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INTRODUCTION

The paper deals with a boundary value problem of the parabolic type for
the diffusion equation describing the concentration of suspended sediments in
long channels.

An initial condition and a boundary condition- at the cross section z = 0
are given in a general form. A condition at the bottom y = 0 is assumed to be
- a function of one variable x. The coeificients of the equation are functions of
one (or two) variable z (or @, y).

‘Certain simpler cases of this problem have been extensively investi'gated,
but for this problem many questions may be raised. Some of these questions
. are examined and answered in this paper. '

For the boundary valae problem under the assumption that the vertical
diffusion coefficient K2 is constant we shall find asymptotic solutions and

analyse influences of the flow velocity U/ and of the horizontal diffusion
coefficient Kj on them. ' :

Under the additional assumptions that K, is an increasing function and the
concentration af the bottom is consiant, we shall find an estimate for the

agymptotic solutions. : . «
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In a simpler case of constant coefficients of the diffusion equation we shall
find analytic and asymptotic solutions. We shall analyse the stability of the
sol tions in relation to-the independence of the initial condition and of the
boundary condition at the cross section z = 0,

In a siill simpler case of constant concentration at the bottom we shall also
analyse.an influence of the coefficients of the diffusion equation on the asymp-
fotic solutions.

Finally a comparison between theoretical and éxper’iméntal results for the
case of constant coefticients of the diffusjon equation will be given.

1. PROBLEM FORMULATION

In the field of hydraulics (see e.g. [9], [12]), the differential equation -
deseribing a distribution of suspended sed[ments in long channels is gwen'
as follows

aC~ oC 3?C b aC aC
1) =4 Uy =k T2 —(K _) y 3¢
(1) of + o ax 01 gp? ay \ 02 oy + oy
where € is a function of the wvariables :b, uy, t; @, y, 1) & Qaz-{x’ iy, ¢
0<zx <o, 0<y<H, O<i<o} x y: the space-coordinates of the
channels; {: the time. K(M’ Koz: the diffusion coefficients in the z and g
directions, respectively; UO_: the flow velocity in the x direction, V: the time

averaged fall velocity of sediment particlés in the flow (V = const).

The functions Uo, KOI , K are given in various forms as we look through .

the literattire. However, in some practical and theorehcal lﬂvestlgatlons they
can be assumed to be constant o

An initial condition is given in the general form

an o, _ =% fo @ 4 @ 4) & (0, ) X (0 H) -

and the boundary conditions are
(1.3) Ci o Qpy Tor @ 1 (g: D) €0, H) X (0, =)
' xr = ) . B

an G =0 Fpp (@ 1) €@ o) X (0 =)
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(1.5) (K o ,2% +ve ) Iy:zf 0, (2, 1) € (0 =) X (0s o)
Ly

Here on, j=0, 1, 2 are constants, which allow us to determine

(1.6 0<f,y; <1, -
Furthermore, we assume ' '
(1.7) ; C§M<°° as X —=» oo ar f—beo
(1.8) - l_zf—lg.u<m a8 x> oe.
xT

To find the distribution of suspended sediments-in the flows we shall
sxamine the boundary value probleni (1.1)..., (1.8).

For the sake of convenience we convert this problem into a nondimensional
form by using the transformations

K, - ‘ 4
, 2 T g ; 2
1.9 o = —_— . = =, =2t
(7 ) VKI "' y 1 H2
(11 C=-—. }
. Qs _

‘Witkout loss of genera_lity the coefficient functions of the equation (i.i)
can be written as :

(1.1 UQ = U u@, 0 < u(ﬁ:’y’) <1
(1.12) Ky =Ky 2 () 0< o, @) <1
(1.13) -KO2 = 'K2 mz(y‘), | 0 < n‘2(9.) <1

where U, Ki, K2 are positive constants, and ux’, ¥'), «;(¥"), 2, (3") are assumed
to belong to a class of enongh smooth functions.
Via the transformations (1.9),..., (1.13) this problem takés on a new form .

" written for the functions C’(z’, ¥, ') and” variables 2’, y', ', which are
nondimensional.

.To simplify the notation, from now on’ we shall omit the prime in the
functions C' and variables 2", y’,-f and denote them again by C, =z, y, ¢,
respectively. '
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I
In the new form the problem is formulated as follows

!

aC aC 32 C

(14 — 4 2au (z, §) —= = «, () —-—+ (y)———H?b’ (y))w
ot - ax 9z? 2 g %2 oy
(a:,y.t)’eﬂ:;{a:,_i;,l.0<a:<oo,0<y<1 0<i<<oo}

. Qg
(1.15) C!t:o ._—_.‘Qo fo(.’r, ), -Qo ==Q—- s (:12, y) € (0, o) X (0, 1)
- : »
A18) ClL_, =0, f By Q = 50'_ Ay §) & ©, 1) X (0, =)
02 - :
W17)  Cly = fo@, (@ ) e(® =) X (0, )

A18) (o @) 22 + 260, L, = 0, (@ ) € O, ) X (0, )

(119) CX M < o a8 £ — oo orf - oo
(1 20 l-——\ﬂ’f<cu a8 r-»oo

Qj =const,,0gfj <1, j=0,1,2

where the constants a, b are'defined by

'(1.21) a=_;Ui_ pe S
2V KK, 2K,

It is this boundary value problem (1. 14) throngh (1. 20) which we proceed
to study in the following sections.

. 2 SOME SOLUTION ESTIMATES

We first state two estimate theoreml, which will be cons:dered as the
tools for finding the asymptotic solutions of thls problem

Denote by C+ and C~ the solutmns of the prohlem (1 14) through (1 20)
satisfying the conditions (instead of (1 la)) :

@n o =0
@2 | s =@ - min fol, ). (x, y) € @, =) x (9, 1),

¥

respectively.

THEOREM2, 1. Lef C b: a solution of the problem (1.14) through (1.20). Then

theré exisls an estimate :

@.3) Voo gegcen
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Proof. Define @ = G+ — €. Then € is a solution of the e‘quation (1. 14) an'ci
satisfies the conditions

@d) €1, =0Q A—Ffp@ ) >0 @y e® =) X0

25) €1 pg=0 : ‘

(2.6) ¢ ] o =0

(m)owm——+%@ =0
(2.8) @gM<oa as T —» oo, or f-» o,

Do not care about the trivial case fo (x,y) = 1. Therefore, the solution £

must be different from a constant, becanse the constant does not satisfy the
condition (2.4). By virtue of the maximum theorem ({11], p.173), the function
€ can attain its minimum over any cube (0Cx SOy LOLKILT) in
only one of the planes £ =0,y=90, or y=1. If the minimum of the

4

oy | y=1

function € is located in the plane y =1, then < 0, therefore,

from (2.7) it follows that

" (@2.9) el . >0
y=1

Using (2.5), (2.6) and (2.9) one concludes: € >>0in the above cabe. .Since X
and T are arbitrary numbers, it follows that € > 0 for (zgf)'e Q or
C > C+, (2, y, t) € Q. Similarly, C>>C-,(x, y. ).  The proof is complete.

THEOREM 2.2. : ' :

. For the solut:on C of the problem (1.1%4) through ( 1. 20) the followmg
estimates hold
(2.10) €. <CLC,
- (2.11) C-— O Oy _ ' .
where Cy, C*, C™—, Ct+ are the solutions of the same problem satisfying,
respectively, the following conditions (instead of (1.16) or both (1. 16) and (1 15)

(212) C = (Qy. min fq (6 (30 &0, 1) X0, oc)

ky

. =10
@13 Cl - o=

. C— 1= =Q, - mmf (x,y), (2 y) & (0,) X(0,1)
- (2.15) g C |, = 9g=Q4- mmfl(y, 1), (Y, t) & (0,1) X(0,2°)
@15) C_ o =0 C*p=p=10;

The proof of Theorem 2.2 is similar to that of Theorem 2.1,
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3. APPROXIMATE SOLUTION OF THE PROBLEM FOR THE GENERAL CASE
4 : -
In order to find an influence of functions of coefticients u(x, y), a (¥

®4(y) on asymptotic solutions of the problem for large values of z and {, in this

section we shall examine the special case of constant coeificients-of the diffusion
équation. In this case we assume -

(3.1) ww, gy = ¢y (y) = e, (y) = 1.
Under this assumption, equation {1.14) is written as
: ’ , 2 2
32 L= 42X _¥C_FC g€ _,
ot 0 px?  oy? ay
and the condition (1 18) changes into.
(3.3) (E 4 ch)l -0 |
DEFINITION. _ -
. We say that E(z, y, 1) is an approximate solution of the equation
p2C 22C aC
(3.4)LC = —- “1" 20“(3'3:J)—"* - “1(9) —= 5 (1) ~—"—(2b+ oo (1)) —a;':' 0
G '

if € (a:, y, i) Saflsf ies the followzngr equatwn

(3.5) %Gmmoam waQ)
where »; =0, 12 > 0. It € (x, y, 1) also salisfies (1.15) through (1.20), we call
it the approximate solution of the problem (1.1%) through (1.20)

THEOREM 3.1.

Let € (x, y, t) be a solution of the problem (3. 1), (3.2}, (1.15) ihrough (1.20)
Suppose that

: =A_f
3.6) . C@ D= Cym) + Ol 154 0(e 2

@ 20w 90 _ o My g st

dx
2 ) —_ —_
@8  TEBBD _ o ( Thamy L ghaty,
ax? a ’
tIf ‘
3.9 ay(y) =1

then there exists an approxi ' ale solution of the mentioned problemi ; this solution
is expressed by the same from (3.6).
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Proof.

One can write the operator L defined by (3.4) in the form

G.A0) L =L —2% (1—u@y)—=+ (=a; ®
| s 2
- “2 (:’-]) ;‘I;

Substituting the function C (z,y,t) defined by (3.6) into (1.14), and using (3.2),
(3.7), (3.8), (3.9) and (3.10) we obtain

L E(zy,t)y=10(e "Mz y 0 (e ety

It follows that C (z.y.h) is an approximate solution of the problem (1.14)
through (1.20),

THEOREM 3.2. ] \

Suppose that for arbitrary functzonsf f, an asymptotic solution of the
problem (3. 1), (3. 2), (1. 15) through (1.20) can be wrilten as
(3. 11). Clrgst) = e 2 + 0 @5z y 4 0 (e
where 8-> 0. Assume thal Hzefunctzon C (x.y,t) satisfies (.3 7) (3. 8), and (3.12),
3.13):

@.12)  oCloy = —2b e 240 '(e—.f)w) + 0 (=Y
G130 ClgP=kbTe T 4 0 (0N 0 (M.
If

(3.14) v, () € (0,1, aty) > 0

'

then for large « and large L a solution of the problem (1. 1%4) through (1. 20) s&tis.
fies the following estimates.

(3.19). Claph S € W40 (e—f"")w(e-—ni’)
616  C@ph T e+ 0 (e—Dr) 4 0 (e—nf)
" where | {‘ |

@1  B=b+hA0>003>0

. @.18) r=maz {[bd — % U + o (y)]/ee2 @), ye [0,1]

In order to prove Theorem 3.2 we hrsl establish. the tollowmg lemma :
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LEMMA 3.1.
Assume that
(3.19) p(y), a(y), r(y) €C[0,1]

(3.20) p(y) > 0, g(y) > 0,y € [0,1].
Let J(y) be a solution of the problem (3.21) through (3.24)

(3:21) p(y ) (y) + 9(y) J'(y) = r(y)

(3.22) J(0) =0
‘ (3.23) e (1) +BJI(1) =«

(3.24) > 0,B >0

@) If

(8.25) r(y) >0, y € [0,1]

(3.26) vy <0

then J(y) <0,y € [0,1]

Gy e . .

B27)  r(y)<0,ye€(o]]

(3.28) ¥ >0

then J(y)> 0,y € [01].

Proof. ) .

We first prove part (i). Suppose that J(1) > 0. Then it follows from
(3.23), (3.24), (3.26) that J'(1) < O, hence in a mneighbourhood of the
point y = 1, J(y) is a decreasing function. Because J(0) = 0 (see (3.22)), there
exists a max1mum of the function J(y) at a point y & (0,1), therefore J (g )=
= (, J” (y ) < 0. From this and (3.20), (3.21) it follows that r(y ) < 0. Thus
the assumption J(1) > O leads to a contradiction with (3.25). Therefore we
must have J(1) < < 0, Now suppose that there exists point y, & (O 1) such that
J(y ) > 0. Because J 0 =0, J) < 0, the functlon J(J’) again has a
max1mum in the interval (0,1). As previously, we obtain a contradlctlon,
therefore J(y) < 0. :

The prool of the second pfart is similar to that of the first one,
Proof of Theorem 3.2. . : _
_ Start with the proof of (3.15). Denote by C(x,y,t) a solution of the problem
(1.14) through (1.20) and put
(3.29) o Clx,y.l) = C+($ry’t) + J{y)
~where Ct (a:,g,t) is a solution of (3, 2) satisf ymg 3.1, (3.7), (3.8), (3. 12) (3.13)
(1.17) through (1.20) and (3.30), (3.31)
(3.30) - c* I!‘—O Qofo(:c,y) )
(3.31) ctlo=o = Uf 14ty — 3
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According to the first assumption: of Theorem 3.2 the function C+(x,y,1) is
expressed in the form (3.11). Noting that C(w,y.f) and C+(z,y.t) satisfy (1-17), °
(1.18) and (1.17), (3.3), respectively, we obtain from (3.29)

(3.32) J(0) = 0, )

, . ac+ '
(3.33) ay (1) (1)  2bI(1) = (1 — ey (D). m .
. . y=1

Substlmtmg (3.29) into (1.14) a2nd using the form (3. 10) of the operator L
we get
a2 C+

. . 9 '
LC = I Ot — 2at ~ @) 'S5+ Uy ) T 41—y ()
0 ox ‘ ax? oy?

— &) 35—.— «y @) 77(5) — (2 +.5 @) T@) = 0.

Using (3.2), (3.7), (3.8), 3.11), (3. 12), (3 .13) we obtain from the above
expression

(338 @I+ @b+ o (y)) J'(yg) = 2b[(1 — @, () % 4 o) (g)le 2y 4

0™ 4 0(T)

L3

For large x and large I, the conditions (1 13), (3.14) allow us to apply
Lemma 3.1 to the tunction J (y) defined by (3.32), (3.33), and (3.34). It follows
that J-(y) < 0, hence:

(3.35) C(z, g, ) < C* (z, gy, B).
Therefore we get the estimate (3.15). To prove (3.16) we put
(3. 36) | C(x, g, 1) =C(z, 4.1) + J()

where C— (z, y, I) is a solution of .

aC~ aC™ a?C- 2L~ - aC~ -
*CC = —— 2a —_ —_ — 2B = _ =90
(3.37) Lo c Py + oz o o =

satistying (1.17), (1.19), (1.20), (3.30), (3.31) and
(3.38) (€~ /8y -+ 2BCT)|, =0, B=b + A.

Using the first assumption of Theorem 3. 2 we have

' 2
(3.39) C~ (@ w. H=e B+ 0 (e=Bzy 4+ 07T
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where A = O q > 0, Proceeding in 2 similar way to find the function J(y) as
in the previous part. We see that the function J (y) satisfies ihe equalion and
boundary conditions

BA0) oy 7 ) + (2D + a3 @) () =
= 2B [ (1 =, (y)) 2B — 24 +a2(g)] e 2By + 0 (e—Afc) 4+ 0{e” "12*)
(3. 41) J(0) =0, )
(3.42) w, (1) J°(1) + 2bJ1) = [2h = (1 — @y ()] 2Be ~2F - 0 ¢e Aoy 1 g~ T,

If x and / are large enough and % is chosen such that (3.18) is satisfied,
we can apply Lemma 3.1,to problem (3.40), (3.41), (3. 42). -
We then have
(3.43) J@y) >0
hence -
(3.44) C(z, g, ) = C~ (@ 4, D)
Thus (3.11), (3.35), (3.39), (3.44), completing the proof.

Remark.

- The assamptions (3 6), (3.7), (3.8), (3.11), (3. 12), (3.13) of Theorems 3,1, 3.2
are admissible. This will be examined in the next sections.

4. DIFFUSION PROBLEM WITH CONSTANT COEFFICIENTS

In this section we assume that the coefficient functions Uo and Koi’ K are

constant, i.e.
4.1) ) a(x, y) = “1(9’) = 002(9):1-

For the initial and boundary conditions we make the following as-
sumption: '

(4'2) fo(x’ yy= .f1 (y. H=1. -

| ]
To convert the problem (1.14) through (1.20) under assumptions (4.1), (4.2)
to the canonical form we introduce here a transformation

(4.3) - E=C.eawtbyted ¢ =C,y, 1)
where a, b are defined by (1.21) and the constant-c is
44 ¢ ald b2
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Using the transformation -(4.3)' and assumption (4.1} ame ecan write the
diffusion equation (1.14) as follows

N g 2
(45) ii?:?_.;_"’_.E;, @, y, 1) «O."

af ax? By

After the transformation (4.3) the initial and boundary conditions for the
function E become '

@0 El_,= 0w, o) € 0,0 x 01

@7 E ' =0 = Qe (e (0, 1) X (0, o)

(4.8) E| =T, e—otet, (@ 1) € (0, ) X (0y00)

@ 9) (_:‘5';. b E) L,=1 = 0, (2, ) & (0, =) X (0, o0) |
and

. 10) éﬁo,%_;o_ a8 zow

(4. 11) E=0 (¢Y) as f - o».

The problem (4. 5) through (4. 11) will henceforth be referred to as problem
(A). We shall find a solution of problem (A), which belongs to the class

¢ @ 1 (),

5. APPLICATIONS OF FOURIER AND LAPL‘ACE TRANSFORMATIONS

By assumption C is bounded, hence the function E determined by (4, 3) is
integrable with respect to x ¢ (0, =) and it is sufficient to apply the Fourier
. transformation with respect to = -

6.1)  F=[Esintaeds F=FEy,
0

where £ is a transformation parameter, 0 < E < oo, -

From (4. 11) and (5. 1) it follows that =0 (€Y as t - e, S0 we can use
the Lapiace transformation for the function F with respect fo {,

(5-2) ° G=[fFe Pldt, G=G(y,p
’ [+]

Fe=-251 ) 97



where p is a complex variable. The integral (5.2) converges if Rep>¢.
By virtue of (5.1), (5.2) the problem (A) is formulated as follows

3.3 F 26 dy? — K26 = —he¥ _ @
5 — 9__ 12 !
(5.4) G| _o=F@ & — k)
(5.5) - (dG 1 dy + D), =1 =0
where we nsed the notations : '
(5.6) K2 =p+52 )
(5.7) —c+§ .
(5.8) A=1(Q,) & + A+ 12— K2y
(5.9) fe)= Ffy(Xe™ X sintX dx
0

ani k is a new complex variable.

Remark 5.1. - o ‘
If @) 0 and fy(X) is pounded on[0, =], then f(€) € C=(0, ) and lim f()=0.
" gres
The latter conclusmn is based on the Riemann’— Lebesgue theorem (see [4]).

Solving the equation (5.3) yields a solutmn satisfying the conditions 54,
(5.5). This solution is

| Dksy) D(k,y) + Bk.y)
G =T{k) ——=— T )4+ T,k — eby
(5.10) () -G — @+ Tl ))( o )
where we used the symbols:
e P = f&) U7 — K2)
(6.12)  Tyl= Q%! 2+ by (k2 — b7}
613 T g= 0/ G- =)

v

(5.14) Bk, y) = 2bed )
(5.15) DEy)=(k+ b) ekfi—-y) T (k —» ) ¢ —k(1-y)
(5.16) D(k) =k +b) e (ke — b) ek,

- 6. SOME PROPERTIES OF FUNCTION G ON THE K—COMPLEX PLANE

&
To find the mverse Laplacb transformation of the function G We must study
this function on the k or p complex plane,
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PROPOSITION 6.1,
On the k-complex plane the funct:on G delermined by (5. 10) through (5.16 )
has simple poles only at {he points:
®1) k=+4k, ;
6.2) k=zxin ,n=123,..
where n_ are the positive rools of the following equation ‘
(6.3) m=->dtgn.

>

Proof, )
It is clear that k= k_ are simple poles of the function G. To find other

poles we solve the algebraic equation D(k)=0 with k= { 4 in; so finally we
get the solution (6.2) and (6.3). From (6.3) it follows that the sequence M, can

hé ordered

6.4y w/2< <My <ewo <M, <M,y <...,nnm'(2n~— 1) n/2. |

Note that the points k = 0 and k = - b are not poles of the function (, because
the limits of the function G- exist as k tends to zero or to + b,

COROLLARY 6.1,
For each value of £ g[0, oo) the funchon G defined by (5.10) throuﬂh (5.16)
possesses only real simple poles, which are not greater than ¢ on the p-com-

plex plane, where p = k% — g2, i
This conclusion directly follows from (6.1), (6.2) and (5.6), (5.7).

COROLLARY 6.2, |
The function G defined by (5.10) through (5.16) is analytic on the p-com
plex plane. If re p > ¢, the modulus of this function has the order of | p| ~1°
as|pl—>oe. :
This corollary follows readily from Corellary 6.1, Remark 51 and the
form of the function G. ‘

PROPOSITION 6.2.
Let G, (k) be the function

' 2 2 2
(6.5) Go(k)=kek"1G 1 (K —F)
where G is defmea’ by.(5.10) through (5.16), and let 2 be an inlegral curve
k—-E—l— iwn, 0< \_V(-n:n)?-{—k‘:’, k? = const, < =
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then for (&, y, t)ye Q= {g, y, {: 0~’\§<m,0<q<1 0<t<oo}
there ex:sa‘s the limit

©6.6) Flm [ Gy(k)dk=0.

n—ros Zn
Proof. _
We divide =! into two parts =7, 2%, k=t inn
Zii:Ogggﬂn—6,6=const>0 ,
2 - s<i< | Gk

[

On the line segment Zii one has an estimate
| et |2 (8~ ?) < g—2mndr48%

From Proposition 6.1 it follows that if n is sufficiently large, so the func-
tion G does not have any simple pols on >5. Therefore we get

1Gy ()1 =16k "ty (k2 — )| < &m0t a1 i — eonst, < o

Because f > 0, & > 0, we have
@7 116G (dkj—0 as n — oo,
St

n

Later we shall examine the expression (6.6) on the line segment 2'2, We have

Lokt = o (8 = () )ty i
hence .
‘ \ |
| Ghe!“ ) (k% — &% )| < e | k(K% —E2 )1 |G| = 0(1/n’)
Thus '
©8 J, G, () dk —~0 as R oo
n

The expression (6.6) follows from (6.7, 6,8).
COROLLARY 6.3,

Let G ¢ k) be defined by (6.5) and Zpe Zp U Zn be mtegral curves defined,
respectively, by

k :-;—]—-Inn,—V(ﬂn)z-{-kf <t<o
= { ~— i%n, — V(vrn)z“—]— K < b < V(rcn)z—]- 5
kf -~ const Lo, (B Yy, teQ
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Then , .
. lim jGoydk =tim | G (kydk=0
- n—*oo 32 n—»oo 23 1) haL3
n- n n

The proof of this corollary is quite similar to the proof of the - Proposi~
tion 6.2. ‘

Y

PROPOSITION 6.3.

Let’ I, [2 (_md I J2 be lwo couple points of ceniral symmelry in the
fk-complex plane '

I; g = (:i: V(nn)2 + A2, 3 wn)
11,2 = (:I: V(T;n)g + k2, i‘ﬁﬂ)

and G (k) be the function deiermined by (6.5), Then the fo_llowing equality holds

(6.9) [ Gkdk= | G (kdk
I T ,

1,7, 1,7,

where T 10, is an integral curve connecting the two poinis 1 1+ o J =12

‘Proof .
The function Go (k) defined by (6.5), (5.10) through (5.16) is antisymmeiric;
80 changing k to-k on the left-hand side of (6.9), we obtain the equality.

7. INYERSE LAPLACE TRAN;SFORMATION OF THE FUNCTION G

In view of Corollary 6.2 the function G satisfies the condition on the °
existence of the imverse Laplace transformation. So itg form is given by

(see [4])

' d 1 ept R
7. F=— (- |\ G _ g4
.0 i ( 2qi S p P)
wheve oo )
(7.2) 4 r, = lirg . FR" I‘R = p. -+ IR, p, = Rep yC
— o

To evaluate this integral we make the change of variable p = k2 — 22, the
k-complex plane is denoted by |
(7.3) | k=¢f + .
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Thus the 1niegra1 curve 7', on the k-plane is (thls follows from (7 2), (7.3))

. 22 _ .2 p2_ a2
(7.4) rR . 3 C ’l’l k:n k P. + & const
) 29t =R, R — pamr_neter

To calculate (7..1-) on the k-complex plane we choose a closed integral curve
and consider an integral $ G, (k) dk, where Gy (k) is given by (6.5) Then
we lLave

([ + [+ [+ 1), G0l dk=2ni 2 res G (o ky)

(7.5) rystus? g st

where SV, J=1,2,3, 4 are delined as in Proposition 6.2, Corollary 6.3,
fr * N .
and Fi' (see (7.4)) are ['y o i k =1, 2, respectively, as in Proposition 6.3.

By letting R — oo and using Proposilion 6.2, 6,3, and Corollary 6.3, we
obtain from (7.5)

(7.6 f G, (k) dk = 2ri Z res G olE k; e
oo - J=0
We now calculate all the residues of the function G, (k). On the basizs of
Proposition 6.1 we see that simple poles of the function G, (k) consist of:
N k=:tkoi :ti‘nﬂ,. ‘ig; R=1,2, 3,...

So we have ‘
. ok kot ()lxkby)
A res G (+ k) = 3 —
(7.7) TRl =0 (ka_gz) D(k,)
Q1§ D(koy)—i—B(koy)‘ .
— — by .
£2 g2 D (k,) ¢
. | —ﬁi p _
{7.8) res Go(j: in )= e2 — - (%) . un(y)_ Qo &
2 4m) | E K Bha? Py
«Ep, (1)
"in which we denote
2bn, sin (n,)
7.9) B )= —n

b+mﬁ%
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- —

.10 e =1, @1 —2¢ cosn) [ GPF D)
(7.11) ' K= te

At last we fi«nti: ' .
. 2 - Q Q

2 ‘e D () g2 __p? E? -2 e
DE 9+ BEy) - by ] - e
x —
56 )
Introducing p = k2 — £2and putiing (7.6) into (7.1), we obtain
(713) FP=22. % ( 2 res G (k,)+res G (g))
dt =0 oMy 0

- Substituting (7.7), (7.8), (7.12) into (7.13)’and noting that this series is uniformiy

convergent with respect fo 1, ¢ & [0,e), we may interchange the order of diffe-
rentiation and summation to obtain

Dk gy . -mEDe -8 .o
F=f@let o §¢ """ | B N X
! ‘ ( D(k,) w154 K n(y))+9°'§2+a2 Z e
et Dk, y) +B(k,y) e (M g2y N
v A - Y —_— " F

8. PROPERTIES OF THE FUNCTION F
To {ind the inverse Fourier transformation of the function F, it is necessary
to establish some of its preperties and some auxiliary formulas,

LEMMA 8, 1.
Let

' _Fee®r
(8.1) Q(:r,t}=g m sinkx dg
: . _ |
2>0, (@l cewy= {2 0 cx<T o0, 0 e 1< oo t. Then
. %
D) =0(e™ ) ags & > oo
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Proof
Let us consider the following integral

I = ¢, (k) dk
wh':are |
82) o, (k) = kz_kgtz (ke
. kK4 a
and a closed integral curve is chosen as follows
‘ k=C{+in - :
I:-RLLLK R =0 uig:R,ogngvc—i‘“

- R<t<Ra=¥c WN:i=—ROSn<Ve
Using the residue theorem (see [7]), one can write |

@3¢ + § + Do,k = 2nires O, (ia).

1 nyiv I
Now we calculate all the components of this equality.
a) On the line segment I, k =E&. Because .of the symmetry -of the funstion
'(])i (k) we have
A
sintx dE

R
(8.4) S@ (odk = 2 S
I 0

g24a?
b) On the line segments Hand IV, k=+R=in0< 1< U'—,so we have

B the estimate

2
e— R°1
| g ()| < R
from which it follows that _ ‘
(8.5) ' im f ©,(k)dk=0
R—»oe II{JIV

¢) On the line segment IIi, k = § + ifec, — R < t < R. Hence

(8.6) f cpo(k)dk:_—ed"xv_f(i—i—lv_—) £ (z—2{ en)i-E &

or r E+a—o42yei

After some algebraic calculations, we denote by letting R ~» oo

®7) EKICY) =2 [0 60
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{8.8) ' Pz, 1, E) = 8(E24- ¢4 a?) sing — U_c_(§2+ ¢ — a?) cosp e“ﬁzt
' (24 a2 — o) 48

(8.9) =&z —2YcD.

Then we obtain from (3.6)

(8.10) J 9, dk = —inect ~aVe g (z, D).
I ' o

Finally, for the residue of @, ({a) we.get:
. 1 2

8.11 res , (fa) = — e¥ 7%,

(8.11) 0y lia) =

Now, letting R - = in (8.4) and substituting it along with (8.5), (8.10), (8.11)
into (8.3) we obtain )

o2 =2
. Le cet . a’t — azx —Veq
12 & sintat = = (e T LG COM

On the basis of the Riemann—Lebesgue' theorem (see [7]) we find
s(z,f) = 0 as x — oo 0 < t < oo. Then (8.12) completes the proof.

LEMMA 8.2.
If k> ]/c—and(:c.t)em2=={a:,t:0<m< 0oy 0 < € L 1 << oo}

then

o 2
T

(8.13) S _g—;'—k? sin txd{ = % ‘8 cd=Vecz .ﬁn(x,t)

5 n
and

oo efg_2t . ct —z ‘
(8.14) S yr costxdf = 5 ¢ cx an (T, )

where we used the notations
515 s (a)== | v@LOE
¢}
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— 2 - _2
(8.16) v (=1, L) = §(§2+c—|—kn) sing — ¥e (t? 4+ ¢ kn) cosp 2

(2 + K —c)? 4 ho?

C(8.47) 5 (%, )= -gs 0 (x,t, ¢) dt
ki
[4]

_s2
(8.18) 0.(x, 1, t) = (E -—c+ k )COScp—!—.?I/c t sm(p L4t
(B + K —cf + heg?
and ¢ is defined by (8.9).
The proof of Lemma 8.2 is similar to the proof of Lemma 8.1.

Remark 8.1.

The first component in the right-hand side of (8 12) does not appear in
“(8.13) or (8.14), because in Lemma 8.2 we assume’ k > yc »so that no simple .

pole exists on the domain of the integral and for this case the right-hand side
of (8.3) is equal to zero. This explains the difference between (8.12) and (3.13)
or (8.14). .
Remark 8.2.

The function o(x, 1), o (x,f) defined in Lemmas 8.1, 8.2 are of class C* (),
. Moreover, c(a: t) -0 cn(a:,t) - 08 2@l — 0 a8 & — o0, 0 <T# < oo; and as
{ — oo, 0 < @ < oe. The first conclusion is evident. The second is based on
the Riemann-Lebesgue theorem (see [7]),

Remal‘k 8031 .
For the integral (81) if { = 0, we have the formula

(8.19) S sinfwd;=-— e o (x> 0).
J £? +a’ 2 o
"LEMMA 8.3, . . .
Let ~ . ' o )
8200  Q@my) = S : ,( o?) sintxdt
g? +a2 D(ko)

where D(ky),"D(k), k, are given by (5.15), (5.16), (5.17), respectively
a>0, (:L,J)ew-—{x.y 0<:a:<:oe0<y<1}Then
(8.21) CDI (:c,y)-- (e ‘m")_as T —> oo,
b .
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Froof.’
Define a function @, (k) 01 the complex vqr:able I as follows

E DK,y
8.22 I =.
(8:22) @z 1) K 4.q2 D@

e”‘m,_f&‘—:kg—}—C,}/c > a

a.nd consider an integral ¢ @, (k) dk with a closed integral contour given by
k={-R<E< R n=0;Ty: k=Re% 0<p<n}
The radius of the circle T’ » 18 chosen such that

(8.23) . R=@R ,+R)/ 2

R= (/4 @n—1 + c.
From Proposition 6.1 it follows that the function ®, (k) defined by (3.22)

consists of simplé poles only at the points
(8.24) . k =+ ia, £k,

(8.25)‘5 k, = V“i e s W kn > a.

Then using the Residue Theorem (see [7]) one can write:

(8.26) ( _f + f 5 q;z(k)dk = 2rt (res 0, i0) + § res 0, (ik;).

‘ I'p P
For the first integral on the left-hand “side of (8.26) k =, the real part of
®, (¢} is antigymmetric, while the imaginary part is symmetric., Therefore

R R

827) (k) dk = 2i Do 9) teds
R ==} SINETaEc.
( 7) S(Dz’ . S E? + a? D (ko) .
-, —R : 0 . BT
For the second integral we have the estimate onT’ R

| Kk D (K, y) \ P L
| +a2  D(E)
This aliows us to apply thie Jordan Lemma (see [7]) We thus obtain

 (8.28) tim [ @,() dk =0
T R T ey
Finally, let us calculate the residue on the right-hand side of (8.26),
we have , .
(8.29) res o, () = = e"@TH
. P _ 3
. : 1. —k,n x
(8.30) res D, (i k'ri‘) == 5 wy @) e
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where

(8.31) o, () = 2by, sin(n, y)/ (b2 -+ ni) S cos? n,)

At last, substituting (8.27) through (8. 30) lnto (8.26) and lettmg R = oo,
we obtain

oo

. —Icna: .
(8.32) D, (@ y) = > (e"a&:‘*by — Z_:I o (e )

£ ’
because Vn: ki‘ = 'V ﬂi_]_ ¢ > a; 50 (8.32) completes the proof.

LEMMA 8. 4, . -
Let B (k,, y)» D (ky» y) be the functions defined by (5.14), (5.16), (5.7).

o~
1

Then

(8.33) °§ : “ ) (Ex) d
. (8. 3 2 D(k)smgscg
; £
2

= < [e"ﬂm ( ebd — e‘b!f)—l— 2eb }: o, () cosn e*kf’m ]

n=1

whereo (), 7, ,» k, are given by (8.31), (6.3),(8.25), respectively, (z, y) & g .

The proof of this lemma is similar tc the proof of Lemma 8.3.

LEMMA 8.5. .

Let (&) be a function saizsfymg the foilawmg conditions
1. (&) is an even function

(8.3%) D(k) =D(—k).

2. On the k-complex plane, D (k) has simple poles only at the poinis k = + ik s
which are ordered by O(a(k (.o k, (kn+1 cvsk s o0 dSR - oo and
"(8.35) ¥nfres D(ik )| <M < o

4 _
3 On the segmenis I' o defmed by I‘IR_ {k k=R _ e“P R = Ry g4k )12,

LI

2
(836) 1D <M<e as R, > o=,

@e[£_¢o,i2+cpd] <9, < 3{. the following holds;
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4. On the segmenis I"2 defmcd by 1“2 = {k:k=R_ e
.rl‘.

R

R —"(kn_l_:l"-k )12 @E[O,QJ] [QT(P ,Tc],0<cp <—— , the following

holds ,
(837) ¥+ | D)™ | —» 0 as R, ~>co
If C-DI'(”)_‘ = f DE) cofgud&, then
.

(i) 19u)) =0(e F1%) as w-o
i)y P(u)eC (0 <e<x u<oe)
Proof, '
Define an ausiliary function 9, (k) = 9 (ke Uk, Integrating the function
(k) on the closed contour as in the proof of Lemma 8.3. On the basis of
the second assnmptlon of the lemma and wusing the residue theorem

Ircs %2(1'1{1- ).

i tam

we obtain
R .
@838) ([ + J + 1 %gl(k} dk == 2ni
-R i T2 i
‘ R, R,
Let us calculate all the components of this equality. For the first integral on
the left-hand side of (8 38), it follows from the condition (8. 34) that

(k)dk = 2 f D(E) cos Eu dE.
; .

(8.39)
On the segment F; , using (8.36) one has the estimate
-R, using,

R ) ~R_U, sing
| Dy(k) | =1DAI)L € <M.€
' ~R using -
1 Dulydk | <M | € . R do.
ri ' r!
' R, R, ‘
Since 0 << u {e°, 0 {9, ()2, this implies that

- (8.40)
, rl
T ’Rn

Therefore,

On the segmentfr‘% we have the estimate
R ' .
- ‘ + — R u.sin(p
19,01 <1201 €

109



hence
| J DUhydk | < § 110 | R dg
r2 r?
) RII ' Rﬂ
From (8.37) it follows that
84 |f2 D, (k)dk | -0 as R_—» oo,
I‘

- Il

Finally, the residues in (8.38) have the form

: —uk,
(8.42) res D, (ik,) = res D(ik,) e
Putnng (8.39) through (8.42) into (8 38) and letting n ~ o we obtain:
(8.43) _[Cb(g)cos&udé—-e ”imzfeseb(zk)e ( k1)
n~1 .

Erom (8.35) it follows that the previous series is unifornﬂy convergent with
“respect to u(0(e < u( o), therefore, the first conclusion of the Lemma is
proved by (8.43). The second conclusion of the Lemma is directly justified
by (8.37). ‘ : |

LEMMA 8, 6, _ .
Let ' ‘
(8.44) | Fy(z) = e FfE) () sintrds
0
(8.45) fE&)=  Jf,e= singxdn.
0 :
If (&) satisfies the four conditions of Lemma 8.5 and if
(8.46) fo(X) S M{ o0, %ell, o]
Then :
(8.47) | Fy(x) |1< M <o as - o0
(8.48) Fi(z) € €~ (0<e < o)
(8.49) ¥m | d® Fi(x)/ dz™ | <M <oo ds’T—> 0,
Proof,

Suhst;tutmg (8.45) into (8.44), and usmg the assumption (8.37) we may
mterchange 'the order of integrations, so
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Fo(x) = e ['f, (X) €79 (F D(E) sin ko sin ¢X dg) dX =
¢ 0 - .

- (CSD fy(XyemoX G’ (8) cos (@ — X)5d5)dX +
4 0

+ T Fa(X) KD cos (% — @)t d2)aX —

L
2

— 1y (X)e0%(F D(E) cos(X + ) § dE) dX).
(] 0

Making the change of variables u =a — X for the first integral, u= X—z
for tke seccmd ope, and choosing a constant X, such that 0 < X <z, we
find '

X : oo
CBE1(w) = [ fy(m—u) e+ fy (x4 1) =) ( [ D (E) costudt) du
0 0 .
xr ‘oo :
' 2f()cz(a:—u) et | G (&) costudt . du 3= .
o -0 )
+ sz( x - u) e=" }ocﬁ (t) costudt . du —
X, , 0 .

— 0% }cf (X) e~ X ;o‘—D (t)cos (X + =) L di.dX -

Where for the second mtegral 0 <X, <ux x forthe third:
0 < Xo < u § =0, and for the fourth: 0 < ¢ < X —]— a = oo, This allows us o
. apply- Lemima 3.5 to the above formulations (see (8 .43)), hence

X, -
2F1(w)=—-n(f2(x—u)eﬂﬂ T fy by § U costude] du

Gn,a

-+ (a: —1u)e ("1 = A U(n Z res D (iky)e ulk, = kg) ) da 4

X 'n=1

o

(850
©50 + f fz(x-i-u)e (ky +a)u(m 3 res%k ye~ u(k *M)du__
o a=1

— ({;Iﬂa)x £ f2 (X)*e—(ki + ay X X

x i E—i res‘i)‘(ikn)f."; & 'f'x) (kn — k1)) ax,



From the condition (8.35) for the function D (&) it follows that the series
appearing in (8, 50) are absolutely convergent ‘on the path of integrations.

Since f, (X} ISabounded (see (3. 46)), which implies that all the mtegrals are
hounded the first conclusion of the lemma is proved provided k, —a > 0.

The second conclusion is directly proved by assumptmn (8. 37) and the form
of the function F, ().

.For the third conclusmn (8. 49) the result follows in a'manner similar to
that used in the first one.
. LEMMA 8. 7.

Let E_(x, t) be

oo 2t

' —E
8.51) E, (@, )= em® Sf € £ - sintrdt
;e ‘
| (8.52) f® =§ fy (X) e X sin'EXdX'
G55 1, 001<M <o Xelm]

0<a<k<.<k -\k i<.,Ic — oo \
(a:.t)ew -—-{a:,t 0 <L x< oo O<e<i<.o'o}.

Then !
(8.54) I E, (2 HISM <ooasx—>oe0 wlzoo; 07 t = oo, 0 < =c=,
(8.55) E, @, ty e €= (0y)
(8.56) Mo o™ E, @, 1)/ o™, 8™ E_ (a:, )/ atmare bounded -
as:c—>oa,0<i<oo orl —» oo, 0 < x < oo,
Pxoof :
Adopting the approach used in the proof of Lemma 8. 6 we obtain
Xg el 9
2, (a0 = | (f (5 — ) &+ @rwe™ | £ coguatdas
o } B E2+kn
x os
au —5.21
+S fo(w—u)e g €’ -cosEu dt du +-
Xo . o §f+kﬁ
o e
au TE?y
+S o (x4u)e S e > cos Eu dt du ~—
o 0- Eg +kﬂ
. B _62 ' ) ) ) .
- & gfi’ (X) e S e 5! cos (X +.x) & dt dX.
: ' 2 2
o o § +kﬂ

112



By using Lemma 8.2 (see (8.14)) it can be written : i

XO : . s _E?t ‘ .
: 2En (x, 1) = S (f2 (r — w)e?y f2 (x4-u)e—au)y S E;TI{T._co:Eadgdu -+
° . 0 n

+ €1 fole—we o= s, nau s

<

+ 7 Fyle+wyeW et 5 (4, 1) du —
Xo

— e~ (Ve ) § (X e ~(Yeta)x 8 X4z, t) dX]
. 0 )
where X = const., 0 < X <z, Ve—a=0, Sn(u, f) defined by (8.17), (8.18),
(8.9). Since f,(X) and 8 (u, #) are bounded for 0 < t< o from the above ex-

pression it follows that EH (x, {) is bounded as x — oo,

The conclusion (8.56) for the case of x — oo, 0 < { < c» will be proved in
thie same way as previously. For the case { - co, 0 < 2 < oo, (8.54) and (8.56)
are directly proved by (8.51). Finally, (8.55) is an immediate consequence of
(8.51) through (8.53). This completes the proof.

. 9. SOLUTION OF THE PROBLEM (4)

In this secltion we fiqd the inverse transformation of the function given
by (7. 14). For 0<<y< 1,0 < ¢ < 0, 0 < & < oo, the function F is bounded,
F —0 as {'» o, hence the inverse Fourier transformation - exists, and we
have

9.1) E.—:-E-stinE:ndE.
. B ® 9 -

Te find the concentration function C that is a solution of the problem (1, 14)
through (1. 20), (4. 1) (4. 2) put (4. 3) into (9. 1)

2 ‘ (=)
9.2) C = = et==bg—ct § F sin t 2 d8,
T o
For convenlence some notations will be introduced here
©.3) s=lk—a="|/n2+ a2 q
9.4) d=+¢ —a=-Va2—}—b2—a
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05 . h=k—k

n ..
| R B, Y
6 v ==
We also denote o
" 2 ar—byp g D (ke 1) .
9.7 Gy == v —
0.7 1@y =""¢ § f© D(ky) sintxdl
. . - 9 =) - -
©8) = Cy@y b= 2 oy (et v=— nl () B (at)
® ) Y n n

where £ (€), D (ks ) DB, K,» 8, (9), B, (3, 1) ave defined by (39), (:15)

(5.16), (5.7), (7.9) (8.51), respectiyely, )
09 o= = e e )
n=—
—-5.1'-'bg - ‘?'Igt | = - Vi
(9.10) - C =y By =e 1 6{x,i) z:j e o, (¥)
S a=

in which p_ (4), o(z, y) are given by (7.10) and (3.7) through (8.9), respectively.
Finally we denote :

(9.11) Cyx,y) = ¢ — %z by EO:_'.‘ e Pn®p, (1)

n =1
Sty S .
(9.12) Cb‘ (x, g, 1) = ¢ Sxz—by mot E_; e = val | 911.(9)6,1-,(5”' 1}
n = .

On the basis of (9.'33 through (9.1=2), substituting the functfon F defined by
(7.14) into (9.2) and using Lemmas 8.1 through 3.4, and Remark 8.3, we get

©9.13) C@ g H=C; @y~ G @y, 0+ Q €5 @ D+ C (@5 1) +
) + Q1 (C5 (xs y) - Cg (CC, g, t) )9 ,

The last point is to check whether the function C(z, y, t) satisfies the conditions
(1.19) and (1.20) because ihey aré not equivalent to the conditions’ (4.10%, (4.11)
for the funciion E.

The remaining conditions and the ‘equation (1.14) are automatically satis-
fied by the function C, because the transformations C «— E « F & G are
bijective. -

Using Lemmas 8.6, 8.7 we establish that the fanction C(x, ¥, #) determined
by (9.13) actually satisfies these conditions and it is therefore the solution of
the mentioned problem, : - '

wo
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THEOREM 9.1. The solution of the problem (1.1%4) through (1.20), (4.1), (4.2)
exists, is unique and belongs to the class of C= (Q),

where @ ={a, gy, 1: 0(e < <o, 0 <y L0 P << oo}

Proof,

First consider the dliferenhablhty of the funct:onsC s § == 1yu, 6, with
respect to x. The tunc’gons f&), D(kﬂ, )/ Dkey) in (9.7) sattsiy all the con-
dilions for the function f(§) and < (§), respectively, of Lemma (3.6} ; it
follows that C, (z, y) belongs to the class C°(0 < ¢ < & < o). On the basis
of Lemma 8.7 we conclude that 02 (x, y, {) belongs to the class
c* (O <z Lx=< ) too. Farther it is evident that CJ. €070 <=t Cax <o),
J=3,4,5, 6. Similarly we arrive at the conclusion C(z, y, [) € CZ(Q).

Secondly, we show the uniqueness of the solution. Suppose that C° and C%°

are ftwo solutlons of this problem, then G =C°— C% is a solution of the same
problem, in which Q =10 P _f {(z) =0. Once more, we use the transformations

¢ ~E S F oG, Repeatmﬂ the procedure of tmdmg the function G~ we obta-

in G° =0, hence F = 0, E = 0 and consequenﬂy ¢* = 0. This completes
the proof.

CONSEQUENCE 9.1.

In the problem (1.14) through (1.20), (%.1), (4.2) the conimng of thé
boundary conditions Is sufficient bul nol necessary for the conlinuity of the
solution in the interior of the domain.

Proof.
In Theorem 9.1 we only assumedf @) to be a bounded function, besides,

at the points x=10, y=0 the boundary condition may be discontinuous,

CONSEQUENCE 9.2. ' _

From the solution (913) we oblain the following asymptotic solutions for
this problem ' :

1. for large t:

]
=Mt

(9. 14) Cp @) = €4 @ + 0y C; @y + 0 )
2. for large x:
9. 15) Cy @) = C; @4) — Cy @YD) + Q, Cg @0 + 0%

3. for large x and t:

- s
(9. 16) Cyp (@) = C; (@4) + 0 (e YEO (e77F)

[
1=
i



0. AN ASYMPTOTIC SOLUTION FOR THE MORE GENERAL BOUNDARY CONDITIONS

" In this section we remove the assumption (4.2), i e. we consider the prob-
lem (1. 14) through (1. 20), (4.1). We shall prove two theorems.

THEOREM 10.1.

An asymptotic solution of the problem (1.1%) through (1.20), (4.1) for large
x and t is expressed just by the formula (9. 16).

Proof.

Denote by C-— (z,g,0), C¥+ (z,t) the solutions of the problem (I, 14)
tbrough (1. 20), (4. 1) under the additional assumption (2.14) and (2.15), respect-
ively. If C(x,y,1) is a solution of the mentioned problem, them by virtue of
Theorem 2.2 there holds the estimate C—— < € <X G+, On the other hand,
from Consequence 9.2 we see that the asymptotic forms of C— and C+* for
large « and t are expressed by the same formula (9. 16). This completes the
proof.

THEOREM 10.2. |

Denote by Cx(x, ¥ ), Cp(2ys 1) the asymptotic solutions of thé problem .(1 14)
through (1.20% (4.i) for large x and 1, resp;ectively.
i) If~_fo(a:, y) =1, (x, y) €(0, o) z (0, 1), then Ly(x, ¥, t)is‘echrf;ss.edby (9.15).
@) If f, (g =1, (y, ) €(0, 1) x (0, =), then C.(x, Y, 1) 7is\e_xpressed by (9.14).

The proof of this theorém is similar to the proof of Theorem 10.1.

i

11. AN APPLICATION

{n this section we use the resulis of § 9 and § 10 to examine the “distribu-
tion of suspended sediments in the channels, which have a nalural stracture of
a bottom (grains of gand) so that the following condition (in nondimensional
form) is satisfied . ' :

(11.1) : C|y=0 = f2 (z) =1
This condition has previously been used in §2}.-
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Using the condition (1L.1) in the general formula (9.13), with the help of
Lemmas 8,1, 8,3 we obtain '

Ol g )= o™ — ™50 2 0, @) e P
n:

2 oo
R (L S R o () e="nt o

n=

(11.2) — o8l T o (y) e~ Vnl (8@ D= 6, () 1) +

_ n=1

10, [Cy (5 B+ C, (@ s D] Q4 [C5 @ 1)— Cy @ 3> D]
wh_ere ®, W), o (@, 1), o, (@, 1), C5(y, ), C, (@ g, D Cy(x,y)and Cy(x, gy, 1) are
given by (8.31), (8.7), (8.15), (9.9), (9.10), (8.11) and (9.12), respectively.

On the basis of Theorems 10.1, 10.2, from (11.2) welobtain‘asymptcvatic forms
of the solution for the more general case of initial and boundary conditions as

follows

(i) For iarge x and f, and for all the initial eonditions and all the boundary
conditions of the source (x =0), i.e. f, (=, y) and f4 (g, 1) are arbitrary func-

tions, we get
,—2b -8 —aZ,
(11.3) CXT(I’" g t)=-ce Y40 (e )y + O (e 1t

(ii) for large z, f 1 (y, {) being arbitrary function, fo (x, §) = 1, we get

2, 2, = _
(114) C;(=, y, ) —e~ Wy — o= by - + np)t 21‘%(9)8 Ut 4.

n ==

+Q,C4(y. ) + 0 (e~ ),

(iii) for large #, f_(z, y) being arbitrary function, f(y, I) = 1, we get

(11_5)Cr(x,y,t)=e“‘gby__g—am—by p mn(y)e—'ﬁnx_

n==
a2
—Q;C (z, Yy +0(e™N1t)
where co; (1) CB (y, O, 65 (z, y) are given by (8.31) (9.9), (9.11), respectively.
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12. CONCLUSIONS

1. Influence of the coefficients of the diffusion equation on the 'asymppotic
solutions ' ‘

‘Assuming that the coefficients of the diffusion equation are constant we
have found the analytic and asymptotic solutions for the diffusion problem
(see (11.2),..., (11.5)). The tunction Cy,.(z, y, §) given by (11.3) satisfies all the
assumptions of Theorem 3.1, therefore the asymptotic solution of the more
general problem (1.14) through (1.20), (3.9) (in relation to the ‘coeflicients
wx g) e, (1)) is expressed by the same form (11.3), be_cause\ the nondimensi-
onal coefficient b appearing in (11.3) does not depend on the flow velocity
U and the diffusion coeificient Ki"(see (1.21)). We thus come to the following
~ conclusion: - ' '

If the function of the flow velocity U, changes in some interval of values .
such that the condition (11.1) at the botitom of channels is valid and if / and =
are large enough, then the distribution of suspended sediments in the flow
depends, in an asympfotic sense, neither on the flow velocity nor on the
diffusion coefficient K. | |

The property that the particle distribution is independent of the flow velocity
is justified by the experimental data given in [1]. ‘

" 9, Influences of ihe initial condition and the boundary condition at the
inlet of the channel (x = 0) on the asymptolic distribution of suspended
sediments in the flows.' -

From Theorem 10.1 we may conclude that, if tis large enough, then the
initial distribution of particles in the flow does not cause ne.;irly any influence
on the later distribution of suspended sediments. Similarly, at a great distance
from the source located at the cross section x = 0, the distribution of suspen-
ded sediments in the flow does not almost depend on the source intensity of
sediments expressed by the function f, (y,1). " '

3. Stability of the distribution of suspended sediments in the flows
From the asymptotic solution (9.16) it follows that there exists a state of the distri
bution of particles in the flow, asymptotically expressed by the function C,(z, )
it is independent of functions Q, fa (z, y) and Q,F,(y, V) (see (9.7)). So in rela-
tion to the relax;atidn of influences of the iniiial conditior and of the inlet
condition of sediments at the cross section z = 0, we shall call it the stability
of the asymptotic distribution of suspended sediments in the flow.

-
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The state of stable distribution of sediments in the flew examined in
1]
§ 11 is exl}pressed by (see (11. 3})

(12.1) - C=c™?4, b=VH/2K,

The formula (12.1) coincides with the formula (2) in[1](p.64), which is consistent
with the experiments for jthe suspended sediments of grains of sand diameter
between 0,1 and 0,6 mm.

From the stability of the distribution of suspended sediments in the flow we
may conclude that the ability ol transport of suspended sediments of the flow
for any channel can be strictly determined; it is limited and does not depend
on the source infensity.

(Received January, 1.4:1984)
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