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We will show in the following that thé solution of a general stochastic
differential equation which was ailways dealt with in the nonlinear filtering
theory can be represented as a stochastic generalization of the Taylor formula
which is due to W. Wagneér and E. Platen (see [2] or [3]).

This representation is useful for an approximate solution {or filtering
problems :

Let (Q, 7, P) be a probability space.

Consider a stochastic dynamwal system described by a stochastic differentml
équation of the form

: t
1 T, =z, 4 S a{u, :cu) du 4 § b (u, s::u)d‘Wu . S ¢ (a, .Tu)'d Yu
ity to ta
where . \_ ‘
"I e[ty T], ¥, is anincreasing fa;mily of sub'— o fields of ¥, x, = {3::}:":1 and
a {, %) _=' fal (t, :c)}i'__"fi are R valued vectors, a (¢, x) is — measurable and
¥, — adapted. b (1, x) = {bY (¢, x)} ;ézﬁgn it a m X n — malrix and each

bii (t, x) is — measurable, and ¥ — adapted, ¢ ({, ) = § ¢t/ (1, x) } ISism o
y p t

a m ¥ v — malrix and each bf/ {(f, ) is — measurable, and ‘351 — adapted,
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W, ={ W”;} ;‘zj is a R" — valued standard ¥, — Wicner process, with inde--

pendent components, ‘

Y,= {3\":"— t}: _7 Where each N:" (k==1,...,%) is a real valued standard Poisson

process (i.e. a Poisson process of ihtensity 7) with independent components,.
Moreover, we suppose that WJ {(1<j < n) and A’t (k=1,...,v) are muiu-

ally independent.

§uppose also that the following conditions on the existence and uniqueness
of the solution of (1) are assured" (see {4] for [nstance):

xlgyW, ¥ ‘ , LIS <o ST
(A _F C Fp Gt_{_l_d[WU—WH,Yq—Sp, <y

where

{ LW, _ - .
gfo yzc[?:fo, Ws ,'Ys; h<<s <1V fall P — null sets].

® et D) —at gt 1b () b (o 12+
¥ . .
el @) —c(t, plitdy, < Kjz — y |p
lg .

with some posmve constant K
©) halt, )P + 16 ¢, x) P+ fuc(t Ty P d Y, <K[1+H!$(S)ﬂ’l‘(ds)]

where I' is a Borel measure on [t,, T]
On the Flitermg Theory, W, expresses a white noise whlle}’ corresponds
to a ¢ point process noise » (See [1]). .
It is well-known that Wtj)i; a mariingale (1< j< n)and so is Yf(i{fc{v)_
Moreover, their quadratic variations equal to f:
(W), =1t 1<j<m,
<Yk>t =1 (1 <k <),
Now fors, te [t , T} s < t, (1) can be written as
t : !
2 =z + Sa (u; :cu') du +'§J1 g b/ (u, T,) dW; +

\ ' Jj=
s 5

. .

> ck(u,mu ) d Y‘z

k=1 :
A r e m

where . bl (i, 35') = 'J-Zu(tnx) (l‘:._i! 1 < J ‘\<~. I

ck(t, ) = ?fk(tx)fm , lgkqv;

—h
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Set
' ot bil(1, if 7<I<n,
bd{!,:v) _ 5 .( zy i <n
! cll-tt it n1<I<nt V.

~ . ,.V'l . -
Denote by b (f, z), a m X (n -+ v} — matriz ol elements 3 (t, x):

pll . pln i1 Iv

~ o 21 n .21 Zv
‘b= (bll)z b ...b‘nC s C

LIS I Y

pml, pma gml - om¥
L] '
Let W; (1 <1< n -+ v) be a martingale defined by

L YW i 1I<n
“]l___ ‘-
Y;"n i n+ 1< npo,

Equatién (2) then becomes :

\

! ;
i n=4v {_~1 ]
) =, + Sa(u,xu) du 4 = S bux ) dW,
=1
by s

where 'Bl(t,x)zg b, m)f 1< a4

=1

It is obvious that :i:t = 3 :ci fm 13 a m-dimensional continuous local semi-

' . !:

martingale of the form
. :E[==(L‘S+ﬂft +At

{

n+v [~
where M = Z S b(ux )dW[ isaR" -valued continuous local martmgale,
=1
S

t
4, = Sa(u,xu) du is a R™- valied process of bounded variation.
8
Let F: [to.’ T] % Rm—>R”f be a C% class function. Then by Ito formula,

F (tx,)is also a m-dimensional continuous local semimartingale ;

i : t
oF aF ;
@ F(lx)—F (s, )=SE§("’ va)du + T SE&_ (@ )d M 1
i=1

H s
¢ -

S °F (ua: ) d (M ,Mj M

l_] =1 ox ]a?:
: s

n

n
+ 32 % yp ) dal +ﬁ
i=1 gt
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It holds .
r ) b (a, x )([’VVVI .
u i

i
m 7 m nFv
zsal (maeydd = 3 % SEE (3
i=1 ) o . j=1 =1 Joad u
s §
Noticing that W' (1 =1,2..n4v) are independent
b 4 . i =17 )
and (WL, W'y, ——-; itr=r
t v other wise
we have
~ ﬂ+\’r rvjl ~
b2 Sb (z.x, )d w! =

3

' (Hf A > _( j;_*l,_ Sr\l;w (L.l,.:x,‘u')\d wl, ?

‘-
n+v "’l'l , * .
= X S Y (u, x, yb/l (@x, ) du .

- =1
s

Then (4) takes the [ollowing lorm

L t :

i, x, Y=F (s, 3F mog aF '

B)F i,z ) (s, ) + S [aS (u,z )+ imzia (n.z,) -E;(u, x ) +
. ‘

1 m nv AF g _ i |
+18 0% S Vs M@ dis

'm n—l—xlil B}"' - :
, ~il IS
8 x, )b (@ o) AW,

+ z E — (u,
i=1 =1 ox'

Using of the opeér atic;n L¥ (k == 01,0, 0+ v) introduced by W, Wagner and E

Platen (cf. [2] or [3]) we have
Ak m a[« { m n+v. oo 2
_I.. _l_ Au] _.l_ + _L_. z 2 bll bJ? a.F if k 0
T B 2 4j=1 =1 ox'dx! :
- m ~ il aF : ' ) .
z i 7 1k}
(=1

We denote 'hy ﬁ?:.t for convenience,
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‘[hen (3) can be rewritien as

i ;
Car ko, ok

S (L" Fyeu.x, )..d“ “.

5

. n+tv
(8) ©F Lz, )= F(s,2. )+ 2

k=0

Now we are in position to gel the following

PROPOSITION. In preserving all assumptions and nofations of Theorem 1 in [2]
with the add:t{onal assumpttons mentwned in the fust part of the note, we have
the Wagner — Piaieﬂs fepresc’ntatmn for the solution of the equation (3):

(D x =T + Z Fo(sx )Im,st)—{— T L(F.sh
ac A aeB(A)

where : .
@ = (100 J, ) is 2 rOW Yector of tinmite length (k¥ <{ =) and components

j[ € ‘{0,1,. .,nf
A is any subset of M = Uy ,jk) s k=12..}, |
B(A) = { « e M \ A: adeleted the first component € A},

) for « = V, vector of no component.
(F " L. )y for « = (0),
= pti  fore =(j), j=12..n
LI LR E gy for e = (..., j&) with k22,
, tu, U S |
1. (g,s, )= SS S - CE R dW{é ...dW{:;
58 S .

I (s, 8y = I, (1, 5,1).

Notice [inally that when ﬁft = 'Yt which has bounded variation,

t
[ ¢.d WS is therefore a stochasiic Stieltjes integral, But for the same treatment

i .
‘for both cases of W, , we required that fgbg ) Ys can be regarded as an integral

. fn
which is constructed in Tto's Theory. For this purpose we have to impose

on ¢, the additional condition: ¢, is ¥, — predictable,

it means for the casé that
a(t,x,) and b(l,z, ) are in addmon G — predictable. l"hen the mtegrals such as

~dp =~
sf sf Sj AW dW
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. : ' b . .
gre treated in computation in a same way when the W, 's are either Wiener
processes or Poisson martingales. &

N. B. The author would like to thank Dr. Plalen . on the information aboui his
* own generalization of his previous resalfs in (2] and [3]. Anyhow, our result is
- oblained from 1981 and used for our further study on fillering.
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