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1. INTRODUCTION

In recent years, there has been growing research in fields connected with
probability measures on linear topdlogical spaces. Of particular interest is the
study concerned with absolute continuity of probability measures. Thia is of
fundamental importance not only in the development of probability theory. on
linear topological spaces but also for applications in Statistics of stochastic
processes (see e.g. [6]). ‘

In this paper, we introduce the notion of weakly absolute continuity of
measures on linear topological spaces (see Definition 2,I). This definition
generalizes the notion of absolate continuity. Qur main goal is to examine the
set 'of weakly admissible translates of probability measures on locally convex
space and the dichotomy theorem for stable measures.

Let Hy be the set of weakly admlSSIble ‘translates of a measure I ona.
locally convex space E. An advantage of our notion is that, in contrast to the set’ Ay
of admissible translates of L, the set H p has many interesting properties. For

examples, it will be seen in Section 2 that

i) Hy isa measurable linear subspace of E,

if) HH is_isomorphic to the dual of the topologma! vector space of  -mea-

surable line..af unetions, - .
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We focus on symrﬁetric stable measure in 3ection 3. In the case where tie
index of W is greater than 1, Hy; becomes a Banach space of H-measure 0 and
it is dense in the support of . Specially, if X is a centred Gaugsian measure,
the set HM turns out to coincide with the set A e and this set Can be characte-
rized as the intersection of all measurable linear subspaces of l-measure one.
» For the case of stable measures with discrete spectrum, the set AP« and Hy
can be described through the spéctrum of K,

It is well known that two Gaussian measures are either equivalent.or ortho-
gonal [4]. This phenomenon is called the dichotomy theorem for Gaussian measu-
res. Until now, the conjecture that two stable measures are either equivalent or
orthogonal has not yet been proved. We shall prove in Section 4 that two stable
measures are either weakly equivalent or orthogonal.

1l. THE SET OF WEAKLY ADMISSIBLE TRANSLATES

Let E be a locally convex space and E” be its doal. 3 denotes 'the Borel
g-algebra generated by the open sets of E,

9.1. DERINITION. Lef L and v be two pro'babz'liiy measires on E Then we say that

’ . . . w
W is absolutely continuous in the weak sense with respect tov, and we wrife L < v,
if for every sequence.(y ) C E’ such that (., y, ) > 0 in v-measure, we have

(. Yy ) — 0 in Y -measure,

It can be checked easﬂy that 4 < v lmphes u < v.-As wé will see later, the

sonverse is false. If [t < v and v < K we say that pis weakly equivalent to v

and write & = |
If a is an element ot E, we denofe by M the measure translated by a, i.e.
the measure given by
i (B) = W(B — a) for every Borel set B,
9.2, DEEINITION. An element a of E is said fo be an admissible (resp. weakly

admzsszble) transiaie of wif < W (resp. 1 g u) If l«l—L W then a is said to
be an orthogonai translate of u.

Throughout this paper, A (resp Hy ) will denote the set of admissible
(resp. weakly admlsmble) translates of li and Sy, the set of orthogonal tran-
slates of . _

The charactenatlc function of I is denoted by It )
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2.3. PRUPOSITION. a < Il if and o-ly if

\ For every sequence (y ) C E*suchthat (., y ) — 0 in  H-measure,

(2—1{ we have 7 K
: lim (a,y, )= 0.
Proof. Suppose that a satisfies the condition (2 —I), Let (yn) ( E” be such that

(+y,)—0in M-measufe. Then B (ty,) — 1 for ali real numbers t. Since

ﬁa(tyn) = exp {it (a, y )t ﬁ\tyn), we have l./l:;(tyn) — 1for a‘\l} t. Thus (., yn)—ﬂ}

in Ila -measure.sThis proves I-La “<; Ui, e as HP« . Conversely, suppose that a

' does not satisfy the condition (2 — I). Then there exists a seguence Gy E
such that (., yn) ~ 0 in 1 -measure but (a, yn) — 0. If . (., y,) also converges o
0 in t-la -measure then it follows thal exp {it(a, ¥, )} — 1 for all t. From this,
we have (g, y ) -~ 0, which is impossible. Consequenly, (., y_ ) does not con-
verges to 0 in P-a -measure. This proves a ¢ HIJ- .

2.4 COROLLARY. H Iy Is a linear subspace of E, - o

2.5 PROPOSITION. Let W bea symmeiric measure. If aeH m then Ll B
Proof. Let (y ) . E’ be'a sequence in E’ such that ( y )—> 0in P« -measuré.

i Then | u(tgn) ]2 ~>1 for all t. Since M is symmetric, it follows that M(ign.) -1

_ e
for all t. Hence (., ¥, ) — 0 in |\ -measure, This proves K < I . Since a & Hy '

' w
‘we have L~ 1,

 Let Gll be the mtersect:on of all measurable linear auhspaces of ‘B -mie-

asure one,

Proof. Obvmusly, we have 4y, C SIJ- To prove: Sl—l C Gy we assume that
a4 Gy . Then there exists & measurable linear G of {t -measure one such that
a¢G Therefore (G —a) A G =¢ anp L (G)—-u(G —a)=0. Hence 1 | [
i.e. as Sp_ It remains only to prove Gll - HP« Assume aéHu By Propo- '
sition 2.3 .

: 2! There existe a sequence {y,) C E* such “that (. y,} — 0 in
Q._— _

{ ¥ -measure hutg(a, y )>¢forallnande >0
e
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For each n we-can find k_ such that
p{xeE: (@4, )| =272} <270
, Ik, ,
Set G={xeE: 2] (&Y.l < oo}

Clearly, G.is a nieasurable linear subspace of It-measure one. In virtue of (2-2)
we have a ¢ G. Hence a ¢ G The theorem is proved.

2.7. COROLLARY. Every translate of W s either weakly admissible or
orthogonal. '

Now we are going to give & better description of H .

9.8, DEFINITION. I) A probability measure W on E is called a Lusin measure if
e = 0 there exisis a wealkly compact and absoluiely convex -sef K such that
RE)=1—¢. ‘

2)A measurable linear subspace V of Eis called att — Lusin space of E, ifFe=U
there exists a weakly compact and absoluiely convex set K such that K C V and
R(E) > 1 — &

Denote by G{i {he intersection of all it-Lusin space of E.

2.9, THEOREM. If 1t is a Lusin measure the Hyy = Gﬁ i

Proof. Suppose that Gis a ],L-L_llsiﬂ space and-_a-e G. Then there exist weakly
comp'act and absolutely convex sets K such that '

E CG K, + K, +C E oL qoWE)=1-2""% -

oo _ .
set L= v K. By‘Haln-Banach theorem, we can choose J, € E’ such that
n= . ' .

(a, gn) > 1and |(r,9,)| <1whenze K, . 1t is readjly seen that (z, §,)—>0

for every x € L. since W(L) =1 we have (x,y, ) — O in W-measure. From Propo-

-sition 2.3 and the fact that (a,4§,) > 1 for all n, it follows that a ¢ Hy .Hence

Hy C 6

Conversely, assume that a QHﬂ . From the proof of Proposition 2.6 we see that

there exists a -sequence Wy E’ such that L
pizeE:| (@)= i R

and { (4, y,) 1> ¢ for.all n and somé ¢ =0,
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. Set N(z)=2| (@ y,){ andG ={reE: NZ) < o } Clearly, W(G)= 1.

We shall prove that G is a M- Lusin space. Let ¢ > 0 be given and choose >0

such that u{ Nt} > 1 — -5— . Observe that the set {N <t} is closed and
F K

absolutely convex. Since W is a Lusin measure, there exists 2 weakly compact

and absolutely convex set K such that Ii(K) >1— =, SetK =K n { Nt}

it can | be checked that K {N <t} CGand Lt\K) = 1 — ¢, We also have
that Kisa weakly compact and absolutely convex set, hence G is a p-Lusin

space, as desired. Since a ¢ & we have a QGIC;,. The theorem is pro“'ved.

Let L (i) denote the set of all M-measurable functions defined on E.
Then L (ll) forms a metnzable vector topological space if it is equipped with
the topology of convergence in M-measure. Denote by- £y the closure of
E = {G,yyée E}yiaL (B). Lyisa metrizable vector topological space,
but it is not necessarily locally convex. Every element ‘of £y is called a

W.measurable linear function. Let 'ﬁfl denote the fdual "of _f,u , and ﬁﬁ be
equipped with the strong topology. : o

i.;o. THEOREM. It 1t is a Lusin measure then Hy i:isomor_f)hic to L.
We need several lemmas. '
9 11. LEMMA. The character:stzc function of a Lusin measure !l is contmuons -on E*,

if E®is equipped with the Markey topology.

2 .
Proof Given ¢ >0 Put & = = ) . By assumphon, there exists an. absolutely

N WB have

convex and s(E B

1=t <{11-eop {;(x,g)} |2 dit(z) = 4 Ssmﬂ ZD) e+

e . -
+ 48:51’112 (_%_,y) dil{x) -QS | (z,9) | Zdll(:z) 4+ 8.
: x" K '
Put U= '{UEE’ sup | (x.y) | < V3 },-we have that yEU implies §1— B(g)hee.

z€K

_ Smce Uis a nelghbourhood of the Mackey topology, the lemma is proved,
_ 4__It is trivial to show the following,
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2.12. LEMMA. If W s a Lusin measure, then eperyclosed subspace of E of measure
one is a  — Lusin space, :
The following lemma is well known.

& | '
2.13. LEMMA. Lef (X,) be a nel of random pariables. For X, — 0 in probability
if is necessary and sufficient that the corresponding net of their characteristic
functions converge fo 1.

Proof of Theorem 2.10.Let I: E’ — £y, be the linear map which takes yekL,

into the corresponding equivalence class ;containing (» y). We assert that Iis
continuous on E’ in the Mackey topology M. To see this let (y,) be a net in E’
such that y, — 0 in the topology M. By Lemma 2.11 Ty.) - O for each { e R. By

Lemma 2.13 'E}'ﬁ — 0in ‘ﬁll' Consequently, Iis continuous at O and hence on £’
in the topology M. Since the topology M is compatible with the duality (£, E)it

follows that the. transpose /* of I is a continiious operatorfrom £’ into E when

, 28
£i1, and E are equipped with the strong topology. Since the strong topology on

E is finer than the initial topology on E, it follows that I* is also co.ntinuous
when E is equipped with the initial'topology. Since IE’ is dense in gu. I’ is
injective, Now we have to show that H!l = 1*(2;), At first, we prove I*(ﬁ’p )CH” .
Let Eeﬁ.ﬁ and let (y.n) C E ;éuch that{., .yn)‘—;- ¢ in _L_t—— méasure. Then we have
lim (I8, y,) = lim(Jy,) = 0. By Proposition 2.3, we have I'tcHy). To . prove

the opposite inclusion, we assume aeHy. Define a maplg: IE' > R by
a(Iy)—(a ). Then 2 is & well defined map, Indeed, suppose that Iyi _,.[gzl e,
(. yi)—(a"yz) for 1t — almost all x. Then the setG = {xeE: (z, y) = (x, Jz) b
is the closed subspace of & — measure one hence, by Lemma 2.12, it is a
u — Lusin space. By- Theorem 2.9, we have aeGie, (g,y )= (a.,.yz) Clearly,
is linear. By Proposmon 2.3, a u also contmuous Slnce IE™ is dense in gu .

a admits a umque extensxon to ﬁp_l e. de £p On the other hand, for each

yeE* we have (I“(a), Y = (a, Iy) = (a, j). Hence -d = I (a)' This proves

Hf»l  I<(£%) and thereby completes the proof of Theorem 2.10,

From now on, for convenience for y e E we denote Iy by 7, and for
a GHP we denote I i(a) by d. We always have &
(P =(@E§ foracHy,yek -
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2.14. THEOREM. Le.t W be a Lusin” measure. In addition, suppose fhat ﬁu ts
locally convex. Then ihe closure of H p in E is equal to the intersection M y of all
closed subspaces of E of Wt *measure one.

Proof. From Theorem 2.9 and Lemma 2.12 it follows that Hy < My. To prove
the opposite inclusion, we assume a Qﬁu, By Hahn-Banach theorem, we can

find y € E£" such that (a,y) =1 and (z, y) =0 for allx &€ Hll . Hence we have
G Iy = (I E y)="0foralltc L”_. From the assumption that LH is locally
convex we have Jy=0 i.e. (z, y)= 0 for p-almost ali x.Set ¥/ = {z€E: (z,1)=0}.
Since (a, y) = 1, we have a ¢ M. Clearly, M is a closed subspace of p-measure
one. Hence a¢ M e The theorem is proved.

Remark. As we will see later, it may occur that no weakly admissible translate
exists; except the zero translate. However, if ﬁll is/locally convex then Hll is a
sufficiently large set,

I, THE SET OF WEAKLY ADMISSIBLE TRANSLATES OF STARLE MEASURES

1.3. DEFINITION. A probability measure ¢t on E is said to be a slable measure of
index p(0< p < 2) if for every ye E’, (., y) is a stable random variable of
index p in the probability space (E, B, 1),

The class of all symmetric stable measures of mdex p on E is denoted
by RP (E). In this section we are interested only in Lusin measures. It can be

conjectured that if M eRp(E) then &t is a Lusin measure.

3.2. THEOREM. If neR (E) where 1 < p < 2 Lhen HH isa Banach space, In the
case p=2, H) isa Hzlberi space.

Proof. Let ! ¢ R (E) Then the characterlshc function ! y(i) of (., y) is gzven by
F,(ty= exp [—d 17},

‘wheré d > 0and it dep.ends only on the equivalence class j. We define

hgn, = d”P From Schilder [8] if 1 Qp K 2then = {f,ye E} isa norm-
ed linear Space under the norm [[§ I . By Lemma 2.13 we have i g, —~0in °
Ly if and only if 1§, [y — 0. Henee JZu is the completion of £’ under the
norm . “ii' thus ﬁp becomes a Banach space. Moreove;, it is _egsily scen that it

r < p then ' B
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: Sy
é (@ y))d W) = cp,r“gﬁﬁ for all y ¢ E’, where the constant C.p,r depends
only on p and r. 7

In particular, if p= 2 ie. it is a cen'red Gaumssian measure, £,, is a Hilbert

t
space. By Theorem 2.10 Hy =I(L w) I ae Hy we define the norm of a by
lfali ll&li g!-l Clearly, fHy is a Banach space under the norm | . j HP« and

)
we always have

l@uI<naig, 150y foraeHy,yek

Note that this norm topology is finer than the topology on H i mduced by the
topology on E.

By definition, the support supp K of a probébilit}'r measure [l is the
smallest closed set which carries the total mass one. From Theorem 2.14 and

the fact that the support of a symmelric stable medsure is & closed subspace
of E [7] we obtain the following

3.3. THEOREM. If U & R (E) (1< p < 2)then
supp- 11 = HP-

The followmg theorem shows that H w s a negligible set with respect fo L,
3.4, THEOREM. If L e R (E) (1< p<2)then

82 (Hl»l) Owhen dim Hyy = o,

W (Hy) = 1 when dim Hy < eo,

. 7

Proof. If dim Il}) < o then Hy is closed. From Theorem 3.3 H), =suppi
thus 1L (Hll) = 1. Now suppose that dim HU— = oo, Then the vector subspace

CE*of Ly, is obviously of infinile dimension. From the Dvoretsky -- Rogers
theorem [3] there exists a sequence (yn) in B’ such that '

T oy, ip=oe

n=7

Z: |(§,y yE<s. for everyge_f.’il\
n=i" *

Set N(x) = Z | (x, y_) |.. We have Hy C N < o2 In'de.ed,‘if a € fi,; then
Z;J'l(a,yn)i='2l(?1.yn)l<m |

, n=

Clearly, the function N(z) is a seminorm and

Eme)dﬂ(x) Zf 1@ yn)ldl’»(:c)— WRTEA
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‘We know form the zero-one law in [2] that ! {N < oo} =0 or 1. Assume
M{N < oo} = 1, From the A.de Acosta’s theorem [1] we Bave

IN(x)dW () << o=,

E .

This is a contradiction. Therefore L{N < oo = 0 so we have I (Hp‘)-: 0
The proof is complete.
3.5. DEFINITION. Let E be a Banach space., A measure l. € Rp'(E ) is called o

stable measure of index p with discrete spectrum if there exists a sequence
(z,) C E such that

Hyy) =expf— % | (z,, y) 1P}

The sequence (a:n) Is called ithe spectrum of W, To avoid reduction to lower
dimensional cases we always assume lhat

- : xn§3pan{xm:m¢n} .
3.6. THEOREM. Lef It be a stable measure of index p with discrele spectrum
' (z,) C E. Then we have

Hy ={axeE:x = Ibnxn,(bn)elq}

. =
4y ={xeE:ixz= 3;_;,; a, %, (a; )6l

where p“ -+ q—.I = 1.

Proof, By the Hahn-Banach iheorem there exisis a sequence (u,) C E* susk

that L wh : .
! whenm=n .

x =

@y s Ym) 0 when m + n o

It has been shown in [9] that

z=2(ry)x, .. forW-almost all z,

if) £y and IP are isometric and the isoinetny is defined by the map

s:£y —> 1 which takes tf € gu into the sequence { f (x,)} € L.
Put A = S.I where I isthe map taking ye E’ into ;e‘ﬁu.'We ‘have
Ay = {(xn's y)}

We shall show that |
A*b = an‘xn for b= (bn)-e [q.

Indeed, since Z |z || P < o, the series Ebn x  converges in E to an- element

~he E. For eacl;a yeE’ we have (hy) = Z—hn(:_cn_, g = (b, Ay) = (4*b,y).
So A*b= h=Zb_z,. |
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From Theorem 2,10 we have

H, = 12y = I, = &1, —{zeE:x=3b,7, () €}

Next, put . A= {z€E:x=Za,x, (an )6 Iy}

It"has been shown in [9] that '

_ | Ap {a:eE E[(:cy)l oo}

We now show that A= A4y. lfae Athena = (a,7,) so a»:—.Au

Conversely, let ag Ay. Set G = {weE:z =3I (x, y ) }.Byi) Gisa measurable
linear subspace of It — measure one. By Theorem 2.6 we have acG. Hence
" a= Z(a,y, )z, with 2 | (a,y ) [ < oo, i.e. a & A. The theorem is proved.

Notmg that a centred Gaussian measure is a stable measure of 1ndex 2 with
discrete spectrum, we obtain from Theorem 2.5 and Theorem 3.6 :
3.7. COROLLARY If W is a cenired Gaussian measure onE, then Hp_ is exacily
the set Ay and it can be characlerized as the infersection of all measurable linear
subspaces of W — measure one. o . T o
3.8. DEFINITION A stochastic process {Xt L0 << }'is said to be a stable
motion of index pif .
i) {X, } has stationary and mdependent mcrement
i) Elexp{uiX, ] = exp{—t|lulP}.
From Zinn [10] and Theorem 2.10 we obtain the following,
3.9. THEOREM Let {Xt ,0 < t < 1} bethe stable motion of index p. Than
we have ' T : o PN ‘
H {::c(t)_fg(s)ds geL [01’]}th PSR
u —
| {g) =0}if0<p< 1.
Ay == {x(i) =0} if0<p<2
where W is the stable measure on L, [0,1] induced by the process X, .

{V. EQUIVALENCE AND ORTHOGONALITY OF STABLE MEASURES .

4.1. DEFINITION. Let 9 be a family of probability measures on E. V!'/‘e say that
the dichotomy (resp. weak dichotomy) theorem-is true for %% if any two
megsures in 96 are eiiher equivalent (resp. weakly equivalent) or orthogonal.
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it is well known that the dicholomy theorem is true for (aussian
measures [4). Kakutani [5] proved the dichotomy theorem for product measures
on R=. The dichotomy theorem for stable measures stillremaing unknown. We
shall prove here the weak dichotomy theorem for stable measares on locally
~ convex vector spaces.

S

4.2. THEOREM. Two stable measures on. E are either weakly equivalent or
orthogonal. :

Proof. Assume that [l and v are two stable measures such that {t is not we: kly
equwalent to v. Then there exisis (for example) a sequence (y,) C E’ such that
) -» 0 in H-measure but (., Yy, ) does not converge to 0 in v -measure. Thus

there exists a subsequence (y,: +) such that
IRCRER S \ @-1

for all n’ and some ! & R, s>0 ‘
We also have a subsequence (Y, ) of the sequence (y ) such that (x, y . \
n
k

converges ‘to 0 for . -almost all x. i:et
G=4{xekb: lim (x, )=0}.

Clearly, G is 2 measurable 1mea1 subspace ol 11 -measare one, In virtue of the
zero-one law [2] v(G) =0 or 1 If wG)= 1 then (a: Yp» ) converges o 0 in

" y.measure so?(iyn, ) = 1 which contradict (4--1)." Hence w(G) = 0. From this it
k .

follows that ;2 | v.

In the nest theorem we find a sufficient condition for two stable measures to
be either equivalent or orthogonal. '

4.3, THEOREM. Let il € h (E) such that
1) There exists a sequence (y )< E’ such that {(x, ¥y, )} is a sequence of inde-

pendent random pariables in the probability space (B, B, 1)
i) For each y & E* we havr the expansion

(z, y) = Ea @ y) in W -measure

Then, if v is a stable measure such that {(z, y )} is also a sequence of independ-

ent random variables in the probabtlztg space (£, 3, v). v i8 either equwa!ent or
orthogonal to W
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. w ’
Proof. By Theorem 4.2 we can assome |t ~ v, Then for each yeE', we

also have ,

@y)y=2a, (x,y,) inv-measure,
Let p () and g, (D) be the . densities of (z, y,) on the probability spaces (E, 3,
H) and (E. /B, v) respectively. Put

S RN
‘.Ip(x)':l-:l g, [@y )T

From assumption and the Kolmogorov zero-one law, it follows that
: v{0<P@)<<oe}=1or0.

Assume first that v {0 < P(¥) << o= } = 1. Consider the measure } given by

MB)=f P)dvx), - Bed
B

The characteristic function of A is given by
A= Jexp {i(x y)} Px)dv(z) = [ exp {iZa,@y)}
E E .

oo

> p [@y)l - o P l@y)]
Pnl¥ Inl] ey 0 (z k. Al M P TP
HW RN 1 Sefpgwn..(w 7,0} e n e

= n S exp?lu tfp (t) dt = exp ’—2 fa|? } =ﬁ(y),
n=1R.
The measures A and I have the same characteristic functioln 80 A = {!,

This proves ! <« v. Since the Radon-Nikodym derivative id& = P(x) is
v

positive for v-almost all x we have v < U, Hence [t ~ v,
Now suppose that v {0 < P(x) <o} = 0 and M is not. orthogonal to v.
Definea mapS: E— R by S(x) ={ (=, yn)}:"___ ; From the assumption, S®

and ‘Sv are not orthogonal. By Kakutani’s theorem [5F SU and Sv are'
equivalent and

= (L)
;0(” q(r) -ﬁﬂfﬂll
=1 '

From this- . .
Y {0< P@)<< o} =1,
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A contradiction. Hence It | v and the theorem is proved.

4.4. COROLLARY. Let L be a symmetric stable measure satisfying the condilion
i) and ii) in Theorem 4.3. Then W is either equivaleni or orthogonal fo L for
each a ¢ E,

Proof. Sﬁppose that { (z, yn)} is a sequence of independent random variables
on the probability space (E, B, M). Let F (;,1,...,1 ) be the characteristic

function of the random vector { (&, §,)},—,and f, (#) be the characteristic
function of the random variable (z, y, ) on the probability space (E, B, H )
Then we have '

o n  a  n
Fty,stgmt)=W (244, )=exp {i(@ 2t g (5 y,) =
k=1 k=1 ke=1
n o~ - n . —~ :
=81p{i}:1(a, Ly )} Ry e B (Y, nkl'ljexp {ilat, g )} oy )=
k= o ,

= 1 feo.

So { (x, yk)} is a sequence of independent random variables on the
k=1 '

* probability space (E, B, ¥_). From Theorem 4.3, Corollary 4.4 follows.

Since a stable measure with discrete spectrum satisfies the condition i) and
ii} in Theorem 4.3, we have '

4.5 COROLLARY. If W is a stable measure with discrete spectrum then for every
a€kl either W ~ Worit | B,

The following theorem gives a sufficient condition for two stable measures
to be orthogonal. ; ‘

r

4.6 THEOREM. Let M and v be two stable measures. If Hy = H, then it | v,

_ Proof. From Proposition 2.3, it is easy to see that if {t 2 v then Hp_ =H,.
From this if HIJ« = H, then It and v are not weakly eqguivalent. Hence by
Theorem 4.2 1t |_v. : |

This is not a necessary condition. Indeed, if ¥ is a non-Gaussian stable
measure with discrete spectrum, then by Theorem 3.6 Ay is a proper subset

of Hy . Hence we can choose a € Hy with a ¢ All' We have K | K but

. Iy '
L’lNua, 50 H]—L an'a.
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4.7, THEOREM. Le! E be a Banach space and let It and v be hwo stable meastires
of index p and p’ respectively with discrete spectrum. If pP=p then it | v,

Proof, It is easy to prove that if U -u: v then, £y is isomue: phic to £,. Since
ﬁu is isometiric to lp » £, is isometric to Ip and p 4~ p’ it-follows that 4 and
v are not weakly equivalent. Hence by Theorem 4.2 1t | w,

4.8. THEOREM, Suppose thai ue RP(E) andv Rp, (E) (1 Spp <2). Then
W% if and only if Hl»l = H, as sels and their norms are equivalent.

Proof. Assume that Hy = H, as sets and their norms are equivalent. If U is not

weakly equivalent to v then there exists (for example) a séquence (yn)c-E’ such
that || g, ~0bat|g 41 > 1, for all n.By Hahn-Banach Theorem and Theo-
22 v ‘

~rem 2.10 we can find a sequence (a'n) C H,, such that || a, | =1 and (@, § )=

=117, §. Since (a,) C Hu_we have . s
IS0, 0 =100, 5,) 1= l @ g <llaf my Mal < el %u I, =
=clig, | — 0. L
13 .

This is impossible. Hence [ ¥,

The converse follwa easily from Definition 2.1 and Proposition 2.3,
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