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INTRODUCTION

During the last decade the theory of set-valued maps hdsrisento become one
of the most useful tools for the study of many important optimization problems.

In [1] Boltyanskii considered extremal problems for. discrete systems given
by set-valued maps and established an optimality criterion of the type of the
maximum principle when the set-valued .maps are supposed to have smooth
local selections. Later, Pham Huu Sach [4a], studying generalized extremal
problems with inclusion contraints where the set-valued maps on the right
hand side have smooth support functions, obtained a support principle which
yields just the maximum principle when applied to discrete systems, -

The primary purpose of the present paper is to extend these results to a
class of Iocally lipschitzian set-valued maps and to study some closely related
problems. . ' ‘

The method to be used is to characterize a set-valued map by some associ-
ated real-valued functions, in such a manner that, instead of studying the set-
valued map directly on can consider only its « characteristic » functions. The
advantage of this approach is that it allows the theory of- géneralized derivative
of single-valued maps to be used for set-valued maps as well. This turns out
to be yery convenient in many circumstances. In particular, in that way we are
able to establish the support principle for generalized extremal problems under
much weaker assumptions than in [1] and [4a], namely assuming only that
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the set-valued map under consideration is locally lipschitzian while the
constraint set is not necessarily convex. In addition we shall obtain for set-
valued maps an «Interior Mapping Theorem». Propositions of this kind have
‘attracted much attention from researchers in recent years; for the essential
results on this subject, see [7] and {4a]. Finally the method will permit us to
elucidate the relationship beiween the Clarke derivative of a set-valued map
as.defined by Aubin in [7] and the adjoint of this set-valued map, as lntroduced
by Pshenichnyi in [6].

1. DEFINITIONS AND PRELIMINARY PROPERTIES

. Let X, Y be two Hilbert spaces, Z = X X Y théir cartesian prodﬁct, X Y, Z

the dual spaces to X, Y, Z. A set-valued may F: X — 2Y s said to be locally
lipschitzian at a point x € X if there exists a real positive number « and a
neighbourhood U of x such that

F (@) CF@)+allz, —xz, 0.8y (0.1) 1.1

for every a: » T, € U, where | .| x denotes the norm in X and B (0, ) the

ball in X of radius o and center O (When no confusion is pOSSlble we shall
delete the subscript Xin this notation; also we shall write sometimes By (0, §) .

instead of Bys (O, d)).
Denote by I' the graph of F:
T'={(xy)eZ|YecF ()} f
and let |
dp ()= d(z; T)=inf {|lz — Ll|:Lel} Vzel,
fz) =f @y =d (z; F@)=inl {|ly ~vfj: ve Fla)} ¥ze 2z,
CF(y“‘,:_l:) -——-,sup{<y*,v>:veF(:c)}V:cEX,VY*-GY*,

Throughout the sequel, unless otherwise specified, we shall always assume that
the set-valued map F under consideration is locally lipsch'itzian at every point
x € X, and that for every x ¢ X the set F(x) is nonethy, closed and convex,
It can easily be proved that for such a map the set -

{yte VA | CF (yt, CU) ( oo}
is a nonempty convex cone not depending upon x. We shall denote this cone
by Y.
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From the above definition we can readily derive the following simple
properties. -

PROPERTY 1.1

Bzel « dF(z) = 0<=;f(:) =0:

WD ()<f(r) Ve Z;

(iii) Let a be the Lipschitz constant of f on some neighbourhood of a point x € r.
Then there is a neighbourhood U of -z sueh thal for every z e U

(2} < adg(2).

Proof : A . .

(i) and (ii) are trivial. To prove (iii) consider a neighb;)urhood U, of z, such
that f is lipschitzian with Lipschitz constant « on U ;4 - Let B be a real positive
number satisfying z  + B,(0, 38} C U, . Then foreveryze U = z, + B,(0, B)

_and every £ > B we can find a point z, € I' such that]z — z,0 < d(z, ')y + =,
Noting .that d(z, ') < ||z —z, | < B we have | 2, —Z, [ <28 + ¢ < 3B, ie.
z,@ U, , and hence, - : S

fz) — £(z,) <=z —z, | < ad(z, T) + e,

Since j(zj) = 0 and ¢ is arbitrary, we conclude f(z).( ed (%), as was to be

" shown,

PROPERTY 1.2 :

A set-vallued map F is locally lipschilzian at a point « € X if and only z'f\ for
some neighbourhood U of x  the function f is lipschitzian with respect to (z, y)
onU xY. |

Proof :
If the set-valued map F is locallylipschitzian we have from (1.1):

d(g' F(xI )) >d(y; F($2) + = “ xj - x2 He B(Os 1))
foreveryyeY. z,, , € U. It is easily seen that

diy; Fry) +ellz, —z, Il . B0, 1) >dy; F@,)) —ellz,~x, |,
and hence, .
diy; Flz, ) > d{y: F(zy)) — ellz; — x, |

for every y € ¥, z,, x, € U. This means that the function I(x, y) is locally
Hpschitzian with respect to x (with Lipschitz constant «) for every fixed y eV,
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On the other hand, the function d(y; F(x)) is Lipschitz continuous with resbect
to y (with Lipschitz constant 1). It follows that the function f(z, y) is lipschi -
zian with respect to (x, y) on U X Y.

Conversely, if for some neighbourhood U of:v € X the function f(x, y) is Iips-

chnz:an on I/ X Y, we can find a number « such that
foz) <f@zy) + 2l z,—=, }
for every 2, 7, € U, yeY. Then for every y e F(z, ) we have d(y; F(z,)) <
<« -z, [| Thus F(z, ) F(x)+a[|x—x . (0, 1)
for every x, , &, € U, which lmphes that I¥ is locally l1psch1tzlan

PROPERTY 1.3
A sel-valued map F is convex if and only if the function [ is convex.
The proof is immediate.
PROPLRTY 14
For every z € Z we have
f2) = f(z y) = —min {CF(y", 2) — <g*, y>} (1.2)
yrel
Hy i< 1

If =4I there exists a unique element y* satisfying
f(x’ y) == CF (y*: 37)+(y*. y)
and then |jy* | = 1. ' '
Proof : , . .

The proof is strai ghtiorward from the followmg Lemma which in turn is an

immediate consequence of the separation theorem,

-LEMMA 1.1 _
If B is a convex sel in [he Hilbert space y, then

d(0; By=—min sup (y*, b), N L3
. yEBE‘ BER
and if d(O; B) ;03 1here exists a unique element g-“eB;o satisfying
d(O;B)=— sup {y*, b),
beB .

where By denotes the set { y* e¥* | sup (y*, bY{o; || y* | < 1 }o
_ bR . |
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PROPERTY 1.5 ,
Asel - palned map Fis locally lipschitzian if and only if the support
function C* «y , x) is locally lipschiizian with respec! lo « uniformly for

y* in B;= YF N B;(O,I) (i.e. with a Lipschitz constant nol depending on

¢ B* )
vee By

This follows immediately from Property 1.4

PROPERTY 1.6
A sel-valued map F is “conves if and only if the support function
C¥ (y*, x) is concave in x,

The proofis trivial,

2. SUPPORT FUNCTION ; GENERALIZED GRADIENT AND NORMAL CONE

In what follows 3h(x) will stand for the generalized gradient of a locally
lipschitzian function h at the point x: h%x, ) the generalized directional
derivative of h at x; T(s, T') the tangent cone to the set I' at the point z¢[';
N(z, T) the normal cone of [' at z, as were defined by Clarke (see [2a, 2b}).

A locally lipschitzian function f(x) is said to be Lipschitz—regular.at x
(in Clark’s sense) if for every v¢X the directional derivative f'(x; v) exists add
coincides with the generalized directional derivative f%x; ).

_The following proposition shows a relation between the graph of F and the
function f.

. PROPOSITION 2.1
If z, € T", then
@) T(z, » D)={t€Z 11%(z,, ) =0}
(b) N(z, , )= "U (af(z)

: 120

1

where the bar indieafes the closure,

e

Proof : ' ] . _
Since T(z, , D)= {{€z | d{(z, ,[)=0} and Nz, , )= g t8d(z,) (see[2a, 2b]),
- e 0 .

this Proposition is an immediate consequence of the following
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LEMMA 2.1 |

If z, €T, then we have
(D) 4z, D)< Uz D < ed? (2. 0)
for every Lez, and '
(i) 2d(z, ) € 8f (2, ) S €3 d (7, )
where « is a Lipschilz - constant of f in a neighborliood of Zg .
Proof of Lemma 2.1
Given {  Z, for every z= (z,7) € Z and every ¢ >> 0 we can find Y e F (x)

such that
fl@y) >ly—y, h—e.

&

-It is easy to see that z/=(x, yp e T and satisfies the following conditions

@ fz—2<F@+e
@) f (= +c;)-—f(z)<f(z1+g)+s

" Hence, for every two sequences {z,} C Z, {¢, }C R we can [ind a sequence
{z;} C T such that

(i) i — z || < F (z)+ 82
and

(v) f(z, +.8,0 — [ () < f(z'+8 ) + &%

If z, >z and & — 0 (as n — oo), thenzI-a-z smcei(z) — f(_Z)"“O From

(n—»oe
(iv) we have
— 1
 fe+8 D —f(z) f 480
lim sup 5 Llimsup ———— -
S .—0 n S 0 dn
~ n . n -
z,—>z, z;—-; z
| el
and hence
f°(zo, §) < lim sup iﬁiﬁi@_
- 80
I—=Z,
zel
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The converse inequalily being irivial we obtain

il
f0\~ ; t)_ lim sup L—j—__
8—0 S
Z—>Z
zel'

An analogous equality for the function d(z) was established in [9] for the case
of finite-dimensional spaces. By an argument similar to the previous one we
can see that it still holds in the general case.

Lemma 2.1 now follows [rom applying Property 1.1.

The next lemma will play a crucial role in the rest of the paper.

LEMMA 2.2
* Let Q be a compacl space, and let g: X x Q — R be such that:
. (a) g (x,.) is Ls.c. in w3
(b) g (.. w) is locally lipschitzian in x,
uniformly for win Q; '
() 3 g(@,m) is w.s.c. in (x0)-
If ¢(v) = min {g(z, ©); weQf, then;
(i) @ is locally lipschitzian;
(i) ap(x) S co{a*eX’ |zted g(Tw); 0); w& ] (x)},
where I(x)= {0 & | g(x,0) = o(x)k

Remark 2.3

A similar result was obtained by Clarke for the case where X is finite-dimen-
sional and g (., o) satisfies a condition of regularity with respect to x (see [2a],
. Theorem 2.1).

Proof of Lemma 2.2

First note that since ¢is L.s.c, in » and Q is compact, the functlon, ¢ is well
defined. For the same reasons I (x) == $. The proof of (i} is immediate from (b).
'To prove (i) we need the following result of Thibault 5], 2—2):

o

Let h:X - R be a locally lipschitzian function, H be a subset of X such that
X/H is a Haar-nul set and at every x € H the function k is Gateaux differenti-
able and has Gateaux differential yh(z). Then we have '
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- }z {2, v) = max {(x*, v) | x* L g (2 :L)I for every ve X,
_(2)an(x)={coLH(h,(_}, ‘
where L. (&, x)={ lim vh (@ )|z, eH, x, - )} and the «limit» of

{vh(z )} isin the weak® topology.

Now, from Christensen’s Theorem [8] applied to the locally lipschifzian function
¢ it follows that there exists a subset M X such that ¢ is Gateaux dilferenti.
able on M and X\ ¥ is a Haar-pull set. o

Foreveryz eM,we 1(x ), v € X we have

¢ (x,; +80) — ez, )

(valz, ), v) = lim -
< Iz'gz_igp 9, + o, t;) .—-g(xn » )
hence
(Vo) ) <go(x,,0,0),
ie

Ve (z)ed, g, W @0

!

It is eas11y seen that the set-valued map x 1— I(z) is u.s.c. and from condilion
(c) the set-valued map x |— G (x) defined by

G(x) ={x* jxz*ed g(x,w); ® el (z)}
is u.s.c. as well.
From (2.1) we have .
Ly (9, ) € G (2).

Part (ii) of Lemma 2.2 now follows from the second part of the mentioned
- result of Thibault’and the compactness of the set G (x) (in the weak* topology).

Remark 2.2 '

If the function [~ g ( wl} is L]pschxtz regular with respect to x, then [— @] is
Lipschitz regular, and we have® the equality in (11) ,

Property 1.5 shows that the support function' CF (y*, ) is locally lipschitzian
with respect to z, so that we ¢an consider the generalized subdifferential of CF
with respect to x, i.e. the set aICE (y", x). One might ask aboet the upper semi-
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continunity of the set-valued map (y*, )i amCE (y*, z). In many special cases
this property can be established without difficulty. but the situation is more
complicated in the general case. For brevity of.presentation we shall make the
blankef assumption tHat the set-valued map B:CCF(y*, &) is w.s.c. in (y* ,x) and
that B =17 (] B} (0, 7)-is closed (and hence, is compact in the weak*
topology’.

From Property 1.4 and Lemma 2.2 we can deduce the following proposifion
which states one ol the most important properties of support functions,

PROPOSITION 2.2
Under ihe stafed assumpiion we have

af @) S co{(z*, y) t = e— 3, CF (g, a3, y* e 1 (O)),
where I(z) = {y e By 7| @y —CF @, )= f(z)}.
If f(2) > 0, then I(z) consists of one smgle element y*, with || y* [] = 1, and the
symbol «co» can be deleted, _
Remark 2.3 ) o
It zel, the I(: = {y e B} | cF (y*, x) = (y* y)}, i.e. I(2) is the set of normal
vectors to the zet F(x) at the point y € /7 {x). More exactly we have.

Hzy={y" eNy; r(x)) | 1" [ <1}

As a consequence of Pmpositiégs 2,1 and 2.2 we get the following theorem
about the relationship between the normal come N(z; ') and the support
funciion. '

THEOREM 2.1.
If z ¢ T, then
Nz, 1) S CO { (@, y*) =* € —3 CF(y"x); y" € N (y; F(2)) }.
Remark 2.4 ' '

If the function —CF (y°, x) is Lipschitz regular with rélspect to x (which is
the case, for example, when F is convex) we can show that the set

6@) = {@" ¥") " « =0 CF ", @),y [@)}
is convex, so that the symbol «co» can be dropped. On.the other hand the
set {(z*, y")[z* e—-—a;cCE @ ). y* eMy; E (x) ) }is closed, and from Remark

2.2 we have
Nz, T) = { (=", y*) I=* & =3, CT (y°, @) y*s My, F(@)) }.



Following Aubin [7] let us define Clarke's derivative of a set-valued F ai a
point z, = (%, ¥ )&graph F as the set-valued map DF_ (.) from X to ¥

o
whose graph is thejClarke's tangent cone to the graph of F at z,. In other
words, » & DFZ (u) if and onlyif (u, v) ¢ T(z,, I). Further, following Psheni-
2]

chnyi [6] let us associate to the set-valued map F Irom X to YV at the point
Z, = (zo » ¥, ) the adjoint set-valued map F* from V* to X* defined by

‘ F* (g =—a CF (4, z ),
for every y* e N @, Flx,) ) .

Theorem 2. 1 relates the derivative to the adjoint of the set-valued map, and
Remark 2.4 says thal when the map F is Lipschitz regular (in the sense that -

the function —C F(y*, x)is Lipschity, regular) then the adjoint is exactly dual to
the derivative (in the sense that the graph of the adjoint is dual to the graph
of the derivative). In the special case when F is convex, we obtain the results
in [6].

THEOREM 2.2 (Interior Mapping Theorem)
1f Y is finite-dimensional, and if for every y* e Yo .a ly* | =1 we hape
o¢d Creyra) (2.2)

then for every posilive real number & i

N . Fla) Cint F(z + B (0, 8)).
Proﬁf : .
Assume the contrary, that there exists an element 4, € F{x) such that
y, ¢int F(z + B(0, 8)).. Then we can find a sequence {y,} such that Y.—Y,

“and y € F(@ + B(0. 8)) for every n. Taking e =0y, =yl >0and set
ting ¢ (2) = f(z4 «x, y,) we have ¢ (%) > 0 for every z ¢ B (6 ,8), and
9,0 =ftz,y)=| Y,— Y, = ¢ . From Ekeland s Variationa] Principle[3]
we can find an element v, ¢ B (0, ©) such that i v —0| =yYz > and that

- | Ocop Vo+vye, Bron - (23)
Since ¢, v,) = flz + 2y Uy} > 0 from Proposition 2.2 we can assert that

there exists an unique eiemelnt y, € Y; such that | y:ll = 1 and
o F — . |
L) - Cl(yr e +T) 28
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Combining (2 . 3) and (2 . 4) gives
F = — 5
0e—s C W, v+ x) + e, B* (0, 1) (2.5)

Since | y, I = 1 for every n, we can assume by taking a subsequence it
LJ

necessary, that the sequence {g;} converges to some clement 95 e YF" with
I y;; = 1.
Letting nn — o= in (2.5) yields -
¢ g a C (yo g:)
which contradlcts (2.2). The proof is complete,

Remark 2, 5.

*In order the Theorem be true inthe general case where Y is infinite-dimensional
we have to require a stronger condition than (2. 2), namely that there exist a
positive real number ¢ and a neighbourhood U of x such that

0 ¢ BxCF(g*, x) + B (0, ¢),

foreveryz € Uandevery y* e Y/, Iy =1

3. GENERALIZED EXTREMAL PROBLEM

- 'We shall say that a convex cone K ina H.ilhert space F is nontrivial if K is not
a subspace. Given a nontrivial convex cone K in E, a point 2 ¢ X is said to be
K-optimal for a smgle-valued map S: X — £ on the set M — X it for every

. & M satisfying s(x) — s(:c) ¢ K we have s(z) — s(x) € K.
The following theorem generalizes a result of [4a]

THEOREM 3. 1. (Support Principle)

Let Y be a finite- dimensz'onal space, K.u nontrivial closed convex cone in a finite-
-dimensional space I, s : X — I a locally lipschitzian sm_qle—valued map, and C a

closed subset of X. If x is a K—optzmal point for-s(.) on the set
M={zeC| 0s Fx)},
.then there ea:tsi vector y* € Y o, k* & K* pot all zero such thal
() 0 62 ¢k, s(T)) = amCF (3, ) + N(z, C)
(i) sup {¢y' v) | ve F@) =0
19



Proof :

Since K is nonirivial we can choose an element ko e K with || lco Il =17such
that k ¢ —K, Eor every & > 0 let K; = ¢k - K. It is obvious that K is a
closed convex set, K, C K, and

= {k* & E* | sup {(k*, k) < oo
: . kepKi > }
= {k* e E* [sup (k’, k) =0} = K*
keK ) }
Settmg s.(x) = d(s(z) — s(@) ; K.), we have by Lemma 1. 1 .-
5. (x) = —I;mm {(k*, s(x) ~— s(x) 4 sk o b

where K; ={k ekl 1}

Since d_( k*, s(z)) is'u. s. c. in (K*, %), from Lemma 2. 2 we get
as(x) S co {3, (Ic*-, s(@)) | k* e I{x) }

where / (z) = {k* e K} | s(r)= (&, s(:c) — s(x) —zk o b

If S, (x)> 0the set I (x) consists of just one element { &2} with || Ic* |'=1and
in thgt case

- s, @) S o (ki s(@) - (3. 1)
Let h (x) == maz {f(z, 0); s(x)}., We have h(x) > 0 for every x & C al:!.d..
(@) = s,(@) < ¢l k, || = ¢ hence |

e(a:) mf h, (:c) + €.

By Ekeland’s Variational Principle [3] we can find a point . & C such that’
() le, — 2z <V e - : , (3. 2)
(b) h@) + Ve loe—z | > he(xe).
toreveryxe(.' T 7 T
Erom (b) we derive :
0 e dh(x,) + Ve B-’fx(()', D+ (= -+ 1)y ad(z.) 3. 3y
wheve « is a Lipschifz-c‘:on;tant of h.(.) on some neighbourhood of the poini_:;fé
Note that f (x,, 0) and s, (z;) are not all zero, Indéed, if f(x, , 0) =0, then
O€F (x,), and hence .6 M, If s (x,) =0 we paveusgxe ) ;({_r')‘ef I_(g‘_ & K
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and fromthé K-opimality of T we conclﬁdes(&) —s(x,) € K, and hence 0 = (s )
—s @) 4+ 6@ —sx)Nek, + K C K_, which contradicts the fact

that k, § — K. From Lemma 2.2, Proposition 2.2. and (3.1) we can asseri
ihat for every '

z;6dh (x) there exist y2e Yy, ke B

such that
@ Boih + kD=
B) =red_(k,s(z)) —o; Cp(y* x) (3.4
W CFyx)=— 1l -/, 0

Combining (3.4) and (3.3) gives
@0yt k=1 L
®) Oe 'ax (ks s(z)) — 8 'CF(y;, :1?8) - V?.B:K 0, D+ (1) adc (=)
W CTgy =) =—ly. f(=, 0).

) ) *
By taking a subsequence if necessary, we can assume that g — y*, ky —k .,

(as ¢—0). On the other hand we have x_ (S-—>{)‘) T, and by letting e—0 the inclusion
. g

(i) immediately follows from («), (B). To prove-(ii) observe that CF(y*, x)
is hpschuzmn in  uniformly for z* g Br, le.

C .oy el z,—2 | + C (yE x.). On the other hand CF(y", ) is Ls.c,
in y*. Therefore :

G (y ) Iug cf T ) < Itm (_”y;.

al

The converse inequality is plam since 0 G F (T), so that we have (ii). The

proof is thus complete. .
The author wishes to thank Dr. Pham Hu'u Sach for his advice and

support. .

teceived September 4, 1982
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