x) (E).$$

In the other hand, because $D_2H(t, x)$ is a Fredholm operator of index 0 and the dimension of its kernel is even, we see that codim $(D_2H(t, x))$ is even.

Therefore it follows from (2) that $D_2H(t, x)$ is a homeomorphism of E onto F. Applying the implicit mapping theorem, there exist a positive real number d(t, x) and an unique continuous mapping $g: (t - d(t, x), t + d(t, x)) \to D$ such that g(t) = x, $(s, g(s)) \in (a, b) \times D$ and H(s, g(s)) = H(t, x) for every s in (t - d(t, x), t + d(t, x)). The number d(t, x) depends on DH(t, x) and the continuity of DH, Since K is compact, we have the desired result.

Applying the preceding lemma, we have the following propositions.

PROPOSITION 1. Let a and b be two real numbers such that $[0,1] \subset (a,b)$. Suppose that $H:(a,b) \times \overline{D} \to F$ is twice continuously differentiable on $(a,b) \times D$, and proper on $[0,1] \times \overline{D}$, and that $D_2 H(t,x) \in S(E,F)$ for every $(t,x) \in (a,b) \times D$. Let p be a regular value of H such that $p \notin H([0,1] \times \overline{D})$. Then the cardinals of $H(0,.)^{-1}(\{p\})$ and $H(1,.)^{-1}(\{p\})$ are finite and equal.

Proof.

Since H is proper on $[0, 1] \times \overline{D}$, p is a regular value of H, and $p \notin H([0, 1] \times \partial D)$, it follows that $K = H^{-1}(\{p\}) \cap [0, 1] \times D$ is compact. By Lemma 1, K is a disjoint union of paths, which start in $\{0\} \times D$ and end in $\{1\} \times D$. Then

Card
$$H(0, \cdot)^{-1}(\{p\}) = \text{Card } H(1, \cdot)^{-1}(\{p\})$$

Arguing as in the proof of Lemma 1, we can show that p is a regular value of H(0,.) Then $H(0,.)^{-1}(\{p\})$ is a compact subset of D and consists only of isolated points, hence it is finite.

PROPOSITION 2. Let a and b be two real number, such that $[0,1] \subset (a, b)$. Suppose that $H:(a,b) \times \overline{D} \to F$ is continuous on $(a,b) \times \overline{D}$, twice continuously differentiable on $(a,b) \times D$ and proper on $[0,1] \times \overline{D}$, and that D_2 $H(t,x) \in S(E,F)$ for every $(t,x) \in (a,b) \times D$. Put f=H(0,.) and g=H(1,.). Let p be a regular value of f and g and suppose that $p \notin H([0,1] \times \partial D)$. Then the cardinals of $f^{-1}(\{p\})$ and $g^{-1}(\{p\})$ are equal and finite.

Proof.

By (1) we see that H is a Fredholm mapping of index 1. Then by the Sard-Smale's theorem (Cf[8]), the set of regular values of H is dense in F. In the other hand, since f and g are proper and p is a regular value of f and g, by the inverse mapping theorem, there exists a positive real number r such that if $q \in F$ and the norm of q-p is less than r, then

Card $g^{-1}(\{q\}) = \text{Card } g^{-1}(\{p\})$ and Card $f^{-1}(\{q\}) = \text{Card } f^{-1}(\{p\})$ Therefore we can suppose that p is a regular value of H. Then by Proposition 1 we have the desired results.

QED.

PROPOSITION 3. Let $f \in P(D)$ and p, q be two regular values of f. Suppose that p and q lie in the same component of $F \setminus f(\partial D)$, the complement of $f(\partial D)$ in F. Then Card $f^{-1}(\{p\}) = Card f^{-1}(\{q\})$.

Proof.

Let $h: [0, 1] \to F \setminus f(0D)$ be continuous on [0, 1] such that h(0) = p and h(1) = q. Since h is uniformly continuous and h([0, 1]) is compact, there exist r > 0 and $t_1 = 0 < t_2 < ... < t_n = 1$ such that

$$h([0, 1]) \subset \bigcup_{i=1}^{n} B(f(t_i), r)$$

and

$$B(f(t_i), 4r) \subset F \setminus f(\partial D)$$
 for every $i \in \{1, ..., n\}$
 $B(f(t_i), r) \cap B(f(t_{i+1}), r) \neq \emptyset$ for every $i \in \{1, ..., n-1\}$

where B(a, r) is the open ball of radius r and centered at a in F.

Now fix an $i \in \{1, ..., n-1\}$ and let p_i be a regular value of f in $B(f(t_i), r) \cap B(f(t_{i+1}), r)$. For each $(t, x) \in (-1, 2) \times \overline{D}$ we put

$$H(t, x) = f(x) - p_i - t(p_{i+1} - p) + p_i$$

The mapping H is proper on $[0,1] \times \overline{D}$ (cf. the following Remark 4) and satisfies all the other conditions of Proposition 2 Hence it follows that

Card
$$f^{-1}(\{p_i\}) = \text{Card } H(0,.)^{-1}(\{p\}) = \text{Card } H(1,.)^{-1}(\{p\}) = \text{Card } f^{-1}(\{p_{i+1}\}).$$

Therefore

Card
$$f^{-1}(\{p\}) = \text{Card } f^{-1}(\{q\})$$
 QED.

Now by Proposition 3 and the theorem Sard-Smale we can define the topological degree of pseudopositive mappings as follows

DEFINITION 2. Let $f \in P(D)$ and G be a component of $F \setminus f(\partial D)$. If $p \in G$, we choose a regular value q of f in G and put

$$deg(f, D, p) = Cardf^{-1}(\{q\}).$$

And deg (f, D, p) is called the topological degree of f on D at P.

Remark 2. Let f be a compact vector field on \overline{D} (into E), and $p \in E \setminus f(\partial D)$. If f is twice continuously differentiable on D and the dimension of Ker f'(x) is even for every $x \in D$, then f is pseudopositive on D and by the Leray-Shauder index theorem (cf. [6]) we have

$$Deg(f, D, p) \equiv deg(f, D, p) \pmod{2}$$

where Deg (f, D, p) is the Leray-Schauder degree of f on D at p.

Remark 3. Suppose that E is a complex Banach space, and f is an analytic compact vector field on \overline{D} , then by Remark 1, f is pseudopositive on \overline{D} . By results in [2, 9] we have

Deg
$$(f, D, p) = \deg(f, D, p)$$
 for every $p \in E \setminus f(\partial D)$.

By Definition 2, Proposition 3 and by a standard procedure we have the following basic properties of the topological degree of pseudopositive mappings

THEOREM 1. Let $f \in P(D)$ and $p \in F \setminus f(\partial D)$, we have:

(i) If deg $(f, D, p) \neq 0$ then there exists $x \in D$ such that

$$f(x) = p$$

(ii) If D_1, \ldots, D_n are n pairwise disjoint open subsets of D such that

$$p \notin f(\overline{D} \setminus \bigcup_{1}^{n} D_{i})$$
, then
$$deg(f, D, p) = \sum_{1}^{n} deg(f, D_{i}, p)$$

(iii) If f is one-to-one on D, then

$$deg(f, D, p) = \begin{cases} 1 & if \ p \in f(D) \\ 0 & if \ p \notin f(D) \end{cases}$$

THEOREM 2. Let a and b be two real number such that [0,1] is contained i_n (a, b). Suppose that $H: (a, b) \times \overline{D} \longrightarrow F$ is continuous on $(a, b) \times \overline{D}$, twice continuously differentiable on $(a, b) \times D$ and proper on $[0,1] \times \overline{D}$, and that $D_2 H(t, x) \in S(E, F)$ for every $(t, x) \in (a, b) \times D$. Let $p \in F \setminus H([0,1] \times \overline{D})$, we have deg $(H(0, .), D, p) = \deg((H(1, .), D, p))$.

Remark 4. Let $f: \overline{D} \longrightarrow F$ be a proper analytic Fredholm mapping of index 0 on \overline{D} , and $g: \overline{D} \longrightarrow F$ be analytic on \overline{D} and suppose that $g(\overline{D})$ is relatively compact. For $(t, x) \in (-1, 2) \times \overline{D}$ we put

$$H(t, x) = f(x) + tg(x)$$

Then H is twice continuously differentiable on $(-1, 2) \times D$, and for each $(t, x) \in (-1, 2) \times D$, $D_2 H(t, x) = f'(x) + ig'(x)$.

Since f'(x) is Fredholm of index 0 and g'(x) is a compact operator, by Corollary 2 of Theorem 6 in page 202 of [7], $D_2H(t, x)$ is Fredholm of index 0. Then by Remark 1, $D_2H(t, x) \in S(E, F)$ for every $(t, x) \in (-1, 2) \times D$. We shall show that H is proper on $[0,1] \times \overline{D}$.

Let C be a compact subset of F and $\{(t_n, x_n)\}$ be a sequence in $H^{-1}(C) \cap \{[0,1] \times \overline{D}\}$. Put $y_n = f(x_n)$, $z_n = g(x_n)$ and $u_n = H(t_n, x_n)$. We can suppose that the sequences $\{t_n\}$, $\{z_n\}$ and $\{u_n\}$ are convergent. Then $\{y_n\}$ is also convergent in F.

Because f is proper on \overline{D} , $\{x_n\} = f^{-1}$ ($\{y_n\}$) is relatively compact. Then $\{[0,1] \times \overline{D}\} \cap H^{-1}(C)$ is compact. Thus H is proper on $[0,1] \times \overline{D}$, and we have the following corollary

COROLLARY 1. Let $f: \overline{D} \longrightarrow F$ be a proper analytic Fredholm mapping of index 0 and $p \in F \setminus f(\partial D)$. Let $g: \overline{D} \longrightarrow F$ be analytic on \overline{D} and suppose that $g(\overline{D})$ is relatively compact and

(4)
$$f(x) + tg(x) \neq p \text{ for every } (t, x) \in [0,1] \times \partial D$$
Then $deg(f + g, D, p) = deg(f, D, p)$.

Proof.

For every
$$(t, x) \in (-1,2) \times \overline{D}$$
 we put $H(t, x) = f(x) + tg(x)$

By (4) and Remark 4, H satisfies all conditions of Theorem 2. Then we have

deg
$$(f, D, p) = deg(H(0, 0), D, p) = deg(H(1, 0), D, p) = deg(f + g, D, p)$$
QED.

DEFINITION 3. Let $f: \overline{D} \to F$ be continuously differentiable on D. We shall say that f has the Riesz property on D, if there exists $T \in L(E, F)$ such that

- (i) T is a homeomorphism of E onto F.
- (ii) 0 is not the accumulation point of $\{c \in \mathbb{C} : ker (cT f'(x)) \neq \{0\}\}\$ for every $x \in D$.
- (iii) For each $x \in D$ there exists a projection P_x of E onto a finite dimensional vector subspace E_x of E such that $P_x(E)$ contains $kerf^*(x)$ and P_x commutes with T^{-1} , $f^*(x)$.

Remark 5. If F = E and f is an analytic compact vector field on \overline{D} , by the properties of the spectrum of compact vector field (cf. [3]) f has the Riesz property on D with T = I.

Now we can extend the Cronin's theorem [2] to the case of proper analytic Fredholm mapping of index 0.

THEOREM 3. Let $f: \overline{D} \to F$ be a proper analytic Fredholm mapping of index 0 on \overline{D} , and $p \in F \setminus f(\overline{D})$. Suppose that f has the Riesz property on D. Then Card $f^{-1}(\{p\}) \leqslant deg(f, D, p)$.

Proof.

Let T be as in Definition 3, let S be a Fredholm operator of E into F. Since T is a homeomorphism of E onto F, ind T^{-1} . S is equal to ind S. Then we can (and shall) suppose that F = E and T = I. In the other hand, since $f^{-1}(\{p\})$ is compact, we shall suppose that D is bounded.

By Definition, deg $(f, D, p) = k \ge 0$. The proof of the theorem will be by contradiction. Suppose that there exist (k+1) distinct points $z_1, ..., z_{k+1}$ in D such that $\{z_1, ..., z_{k+1}\}$ is contained in $f^{-1}(\{p\})$. We shall show that this will imply a contradiction.

Indeed, let $E_j = E_{z_j}$ and $P_j = P_{z_j}$ be the projection of E onto E_j as in Definition 3, and $Q_j = I - P_j$ for every j in $\{1, ..., k+1\}$.

Using the Hahn — Banach theorem, one shows that there exists a complex continuous linear functional f on E such that

$$f(z_j - z_j) \neq 0$$
 for every $j \neq j$.

Put

$$a_j(x) = \prod_{j' \neq j} (f(x - z_{j'}))^2 \text{ for every } j \in \{1, ..., k+1\}.$$

For each c > 0 we put

$$f_c(x) = f(x) - c \sum_{j=1}^{k+1} a_j(x) P_j(x - z_j).$$

Since \overline{D} is bounded and $P_j(E)$ is finite dimensional, we see that $(\sum_j a_j(.)^j P_j(.-z_j))$ (\overline{D}) is relatively compact.

Then if c is enough small, by Corollary 1 we have

(5)
$$\deg(f_c, D, p) = \deg(f, D, p) = k.$$

For every $j \in \{1, ..., k+1\}$ we have

$$(6) f_c(z_j) = p$$

(7)
$$f'_{c}(z_{j}) = f'(z_{j}) - ca_{j}(z_{j}) P_{j}.$$

Then if there exists $x \in E$, such that $x \neq 0$ and $f_c'(z_j)x = 0$, we have $f'(z_i)x - ca_i(z_i)P_ix = 0$

Thus

(8)
$$f'(z_j) (1-ca_j(z_j)) P_j \mathbf{x} = -f'(z_j)Q_j x$$

or

$$P_{j} \left[\left(1 - c a_{j}(z_{j}) f'(z_{j})(\mathbf{x}) \right] = -Q_{j} f'(z_{j})(x) \right]$$

It follows that

$$0 = f'(z_j) (1 - ca_j(z_j)) p_j x = -f'(z_j)) Q_j x.$$

Since $P_j(E)$ contains ker $f'(z_j)$, $f'(z_j)Q_j x = 0$ implies that $Q_j x = 0$. Hence $P_j x \neq 0$ and by (8) we have

$$f'(z_j)P_jx=ca_j(z_j)P_jx.$$

It follows that $ca_j(z_j) \in C_j = \{s \in \mathbb{C} : \ker(cI - f'(z_j)) \neq \{0\}\}$ Because 0 is not the accumulation point of C_j and $a_j(z_j) \neq 0$, there exists r > 0 such that if $c \in (0,2r)$, then we have (5) and $ca_j(z_j) \notin C_j$ for every $j \in \{1, ..., k+1\}$.

Therefore $f_r^*(z_j)$ is a homeomorphism of E onto E (we recall that $f_r^*(z_j)$ is a Fredholm operator of index 0), for every j. Then we can find a positive number s such that $f_r \mid B(z_i, 2s)$, the restriction of f_r on $B(z_i, 2s)$, is a

homeomorphism of $B(z_j, 2s)$ onto an open in E for every j, and that $\{B(z_j, s)\}_j$ is a family of k+1 pairwise disjoint subsets of D.

By Theorem 1 we have

(9)
$$\deg f_r$$
, D , p) = $\deg (f_r, D \setminus \bigcup_j B(z_j, s), p) + \sum_{j=1}^{k+1} \deg (f_r, B(z_j, s), p).$

and

(10)
$$\deg(f_r, B(z_i, s), p) = 1$$

Hence it follows that

(11)
$$\deg(f_r, D, p) \gg k + 1$$

This contradicts (5). Then

Card
$$f^{-1}(\{p\}) \leq \deg(f, D, p)$$

QED.

Received June 14, 1984

REFERENCES

- [1] F. E. Browder, Non-linear mappings of analytic type in Banach spaces, Math. Ann. 185 (1970), 259 — 278.
- [2] J. Cronin, Analytic functional mappings, Ann. Math. 58 (1953). N. 1
- [3] R. E. Edwards, Functional analysis, theory and applications, Holt, Rinehart and Winston, New York, 1965,
- [4] K. D. Elworthy and A. J. Tromba, Degree theory on Banach manifolds, Proc. Sympos. Pure Math., vol. 18, part 1, 1970, 86 - 94.
- [5] F. Hille, Methods in classical and functional analysis, Addison-Wesley Publ., company, Reading, 1972.
- [6] M.A. Krasnosel'skii and P.P. Zabreiko, Geometrical methods of nonlinear analysis (Russian), Nauka, Moscu, 1975.
- [7] S. Lang, Analysis II.

 Addison Wesley, Reading, 1969.
- [8] S. Smale, An infinite dimensional version of Sard's theorem. Amer. J. Math. 87 (1965), 861 866.
- [2] J. Schwartz, Compact analytical mappings of B-spaces and a theorem of Jane Cronin, Comm, Pure Appl. Math. 16, 1963, 253 260.
- [10] M. W. Hirsch, A proof of the nonretractability of a cell onto its boundary, Proc. amer. Math. Soc. 14 (1963), 364 - 365.
- [11]. A. J. Tromba, The Eucler characteristic of vector fields on Banach manifolds and a globalization of Leray—Schder degree, Adv. Math. 28, 1978, № 2, 148 - 173.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF HO CHI MINH CITY, VIETNAM.