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TOPOLOGICAL DEGREE OF PSEUDOPOSITIVE MAPPINGS
DUONG MINH DUCG

The topological degree of analytic compact vector fields bas heen studied
in [1, 2, 6, 9]. These elegant results suggest the possibility of defining the
topological degree for a larger class of mappings.

In this paper, using the techniques of Hirsch [10]), we shall establish a
topological degree for a class of mappmgs which contains all proper analytic
Fredholm mappings of index 0.

The values of this topological degree are positive integer numbers, therefore
we can extend the Cronin’s theorem [2]. In [4, 8, 11] we can see the other
methods of defining of topological degree and the Mod 2 — topological degree.

" For the definitions of Fredholm mappings, proper mappings we refer lo
Smale’s paper [8].

~ In this paper let E and F be two real separable Banach spaces and D be a
nonvoid open subset of E. We shall use 4, 94 and Card 4 to denote the clo-
sure, boundary and cardinal of A.

Let L (F, F) be the set of all continuous linear mappings from E into F,
and put

S(E, Fy= (T e I{E, F): T is a Fredholm operater of index 0 and lhe dimen-.
sion of Ker 7' is evemn.

DEFINITION 1. Let f: D — F be proper and continuous on I} and twice conti-
nuously dif ferentiable on D, then f is said to be pseudopositive on Dif f'(x)e S(E, F)
for every x in D. We denole the set of all pseudopositive mappings on D by P(D).

Remark 1. Suppose that £ and I are two Banach spaces over the {ield C of
complex numbers. If f: D — F is continuous on I}, complex continuously dif-

ferentiable on D and Fredholm of index 0 on D, we say that f is an analytic

Fredholm mapping of index 0 on D.
Now let f be a proper analylic Fredholm mapping of mdex 0 on D, we shall
show that f is pseudopositive on D.
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Indeed, by Theorem 8.1.5 in [5] f is twice continuous differenfiable on D.
For a given x € D we put £_ = Ker f*(x). We shall show that E:U, as a real vec-
tor linear space, has even dimension, 9

Put Tx = fx for every z < E. Because f’(x) is a complex linear mapping,
we have T.f’(x) = ["(x).T. Then T(E_} C £ . Suppose by contradiction that the
dimension of Em iz odd. Since EI is finite dimensional, it follows that 7" has a

real eigenvalue. This contradiction shows that the dimension of Ex is even,

iTl_lerefore all proper analytic Fredholm mappings of index 0 on D are pseu-
dopositive on D. ’ .

We shall define the topological degreé of psendopositive mappings, at first
we need the following lemma,
LEMMA 1. Let @ and b be two real numbers such that a<b, and let H:

(a, b) X D — F be continuously differenliable on(a, b) > D such that H(t,.) € P(D)
for every t € (a, b). Lel K be a compac! subset of (a, b) X D such that the derivative
of H at (t, ), DH({, «), is surjective for every(l, x) € K. Then there exists a
positive real number d, such that for each (4, ) in K there exists an unique coni-
nuous mapping g: I, — D such that g(t) =, (5, g(s)) € (a, by X D and H(s, g(s)) =

H{l, x) foreverysel ={ —d, t + d).

Proof.

Let (1, x) € K, it is well known that there exists ¢ € F such that
(1) DH(, x) (s, k) = sc + D, H({, x)k for every (s, k)e R <E. where D_H({, x)
is the partial derivative of H with respect the second variable at (7, x).

Then ’
@) F = DH(1, =) (R X E) = Re + D, H (i, z) (E).

In the other hand, because D,H(#, x) is a Fredholm operator of index 0 and

the dimension of its kernel is even, we see that codim (D, H{, x) (E)) is even.

Therefore it follows from (2) that .Df2 H(t, x) is a homeomorphism of E onto
F. Applying the implicit mapping theorem, there exist a positive real number
d(i, ) and an unique continuous mapping g: (f — d{t, x), I + d{i, )} — D such
that g(f) =z, (s, g(s)) € (a, b) X D and H(s, g(s))= H({, ) for every s in (f—d(t, ),
¢ + d(t, )). The number d{t, =) depends on DH({, ) and the continuity of DH,
Sincé K is compact, we have the desired result. ‘

Applying the preceding lemma, we have the following propositions.

PROPOSITION 1. Leta and b be two real numbers such that [0,1} C (a,b). Sup-
pose that H : (a, b) X D — F is twice continuously differentiable on(a, b) X D, and
proper on [0, 1] X D, and that D, H(,x) ¢ S(E, F) for every (I, ) ¢ (a, by x D
Let p be a reqular value of H such that p ¢ H([0, 1] X 8D). Then the cardinals of
H©, )1 ({p)) and d:1,.) 1 ({p}) are finite and equal,
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Proof.

Since A is proper on [0, 1]x D, p’is a regulav value of H, and p ¢ H(o, 1]
% 8D), it follows that K = H ! ({p}) M [0, 1] X D is compact. By Lemma 1, K
is a disjoint union of paths, which start in {0} X D and end in {1} X D. Then

Card H(0,) X({p}) = Card H (1,.) L ({p})

Arguing as in the proof of Lemma 1, we can show that p is a regular value
of H(0,.) Then H(0,.) ({p}-) is a compact subset of D and comsists only of
isolated points, hence it is finit e.

PROPOSITION 2. Letf a and b be {wo real number, such that [0,1] < (a, b). Suppose

that H: (a, b) X D — F is continuous on(a, b) x-D, twice continuously differen-

tiable on (a, by XD and proper on [0, 1} X D, and that D, H(, %) & S(E, F) for

every (f, ) é (a, by X D. Put f = H(0,.) and g = H(1,.). Let p bea regular

value of f and g and suppose that p ¢ H ([0, 1]xaD). Then the cardinals of
_1({p}) and g 1 ({p}) are equal and finite.

Proof.

By (1) we see that I/ is a Fredholm mapping of index 1. Then by the Sard-
Smale’s theorem (Cf[8]), the set of regular values of H is demse in F. In the
other hand, since f and g are proper and p is a regular value of f.and g, by the

inverse mapping theorem, there exists a positive real number r such thatif g F
and the norm of g—p is less than r, then

Card g~* ({g}) =Card g"* ({p}) and Card f T ({g}) = Card f £ ({p})
Therefore we can-suppose that p is a regular valie of H. Then by Propom—
tion 1 we have the desired results. ‘

- QED.
PROPOSITION 3. Let f 7& P (D) and p, q be two regular values of f. Suppose
that p and ¢ lie in the same component of E \ f(@D), the complemenl of f(8D)
in F. Then Card f1 {pH = Card f 1({q}) '

Proof.

Let k: [0, 1] — F \ f (80} be continnous on [0,;1] such that 2 (0) == p and
h (1) = q. Since h is uniformly continnous and A{([0, 1]) is compact, there exist
r>0and #;=0<1{, <..<<{ =1such that

n
([0, 1)) C L%B(f ) 1)
and
B(f(i Y, 4r) C F \ f(aD) for every [ € {1,..., n}
B(f(t) N B(f (, LD % ¢ for every i €{1,.., n —1}
where B (a, r) is the open ball of radlus r and centered at a in P,
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Now fix an { & {1,.., n —1} and let p, be a regular value of f in
B(fu,) ryn B(f (¢ N 1), 1). For each (f, x) € (— 1, 2) X D we puf

Hit, o) =f (@) — p,— t (D1~ D) + P
The mapping H is proper on [0,1] X D (cf. the following Remark 4) and
satisfies all the other conditions of Proposition 2 Hence it follows that

Card f‘i({P,; D = Card H(0 )1 ({p}) = Card H (1, ) (ph) =

= Card f‘I ({Pi+1})'
Therefore
Card f~1 ({p}) = Card /™ ({g})
QED.
Now. by Proposition 3 and the theorem Sard-Smale we'can define ihe
topological degree of pseudopositive mappings as follows

DEFINITION 2. Lef f ¢« P(D) and G be a component of F \_ f(3D).If p e G,
we choose a reqular value ¢ of f in G and put '

+ deg (f, D, p)mCara’f'I ({q})
And deg (f, D, p) is called the topological degree of f on D at P.

Remark 3. Let f be a compact vector field on D (into E), and p & E\ f(3D).
If f is twice continuously differentiable on D and the dimension of Ker ' (2)
is even for every x € D, then f is pseudopositive on D and by the Leray-Shauder
index theorem (cf. [6]) we have '

, Deg (f, D, p) =deg (f, D, p)  (mod 2)
where Deg (f, D, p) is the Leray-Schander degree of f on D at p.

Remark 3. Suppose that E is a complex Banach space, and f is an analytic

compact vector field on D, then by Remark 1, f is pseudopositive on D. By
results in [2, 9] we have

Deg (f, D, p) = deg (f, D, p) for every p & E\ f(aD).

By Definition 2, Proposition 3 and by a standard procedure we have the
following basic properties of the topological degree of pseudopositive mappings
THEOQREM 1. Lef f € P(D) and p & F\ f(3D), we have:

(i) If deg (f, D, p) #0 f}wl\i there exisis x € D such that

, f(z)=p
(ii) If Dy, ...y D, are n pairwise disjoint open subsels of D such thal



)

n
pé¢f(D\ U D, ), then
1

. .
deg(f. D, p) = ? deg (f, ;s P)

(iit) 17 fis one-to-one on D, then

{1 ifpef(D)
CoRDLI= 10 irpefcD)
THEOREM 2. Let a and b be lwo real number such that [0,1] is confained in
(a, b). Suppose that H: (a, b) x D- F is continuous on (a, b) X D, twice
continuously differentiable on (u, b) X D and proper on {0,1] X D, and thal
D, H(t, z)e S(E, F) for every (1, z) < (a, b)x D.Let pc F\ H ([0,1] X 3D),
we have deg (H(0,.), D, p) = deg ((H(1, .), D, p).

Remark 4. Let f: D ——F be a proper analytic Fredholm mapping of
index 0 on D, and g : D —— F be analytic on D and suppose that g(D) is
relatively compact. For (4, ) € (~ 1, 2) x D we put
H (2 = [(@) 4 1g(r)
Then H is twice continuousty differentiable on ( —1,"2) X D, and for each
Gxye(—L2AXD, D, HE ) = fr(x) +ig’ ().

Since f’(xz) is Fredholm of index 0 and g (x) is a compact operator, by
Corollary 2 of Theorem 6 in page 202 ol [7], D U (t, xyis Fredholm of index0.

Then by Remark 1, D, H({, z) € S(E, F) for every (, z) e (— 1, 2) X D. We
shall show that H is proper on [0,1] x D.

Let 'GC be a compact subset of F and {(in, x )} be a sequence in
H-1@ N {01 X D}. Put y, = f(z ) z,=gx,)and u =H(,z,) We
can suppose that the sequences {t 1}, {z } and {u } are convergent. Then
{y,} is also convergent in F. |

Because f is proﬁer' on D, {z }= 77 ({y, b is relativeiy compact. Then

{{0,1]x D } N H™(C) is compact, Thus H is proper on [0,1] X D, and we have
the follov.mg corollary

COROLLARY 1. Let f: D ——F be a proper unalytic Fredholm mapping
of indexOand peF\ faD). Lel g D - F be analytic on D and suppose that

" g(D) is relatively compact and

(%) flz) + 'tg(;v) =+ p for every (t, x) ¢ [0,1] X 8D
Then deg (f+ g, D, p) == deg (f, D, p).

Fy
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Proof. ’
For every (t, ) e (—1,2) X 1) we pﬁi
J H{i, 2) = f(x) + 1g(=)

By (D z;rid Remark 4, H satisfies all conditions of Theorem 2. Then we
have

deg (/. D, p) = deg (/1 (U,.), D, p) = deg (H(1,.), D, p) = deg (f + 9, D, p)
‘ QED.

DEFINITION 3. Let f: D — F be continuonsly differentiable on D. We shall say
that f has the Riesz property on D, if there exists T e L(E, F) such that

(i) T is @ homeomorphism of E onto F.

(1) 0 is not the accumulation point of {c € C: ker (cT — fr () = {04} for
every x € D, ' '

(iily For each x € D there exisis a projection P_of E-onto a finile dimen-
sional vecior subspace E_ of E such that P _(E) contains kerf* (x)and P_ comumnutes

with T ™1, f* (x).

_ Remark 5, If F =F and fis an analytic compact vector field on D, by the
properties of the spectram of compact vector field (cf, [3]) f has the Riesz
property on D with T'= 1.

Now we can extend the Cronin’ s theorem [2] to the case of proper analy-
tic Fredholm mapping of index 0.

THEOREM 3. Le f:D ~Fbea proper. analylic Fredholm mapping of index

0onD, and p € '\ f(3D). Suppose that f has the Riesz property on D, Then

- Card f "1 ({ p}) < deg (. D, p).

Proof. '
Let T be as in Definition 3, let S be a Fredholm operator of E into F.-

Since T is a homeomorphism of £ onto F, ind T, Sis equal to ind S. Then
we can (and shall) sappose that F =F and T = I. In the olher hand, since

f~1(¢ p}) is compact, we shall suppose thal D is bounded.
-‘ By Definilion, deg (f, D, p) =k > 0. The proof of the theorem will be by
contradiction. Suppose that there exist (k + 1) distinct points Zys e 2y in D
. such that {21 o wus Zk-l—l} is contained in f~7 {p }) We shall show that this
will imply a contradiction.
 Indeed, let E;=E, and P,= P_ be the projection of E onto E; as in
: z, 5 .

J
Definition 3, and ¢, = T — PJ. for every j in {1, ooy k414

¢
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Using the Hahn — Banach theorem, one shows that there exisis a co rnie\,
continaous linear {unctional f on £ such that

f(zj—zj VY0 for every j + j.
Put :
aj(x) . I (fle — 2, M? for every je {1, .., k4 1k
e xg B
For each ¢ > 0 we put
' k+1
f (@) =fla)—c ji @ Py @ =2

Since D is bounded and Pj (E) is finite dimensional, we see that

(Za; (YP;(—2) (D) is relatively compact.
J

Then if ¢ is enough small, by Corollary 1 we have

® deg (f,, D, p)=deg (f, D, p) = k.
Forevery je {1, .., k+1} we have

(6) fc(zj:‘ =D

(?) f’c(zj)zf’(zj)-—-caj (Zj) Pj-

Then if there exisls z ¢ _E, such that x == 0 and fc’(zj) x =0, we have
f’(zj)a: —_ cz_ctj(zj) Pj rz=20
Thus
(8) f’(zj) (I-caj(zj)) ij = —f’(zj )Qj R

or

P; [(l-ca;(z))f (2 @] = -Q; f* ()@
It follows that
0= f'(zj) (1-—caj (zj))pjx = — f’(zj ))Qjm_
Since P;(E) contains ker [(z/), f(2,)Q; & = 0 implies that Q, = = 0. Hence
ij =+ 0 and by (8) we have
f.(zj )Pj:c = ca; (zj )Pj x. | _

It follows that ca, (z,) € ¢, = {s € C : ker (cI — f¥( (z;)) # {0}} Because 0
is not the accumulatlon pomt of C and a, (~ ) + 0, there exists r = 0 sucl
that if ce (0,2r) , then we have (5) and ca (z )¢ C tor every j€{1, ..., k+1}.
Therefore f;(zj } is a homeomorphism of E onto E (we recall that f;(zj)is

a Fredholm operator of index 0), for every j. Then we can find a positive
number s such that f!. | B (z;, 25), the restriction of f‘_ on B(z,, %), is a
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homeomorphism of B(zj., 2s) onto an opeﬁ in £ for every j, and that {B{:j S} f
is a family of k41 pairwise disjoint subsets of D.

By Theorem 1 we have
. - k+1
(9) deg f , D, py=deg (f ., D\U Bz, s) p) + % deg (f,, Blz;, s), p).
' J i=1
and .
(10)  deg(f,, B(z;, ), p) = 1 .
Hence it follows that
(1) deg(f., D, p)>k+1
This contradicts (5). Then

Card f~1({p} < deg (f, D, p)
QED.
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