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This paper is in the setup of real numbers. Let u(x, y) be a harmonie
function (i.e,, u, (x, g -+ u y(a:, y}= 0)in an open disk D ‘with center at .the
origin (0, 0). It is well known 1, p-98], [2, p.212] that u(x, y) is the real part
of an analytic function F(z) of a complex variable z where z = z + iy with
(z, y) € D. As such u(x, y) has 1 power series- expansion in x and y valid in
D given by: '

ey uz, y) = Re £ (a, + 1,) @ + ig)"
’ n=0

It can be' rea&ily verified that (1) tmplies that u(x, y) can be expressed as
4 gum of infinitely many homegeneous polynomials P, (z, y) of degree n with

n= 0, 1, 2,... where the coefficients of the terms a?, a7 U v ¥y in
p, (@, y) oceur according to a rather simple pattern, Indecd, expanding the
right side of the equality sign in (1) according to the «binomial rule» and
preserving the real terms after performing the necessary maultiplications, we
obtain :

-
F

(2) I.l(:I.‘, y):—_—- Qa +(a1m - biy) + (02.’132 e .?bgﬂ.’fy — 2y2)
‘ + (aga® — 3bya?y — 3agzy? + byy?)
+ (a2t — 4b,a%y —6a, 2% y? 4 4b4azgst + a, %)
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+ (a, ) — 5b5x4y-—- 10a5:c3 y? —:—10b5a:2 g3 —i—5a5:ry4-— b5y5)
+(a b — by’ y — 15a 2t g - 20b 23 g3 -

+ 15a, 2y — 6b,xy® — a; y%)

+ 8 " 8

+ (a, ___( )b xn_ly - (n) xn-—2y2+

+ (3)bna:"-3 y + .. + B, y")

-s0 that
@) u(@y) = py(@ y) + py(@ 1)+ e+ P 9 T -
where
@ Pn(ﬂ?:y)km (a,x% — (Dbzt” Iy — G a z" " 2y? I (b, 2033 4
+ .+ By '
with

6y B,=a, if n=20, %, 8, .. and B =-"a if n =2, 6, 10,...
_ahd . :
(6) B = b if n= 3, 7, 11, e aﬂd Bﬂ = -bﬂ if n = 1, 5, 9 e

Clearly, as (2) or (3) and (@) show, u(x,y) is uniquely determined by the
values of a,, dy, b;s gy, bﬂ, . Let us also observe that as (4) shows in (3)
every polynomial p (z,y) with r > 0 is uniquely determined. by the values of
only two coefficients a, and b .

Next, let e be a transcendental real and (p, 0) and (qk, eq,.) with
k=1,2,.. be two sequences in D each converging to, (0, 0), respectively along
‘the x-axis and along the line of slope e passing through (0,0).
- Thus, '
@  lim  (p,, 0) = lim (g, eq;) = (0.0) with p, + 0% g,
k—>oe k>0 o

Also, let the following real numbers

(8)  u(py0) u(py>0), u(pgs 0)s ..o ulgy eq, ), u(dys €95) U(dgs €dghe.r
be given which represent the values of u(x,y) at the points of the two sequen-
ces mentioned in (7). ’ .
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Now; based on (7) and (8), we determine (oniquely) the values of a,, s and
b,, s in (2), which in turn, determine uniquely the values of u(r,y) in the
entire D,

To determine a, let us take from both sides of the equality (2) limit

% ask - o with (x, y)==(p,, 0) .
Since u(x, y) is harmonic in D, clearly lim u(P, , 0) in uniquely determmed

k—>»co
(in fact is equal to u(0,0)) by its values u(p,, 0), u(pys 0), u(py, 0), ... as given
in (8). Also, in view of (7), it follows that the limit (according to (9)) of the
serics immediately to the right of a, in (2) is equal to 0 since y = 0
throughout (9). Hence '
10y a, = lim u(p,, 0).

k—>oceo

and therefore a, is unigqhely determined by (8).

To determine a, let us subtract @, from both sides of the equality (2)

and then divide both sides by 2 and then take from both sides limit according °
to (9). From (7) it follows that the limit (according to (9)) of the product

of =1 and the series immediately to the right of a,x in (2) is equal to 0 since
y= 0 threughout (9). Hence (using (10)},

u(p,,0) —a
4y  a, = km ) 2
koo Py
and therefore a, is uniguely determined by (3).

" To determine b, let us subtract a,+az from both sides of the'equality (2)
“and then divide both sides by — y and then take from both sides limit
(13 a3 k — o with (z, y) = (g, eqk) '

From (7) it follows that the limit (according to (13)) of the product of y=!and
the series immediately to the right of — b yin (2) is equal to 0 since ay~1=
= e~ throughout (13), Hence (uking (10) and (11)),'

u (q]c; eqk) —3p - aiqk

A b= lim
14 ; 1 e —eq,

and therefore b, is uniquely determined by (8).
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To determme a, let us subtract a) + ax — by from both sides of the

equahty 2) and then dw:de both sideés by z° and then take from beth s1des-
limit according to (9). From (7) it follows that the limit (according to (9)) of the
product of z~2 and the Series 1mmedlately fo the right of a, :v2 in (9) is equal
to Osince y =10 throughout (9). Hence (using (10) and (11)),

u(p,,0)—a 0 — %Py

2
k

anq therefore a, is uniquely determined by (8).

a5 . ay=lim
. k~»oo B

We observe that a, which is already determined occurs twice in (azzt:2 -_
— 2byzy — a2g2) which appears in (2). Thus, to determine b, let us subtract
a, +ax — be + azsr:2 — a2g;2 from both sides of the’ equnality (2) and then

divide both sides by —2xy and then take from bhoth sides limit according to
(13). From (7) it follows that the limit. (according to (13)) of the product

.(_ng)‘f and the series iinmediately to the right of —2b2:cy in {2) is equal’

to 0 since xy ~I<¢=1and ye~ 1= e throughout (13). Hence (using ((10, (11),
(14)’-(15))’ ) ® )
b“ I u (qkd eqk) - ao - aj_qk + bquk - agqi + agezq}%
16 : = lim — -
(16) p= Jim — T

and therefore b, is uniquely determined by (8).

To determine ag we proceed analogously to the case of a, and obtain:

u(py 0) = @y — ayp; — a,p%

. 17 a, = lim_

and therefore ag is uniquely determined by (8

Since ag is already dctermmed We~use

- (18). (age® — 3b 2%y — 3axy’ + b3g3)‘
which appears in (2), to determine by, We observe that the part of (18) which
involves b, is given by:

an (=3 ()P
To determine b, we use the obvions procedure (suggested by the case of
b,) and after the necessary subtraction from both sides of (2) and then division
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of both sider by 2y and then taking from both sides limit accerding to (13),
in view of (13) and (19), we obtain:

. . =
(20) Iim H(g,, eq;) = lim (-3+ (
fe=—> O . J—>co

,)

) b, =(—3 62) b

] q, 3 L 3

where H(g,, eq,) is a well defined expression (see (21)) below). However,

since e is transcendental, we see that (—3 + e?) & 0. Hence, dividing both

¥
sides of the equality signs in (20) by the nonzero real (—3 4 ¢?) we obtain
by. It can be readily verified that

o b, = y . ‘ | :

w(q,» 9 )~y —a; g, +b, eq, —a, qi—|—2b2 eqi +a, ezqi— asqz:{—303e'2qz

i =3+ ) egf
and therefore b, is uniquely determined by (8).

From the above considerations it can be readily verified that based on (7)
and (8), for n = 0, 1, 2,... our procedure determines recursively the a's which
appear in (2), as follows:

a, = lim u(p,,0)

9 k—> oo
(22) ,
u(py» 0) = a, - a,p, -azpi — e — aﬂ__ipg_I _
a = lim - for n >0
B k—>oe Py

and therefore ¢ ’s are nniqﬁely determined by (8).

‘Next, we give a formula for determining recursively the b, s ai:peari:lxg
in (2). First however, let us observe that as (21) shows b, is determined based
on the previously determined a,, a,, b,, a,, b,, a, and the cruciai fact that

(-3 +,62') + 0. Let us’ consider (a, =% — 4b, a3y — 6a, 2?y? 4- #b,xyd L
+ a,y) = p, (x, y) which appears in (2). We observe that the part of P, -g)

i . 2
which involves b, is given by z3y (—4 + 4 (%)) b,. Since e is transcen-

dental we see that (-4 432) == (. Therefore, procedure' of deter;mining
b i (by taking limit according to (13)) determines- b4 uniquely in terms of

alreaciy determined Aps Qg oo b3, a,. Again, let us consider (a5x5 — 5b5iv4y _

— 10a,2%y? 4-10b, 2%9° - Sa xyt —b yt) = P; (%, y) which appears in (2).

37



We oabserve. that the part of ps(x, y) which mvolves b, is given by

( —5 - 1’0( ) —_ (_y_)) b5, Since e is ’transcendental we see that
T T ;

(—-5 + 10e2—le'*) <0. Therefore, our procedure of determining b (by taking
limit according to (13)) determmes by umquely in terms of aIready determined

Upy Apy ems b[F, a..

To determine b_ in general, let us consider P,(x, y) which appears in (2)

"~ and which is given by (4). From (4), ®) (& it follows that the part of
' P,(x, §) which involves b_ is given by,

() (3 ()P e
FEDH (o 0) () b

where t is the largest integer such that (24) (2t +1) < n

Since e is transcendental we see that

@ () (E) = () () e () o

Therefore our procedure of determining b (by taking Iimit accordmg to (13))
determines b nmquely in terms of already determined Qys Ay doy bn,_ PO
, Ind'eed, from the above considératious it can be readily verified that based
on (7) and (8), for n =1, 2, ... our pr-ocedure' determines recursively the
b,’s which appear in (2), as follows:

(26) b, = lim 2> €q) —Iﬂ — @9, tbreg, — . + (—I)SH( ) 623
T CO OO - o)
for n >0
where s is the large.st mieger such that 2s < R

and where t is the [argest infeger snuch that 2f - 1<
Therefore, b, *a are also aniguely determined by (8).
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Clearly. (22) and (26) imply the proof of the following :

THEOREM 1. Let u(z,y) bea harmonic funciion in"an open disk D with center
at (0,0). Then u(z,y) is uniquely defermined in D by its values at the points of
two seguences in D, one converging 1o (0,0) along the x-axis and the other conver-
. ging to (0,0) along a line with «a transcendenfal slope

Let us observe that we chose e to be transcendental in order to make non-
zero the expression appearing in (25) which alse appears in the denominator
of the expression defining b in (26). Thus, any cther nonzero real number

r for which (25) holds when e is replaced by r could be used (instead of e) to
determme h as given by (26),

DEFINITION. A real number is called an A-number if and only if it is not
a root of a polynomial 4 (z) given by:

@) A (@)= — (n)+(¥)x? --(”)x“ -:]-(”)xs " +(- )f+1(2t +1) z ¥

for any n > 0 where t is the largest integer such that (21 L 1) <

Clearly, 0 and every transcendental real is an A-npnmber and there msy be
some nonzero noniranscendental 4-nambers,

Based on (25), (26), Theorem I and the above Definition, we have:

THEOREM2 Let u(x,y) be a harmonzc functzon in an open dzsk D with center
at (0,0). Then u{z,y) is uniquely defermined in D by its values at the poinis of two
sequences in D, one converging to {0,0) along the z-axis and the other converging
to {6,0) along a line whose sloPe is a nonzero A-number.

Finally, let us observe that for the polynomial A (z) glven by (27), we
have: o .

(zé) A (7)) = — —1—Im a —[—i:c)“
Motivated by the fact that x in A (2) represents the slope of a line passing
through (0,0), we let # = tan 8 with — =/2 <8 < w2, But then (28 ) implies

+

Sin 88 ith —w2 <8 < w2 «

(29) A, = (~ cot 8) -
cos™8

From the above il follows thatif ¢ is not a ratmnal nmlhple of « then A #Z 0

" for every’ “n > 0. Since in Theorem 2 the x-axis can be ‘replaced by any line
passing through (0,0), from Theorem 2 and (29) we have: :

-
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THEOREM 3. Lel u(x,y) be a harmonic function in an open disk D with cenier
al ©, 0) Then u(x,y) is uniquely determined in D by its values at the poinis of
{wo sequences in D each converging to (0,0) abong a line passing through (0,0)
such that the angle (in radians) belween the two lines is not a rational mulfi ple of x.
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