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INTRODUCTIOR

Let g be a real—valued function and let F, (k=01.,N — 1) be N set-
valued maps, all defined on.the same space X. The problem we shall be con-
sidering is that of minimizing g:x ;) over the trajectories (xo,lxi,..., Ty ) of.
the discrete inclusion . -

Ty 446 F(z. ), k=01,.., N—1,

K]

QOur aim in this paper is to derive necessary conditions for an optimal solution
of this problem.

An extensive theory of optimality conditions for problems of this kind has
‘been developed in the last decade. In (1], assuming that the maps F, have
local sections, Beoltianskii established an optimality criterion in the form of a
Support Principle. Later, Sach [2—4] pointed out that the Support Principle
still holds even if the maps F, are assumed only to have smooth support func-
tions. Recently, introducing the notion of adjoint cone to a subset of an Fu-
clidean space, Morduhovitch |5] obtained an optimality ¢ondition for discrete
systems in terms of the adjoint maps of F, (i e. the maps whose graphs are the
adjoint cones to the graphs of F ). In the present paper, we shall use for the
investigation of the problem under consideration the notion of derivative of a
sel-valned map introduced earlier in {f]. Our main result will be Theorem 3.1
of Section 3. It should be -noted that this Theorem differs from the result of
Morduhovitch [5] in thatl it is estab‘xshed for any derivative of F . The advan~

iage of our method is that a derivalive of F in our sense can be easily fonnd
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in niany circumstances where the adjoint map in the Morduhoviich sense is
difficult to construct, The paper is organized as follows. In Section 1 we recall
the notion of derivative of set-valued map (see [6]) and give an auxiliary result.
In Section 2 we discuss the conditions guaranteeing the existence of a derivative
of a set-valned map. Combining the resalts of Section 2 and Theorem 3.1 we
are able o obtain necessary optimality conditions for the given problem under
various assumptions on g and I, . In particular, we can recover the Support

Principle for the case where the maps F  have Jocal sections (see [1]) as wrtll as
for the case where F, have smooth support functions (see [2 — 4]). Section 4 is

devoted to the nroof of Theorem 3.1. In the last Section 5, using a result of
Ioffe [7] we show that Theorem 3.1 remains valid for the infinite dimensional
case provided that g and F, are locally Lipschitzian, -

§'1- DERIVATIVE OF A SET-VALUED MAP

Let X and ¥ be two topological vector spacesand 7': X — 2Y a set-valued map
- from X to Y. The symbols dom T, ImT and graph 7 will denote the domain,
the range and the graph of T respectively. Recall that

dom T = {x: T(z) # T}

ImT = ) T{x)
reX

and ' .
graph 7' = {(z.5): ¥ € T(®)}
where (7 stands for the empty set.

We shall say that T is

— proper, if its domain is nonempty,

— convex, if its graph is a convex sel.

Consider now a point 7z = (x_, y,) € graph T. Denote by N(x) the collec-
tion of all neighbourhoods of x € X and by B(x, ) the ball of radius & > 0
around z.- :

DEFINITION 1.1 4 proper convex map t: X — 2¥ is said o be a derivative of
T ai z, if, for every ?=({C:ZJ\) € Q;I:apll t and every V & N(0) there exist 5 > 0
and U € N(/:c\) such that
g, 4+ Y eT@ +<V L)
whenever
\
60 :

c&(0,d), x ¢ (x, + cb) N dom T. C {1.2)



Definition 1.1 is a generalization of the notion of the derivative of a single-
valued map [8,9] to the case ol a set- \alued map. The interested reader is
referred to [6] for more detmls

For every integer k, consider the standard k-simplex:

A
= {h = (A 0k, ;.. ,H) Ih, =1,k >0,i=12..,k+ 1}
K :

f_._..

Giveu.r'ie}i,i:]‘,?,... k1, and?t-_(?\l,). A+1) eP
we get
k+1 . .
() = ifl?ki x, | (1.3)

We shall need the following concept, essentially due to Neustadt [8]-

DEFINITION L.2. A nonempty set A C X is said to be (k -+ 1) — contingeni to B at
z, € X if, for every finife sel {z;, 2y, x, 44 C A, every positive number &
and every neighbourhood I/ & N(0), there exist a number c e (0, 6) and a contmu_

ous map 1. PX — B such that
, Wh) e x, +e(a(h) - U) (1.4)
whenever ) & PF,

Note that the point x mentioned in the above 'definition may not belong
to B. . '
' Erample 1.1. Let B be a convex set in a locally convex space X and T, = 0 a
point belonging to the closure of B, Then for every k, the set B is (k+ 1)—con-
tingent to itself atwr .

Example 1.2. For any k, the hypertangent cone to a set B at z € Bis (k + 1)—
contingent to iiself at x_. Recall [i0] that this cone consists of the vectors z
- such thatthereexist UeN(z ) and & > 0 with 2" f-ex s Bfor all &' e C A U
and ¢ € _(0, &),

DEFINITION 1.3. Giver @ set B C X and a point x_¢X, the set
K(B, z,)) = {z € X: {«} is -contingent to B at x,}

is called the Bouligand contingen! cone to B at x .

The following definition is due to Aubin, X
DEFINITION L4. The contingent derivative of T at z, = (z_, )O) € graph T
is the map whose graph coincides with the set- K (graph T, z,).
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Remark 1.1. Let fbe a derivative of T at z = (x,,y,) In general, the
~ inclusion - ' : '
graph ! — K (graphT. z_) (1.2)

is not true, But it is easily seen that, if the condition .
~ domtC K (dom T, z,) ~ ' (1.6)

holds, so does the above inclusion.

Remark 1.2. Let Y be a normed space and let d(y, Q) denote the distance from
y te Q — Y. Then the collection of all the derivatives of T at z, Wwhich satisfy

(1.6) coincides with the family of all the maps whose graphs are nonempty
convex subsets of the set
(x.y): lim d( Y, - y=10

€
.‘B—-yCC

el 0
xo—l—sgz\e dom T

Denote by X* and Y* the continuous duals of X and Y respectively. To
every set K (-~ X we can associate a set K* (C X* consisting of all the
functionals x* ¢ X* that are nonpositive on X,

DEFINITION 1.5. Given a convex map T : X — 2¥ , we define the adjoint of T by
T* (y*) = {z* e X*: (x*, —y*) € (graph T)*}.
DEFINITION 1.6. Let g be an extended-real-valued function defined on X and T,

a poinf such that lg(:c )1 < 8. Denote by G .the map whose graph co-
incides with '

, df

epi g = {(x, r) € X X R: g(x) = r},
where R stands for the real line. Assume that G’ is a deripative of G at (T ,y,)=

=z €epig (yo g(x ). We shall say that G* is an epi-derivative of g at x
d ‘ ,

and that the sel dg(x ) = {z*: (x*, — 1) e (gragh G'Y'} is a generalized gradient

of g at X, - ' '

THED XEM 1.1. Let D be a nonempiy set of a vector topologzcal space X ; Y the

Cartesian product of two normed spaces Y,oi= 1,2 (dim ¥ g =k<<e); S:D—-2Y

a continuous map with nonempiy convex closed values and © ¢ D a point
satisfying

int] g, €Y, 1 0 5)S@] + o

where inf denotes the interior.
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Let a derivative s of § al (x, 0) & graph S ble given such fhczf
1.'dom s is (k + 1) — contingent o D at &
2. 0eint { S(x,) 4 Ims }.
Then the set ~
{x:as edoms, 0 € S(Z) + s(x) f
is contuined in the Bouligand cone to the set
{z:2eD 0eS@) )}
at .

Proof, Theorem 1. 1 can be proved by an argument analogous to that used for
the proof of Theorem 2. 1 in [6]. &

Recall that § : D — 2V is said to be upper semicontinuous (resp. lower semi-
conlinuous) if, fer every x € D and V € N(0), there exists U ¢ N(z ) such that

() TSz )+ V
(resp. Sz ) = S(x) 4 V)

whenever x € U~ D.A map S is said to be continuous if it is both lewer and

-

upper semicontinucus,

§ 2. SUFFICIENT CONDITIONS FOR THE EXISTENCE OF DERIVATIVES -

Throughout this section, X and ¥ are assumed tc be normed spaces. Con-
sider now amap 7 : X —» 2¥ and a point z, = (:co, y,) & graph T. Denote by
Z the Cartesian product of X and Y. We shall give some sufficient conditions
for the existence of a derivative of T at =

PROPOSITION 2."1. Assume lhat x & int dom T, Let A be the set of poznts "
. (:c y) such that, for every V € N(0), there exist W € Nz ), U € N(0) and & > ¢
- such that .
y+ey & Tz + e( 4 u) + &V (2.1)
whenevér

(@, ) € W graphT,uel, c€ (0, ). (2.2)

If A is nonemply, then the map whose graph ceincides with A is a derivative of
Talz, .
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Proof, It suffices to prove the convexity of A. Indeed, assume that r.=(r, y)<
€ 4, i=1, 2, and » € (0, 7). For V ¢ N(0), we can choose two balls W =
= B(z_,m) € N(z), U € N {0) and a number o € (0, 1) such that

y +sy,e Tw + e, + my) + £V, i= 1, 2, (2,9),

for all @, y, ¢ and u satislving (2. 2). Let us set W' = U/ X V. Since X and Y
are normed spaces, we may assume O to be so small that

s(z; + W) & B, n/2)"

for all e € (0, 8).

Iz=(rpye B(zo,_ n/2) ~ graph T, e << dand u e U, then, by means of
(2. 3)1, we can find v € -V == V such that the point z’ = z + A E:(z1 + v
belongs to thé graph of T, where v’ = (u, v). Using (2. 3)2 with z° = (2", y') and
(I — A)cin place of z and ¢ resp., we get

gy 4+ @1 -—ne ygeT(_r + L —}) e (=, 4+ u)) - (1’—-?\) e V

eghz+(1—7\)z e A QED

DEFINITION 2. 1. A nonpempty convex cone K < Xissaidto bea tancrent cone
loaset B X af z, s X if for every T e K and every U g N(x) there exists
8 > 0 such that (x, +_€U) A B = ¢ for all = &€ (0, d).

Denote by h(4, B) the Hausdorl{ distance ol 4 and B.

DEFINITION 2. 2. We shall say that a m'ap T:X—2Yis locally Lipschitzian
at x_ Iif there exist ¢ > 0 and U e N(=,) such that MT(x), T(x )< e || @ —x |
forallx, x* ¢ U.

PROPOSITION 2. 2. Let K be a tangeni cone to graph T at z . If T is locally
Lipschitzian ai x , then the map whose gr aph coincides with ihe closure of K is

a derivative of '1 al z, .

DEFINITION 2. 3. We shall say that a nonemptg convexr cone K — X is an
interior cone fo a set B C X al x if, for every Ze K, there exist & > 0 and

IS N(:c) such thatx 4+ U C B for all ¢ e (0, 9).

PROPOSITION 2. 3. If K is an interior coneto graph T af 7 then the map whose
graph coincldes with K is a derivative of T atz .

The proof of Propositions 2.2 and 2.3 is omitted.
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Consider now two extended-real-valued functions g(z) = d(z, graph T) and
f(2) = f(x. v} =d(y, T(x)). Tt is clear that

l.dom g = 2z, dem [ = (dom ) x ¥,

2. () < f(2) for all =.

3.9(,) = f(z )il z =(x_,y,)e graph T.

Denote by R, the posilive half-line. For ény extended-real-valued function
¢ and any point z €z where ¢ is finite we set ' '

oz, +52) — (z,)

a’lcp(:o,/zﬁ = lin/l\ sup . s
=z
]

z, -+ ez edom g
o~ ' 2 0= —
®(z,,z) = sup linm sup oyt 06 Fp(z")
0(.)YeQ@ =)0 _ £ :

where () stands for the collection of all the maps 0(.) : R: — Z such thal

lim g_(‘ﬁ:()
A—=0 A

ii is clear that, for all z, we have
dg (z,, 2) = df (z,, 2).
PROPOSITION 2.4. Let h be a closed convex positively homogeneous function

such that df (z_, z) < h(z) for all z. Then the map t defined by

grapht ={z=1{(x, y) h(z) =0} . @ 9
.is a derivative of T af z, € graph T. . X

The proof of this proposition is lefi to the reader.
Before going further, we need the following
/\‘ ’ ~~ . ~r ~
LEMMA 2.1. If, for b € Rand 'z ez, we have @ (z, [z)< b, then dy (z,,7) < b.
Proof. Suppose the contrary and let & be a positive number satisfying
g ~
b+ & <{dyp(z,, z). By definition, we can find a decreasing sequence g =0

and a séquence hi — { such that

i< 0z, +e, (2 4+ B ))—0(z) |
- g,
% i

(2. 5)
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Consider now the map h(.): R, — zdelined by setting i (z, )= h, and
by linear interpolation for ¢ & (¢, Lo g, ). It is easily seen that 2 (s) — 0 as ¢
tends to.zero. Let us set 0 (¢} = ch(c). In view of the inequality @ (zo., /z\) <L b
there exists a number ¢ > 0 satisI'ying

T — @iz
sup 9z, +ez +0()) — 9{z,) - b+£,
d<e<e, € 2
whicl} contradicts to (2. 5). ’ Q.E.D.

DEFINITION 2.4. (Pshenitchnyi). A closed convex positively homogeneous function
h is said fo be an upper approximation of an extended-real-valued function ¢ at z

if @ (z,,2) <hQ forall z +0.

PROPOSITION 2.5. Assume that, for the funétion ¢ = f, we have @ (z,, 0) = 0.
Let h be an upper approximation of f al z . Then the map 1 defined by (2. 4) is
a derivative of T at z,. o

Proof. This follows from Proposition 2. 4 and Lemma 2.1.

PROPOSITION 2.6. Assume that h is an upper. approximationof g atz =(z, .y )
and that T is locally Lipschilzian at x . Then (he map t defined by (2. 4) is a
derivative of T at z,.

Proof. T being locally Lipschitzian at _, we see that
1. There exists a constant ¢ > 0 satislying
F(2)<<qg(2) for all z.

2. [ is locally Lipschitiian at z_, hencel?l_f (z,,0)=0.

Putting A, (2) =g h(z) we have df (z,» ) < by (2) ‘for all z. Applying
Proposition 2. 4, we obtain the desired result. '

Consider now the case dim Y < o. If, for every z € dom 7, the set T (x)
is convex and compact, then, by the well-known Minimax Theorem, we have
f(9)=f, y)=min | y—y’ |l = max g {y", 2),
y eT(z) Hyt i< ?
.where ’
gy, D) =y y)— T (@, ),
(g a) =max {(y, y)ye T (@)}



Putting g {(z) = max { g{g* 2): | y*{| =1}, we find that q(z) < f (2) for
all zg Z.

PROPOSITION 2. 7. Assume that dim Y <C e and that, for every z € dom T,
the set T () Is convex and compact. Let h be a convex function such that

Eq (z,,2) < h(z) forall z an-d the sel .
{zih(z)< 0} (2.6)
is nonempty. Then the map whose graph coinecides with (2.6) is a derivative of T
at Zoe _
Prbt;f. We begin by noting that, f(2) < a for every a >0 satisfying ¢ (2) < a.
Taking 1> 0 and z = (?c\, ?) € graph ¢, we can find & >~ 0 and
UeN (?) such that .
gz, +e2)— q(z,) < en

. 'whenever
' o<le<8, zel, zo+szedorﬁq=(domT)x}’. _

By the above remark and the fact that ¢ (z) < f(z,) = 0 we deduce from
(2. 6) that f (z, -+ ££) << em, which proves the Proposition.

-To state a corollary of Proposition 2.7,. we consider, for every fixed y*,
the one-sided directional derivative ¢’ (y*, z_; ) of the function c(y*, z) =
=T (i, z) at z, . Put

S={y e¥:fy =1}
and denote by S the collection of all vectors y* € § normal to T(x,) at
y, in the usual sense of Convex Analysis. Let '

4 = {(z, y): max [<y", y>—c' (y*, x ;2] <o}

COROLLARY 2. 1. Assume that _
1. y, is a boundary point of the set T (x,) in the finite dimensional space Y.

2. For all =, (x) is a nonemply conwex compaét set,
3. For all y*, the derivative ¢’ (g%, x> is a concave f unction,
4. For all x, .
€ W T + ex’) —c(y, zo)
£

(Yt xy; )= lim

-z
e} 0 .
uniformly en S. o ’

5. A # ¢ ) , . ‘

7 — 1450 : ~ -
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Ther the map defined by A is a derwatwe of Talz
Proof. This follows from Propomtmn 9, 7 and Theorem 3'in [12; p. 224—-225]

Remark 2. 1. In the above corollary y_ is assumed to be a boundary point
of T'(x, ). If y,eint T.(‘CO) and.if T is lower semicontinuous, then the map"’ '

whose graph coincides with Z is a derivative of T atx_ .

§ 3. OPTIMIZATION OF A DISCRETE SYSTEM

We now turn to the main problem. Given a real-valued function
g: X — Rand Nmaps F; : X — 9% k=0, 1,.... N — 1, where X is a finite-
dimensional space, we are interested in the necessary conditions for an optimal

solution to the problem .
min {g(zy ) T, 1 € Fi (% ) k=0, 1y N— 1} 3B.1)

The main result to be established is Theorem 3.1, which can be combined
with the Propositions of Section 2 or the examples of derivatives of a set-valued
map given in [6] to obtain necessary, optimality conditions for Problem (3.1)
under various assumptions on g and 7, . In particular, by that way we can
recover the Support Principle for the case where the maps F have local
sections [1] or have smooth support 1unctions [2— 4]

Assume that

o o o .
(Z, 0 Zg 00 Ty ) (3.2)

-

is a solution of Problem (3.1). Let us set
N
Xk =X, Z=1I1 Xk’ Y = H X
' ) =0 k—I
ZzZ = (JJ ] CL‘l greey :CN-) =] Z, y = (y)i . y2 goery yN ) (<] Y,

F(z)—H F, (z, ) f(z) (3’1 s Ty e Tyh

k=
(z’) = glzy )-
It is clear that Problem (3.1) can be rewritten as

min {g(2) : f(2) & F(2)} ‘ ‘ 3.1

o (s 4] [s]
and that z = (mo, Ty yeers xN) yields a solution of Problem (3.1).



"To formulate necessary optimality conditions for the problem under
consideration we need the following '

Definition 3.1, We shall say thal the system

Tpo1 € Fy(z,. ) k=10, Ty N — 1, - ‘ (3.3)
is consistent if there exisis at least a point (%, 5 Ty xN)satisfying (3.3).
System (3.3) is said to be nondegenerate if we can find a positive number o such
that, for\ every point & = (§,, &; s £y _4) of the Cartesian product XN satisf-
ying |1 &, 1< p for all i, the perturbed system :

xr, ;€ Fk(mk)—i—&k y k=01,..., N — 1,

kg
is consistent.

It is not difficult to verify that system (3:3) is nondegenerate if and
only if ’

Geint { —f(2)+ F(z): z € Z}.

Example 3. 1. System (3, 3) is nondegenerateif dom f = ¢ and if there exists
a positive number p such that F, (X) + B (0, p) C dom fk.,.z for all k=0,1,...,
N — 2. In particular, system (3. 3) is nondegenerate if dom F, = X for. all
k=0,1, .., N — L ‘

Assume that

a, In some neighbourhood of :gk , Fk.is a continuous map with ‘nonem-

pty convex closed values.

[+]
b. There exist an epi-derivative tg of g at Ty and a derivative t, of Fk

o 0
al (a:k . xk+1)suchthat

bi.dom" tg =X.

df _ ' ;
b2, The system (3. 3) with f, (3) = — &, + F, ( $ )4t @ i
place of F,_ () is nondéegenerate.

Note that by Definition 1. 6 we can associate to tg a generalized gradient

Q (4]
ag(xy) of g at wy.
Remark 3.1, Throughout the forthcoming, we shall assume that the graphs
of the derivatives to be considered are cones, This assumption is not restrictive
since a map whose graph coincides with the cone generated by the graph of a
derivative, is also a derivative.

+

We are now in a position to formulate our main resull.
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THEOREM 3.1. Under the stated assumpiions, if (3.2, is a solution of

, v
Problem (3.1, then there exrist funciionals x‘: e X*, i=0, 1,.., N, such that

L . . - 1 . N .4
xk & tk(a:k+1), k=0,1,.., N—1, (3.4)
® [4]
Ty EE) (3.5)
%, =0 f (3.6)
* (4} & .
($k+1’ xk+1) = min (:'Ck+1 s T )’ k= Q: 1:-"9 N —1, (3.7)
x e F(0)

§ 4. PROOF OF THEOREM 3.1.
.. 'We begin by proving necessary optimality conditions for the problem
min_{g(a:) : f(x) e F(x)} 4.1

where F: X —2Y,f: X5 Y, g: X— R are maps defined on X. (The spaces X
and Y are assumed to be finitedimensional).

- Let T be a solution of Problem (4.1). Putf: f(:cx':), §= g(aa;) and assume
that '
1. f is Frechet differentiable at .

2. In some nejghbourhood of a?, F iz a continuous map with nonempty
¢onvex closed values. I

3. There exist an epi-derivative tg of g at = and a derivative ¢ i X— 2% of

F at (:g, ;‘) such that .
3.1. df)m t, = X. ) 4.2)
3.2. 0 ¢ int }— () 4 F(2) + (— f* +1,) B §, (4.3)

where £ ='dom { ; and f* stands for the Frechet derivative or f at z.
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PROPOSITION 4.1. Assume that & is a solulion of Problem (4.1). and thal con-
ditions 1-3 are fulfilled. Then there exist * € X*, y* € Y* such that

R AT A G
—x*ed g(z) T (4.5)
<y, f (@) = min (g, y). 48
ye F ()
Proof. Let us set
c=leig@<g@Bl @)
Pzga::ﬂl-letg(x)suchthat!»l<0f. - | | (4.8)

In the case where P=¢ we have — |1 < 0 for all (=, u) cgraph’ . This

means that 0 e ag(m) Hence, puttmg =0, yg*=0, we see that conditions
(4.4) — (4,6) are satisfied.

Consider now the case where P == ¢, We are going to prove that, for every
Te P, there exist V ¢ N{0) and & > 0 such that

a:-}-e(x-i—u)eC : ' (4.9)
whenever . S
ee(@, Oy ueV, ’ _ - (4.10)
Indeed, let w et (a:) be a negatlve number. Take 1> § such that u-{- 1 < 0.

Let G be the map whose graph is epi g. By definition, we can choose & > ¢ and
Ve N(O such that, for all ¢ and u satisfying (4.10), we have -

g+ el € 6@+ e(@ + )+ B, ),
hence (4.9).

Let U g N(E) be a neighbourhood of ; guch that F is continuous and, for
every £ €U, F(x) is a nonempty convex closed set. Define a map S from I into
Y hy S(x)= —f(x)+ F(x). It is easily seen that, for every derlvatlve ¢ of F

at (:c, y) e graph F, the map —f’ + ¢ is a derivative of § at (x — f+ ),
€ graph S and dom (—f’-+ @)= dom ¢. In particular, S’=—- f*+ {;is a deriva-
tive of S at(z, 0) and dom §'=dom 1, . Setting
O 0
$7(@) = — f + F(x) + S, (4.11)
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we deduce from Theorem 1.1 that the set

df :
Q={x -reE O¢ S”(:c)_}

is contained in the Bouligand cone to the set
{z:xz e D, 0 & S(x)}.

Further, x being a solution of Problem (4.1), we have P ~ Q = (. Since
P is a nonempty convex cone and (J is a convex set containing 0 € Y, we can

find a nonzero funectional x;‘e X* guch that

(@, z)>0> (), =)

for all x € P, 2’ € Q. From this we conclude that the two following systems have
no solution:

TGE, Oe—f+F@) + S'@) 0e—(z}z) + R, @12
r'e dom tg = X, lOe(:c;.. :c‘) 4 R, O« tg(a:Hi R,. (4.13)
By condition (4.3) and the inconsistency of system (4.12) there exists [13]
yyev” such-th_at ' -
(yp ¥ +{(z}, )<0 2 (4.14)
whenever (z, y) € graph 5, '
From (4.14) we get |
sup {(92,95-'96"?+F(3°7)}<0. o (4.15)

The converse inequality is plain since ? € F{;). Hence
(wp F@)) = max (gl ).
yeF(x) ’
Taking into account the fact that graph S ¢ graph S”, we obtain.
from (4.14) ' .
' 2y —f* gy e F* (—y3) (4.16)
Consider no;v system (4.13) and npte that thé nonzéro functional x; maps X

on .R. By a well-known result {13] we can find a nonnegative namber A such
that the inequality : ‘
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holds for-all (x, U) € graph fg . In other words,
—\} € 3 g(@).

To complete the proof it remains to put y* = —X y; and x* = X z3. Q.E.D.

Let us set 0. ¢ = 0. By a standard argument we can draw from Proposi-
tion 4.1 the following :

: ©
. COROLLARY 4.1. Assume that conditions 1, 2 and 3.1 are falfilled. If zisa
solution of Problem (4.1), then there exist y* € Y*, x* €« X* and A > 0 such tha

' 1. (y 2 =0. -

2. Condilions (4.4), (4.6) and the inclusion

—x* e A D g(;)

ar- satisfied.

PROOF OF THEOREM 3.1. Theorem 3.1 follows from. applying Proposition

4.1to Problem (3.1)’ and using:the following properties (whose proofs
are omitted): :

- (1) The map t :Z —9Y whose graph coincides with the set
{ (Z’ Y) = (SCO: 3’1 avery xN 3 y1 » y2 senes yN} :
(z,, yH_ 1) € graph"t tor all k=0, 1,0.., N — 1 }

‘

o
is a demvatwe of F at (z, y) with y = (aci, o 2 ,:vN)

(1) z*ei“(y ) ¥ =0, x¥ et*(y

) k=0,1. .., N—1,
N )

k+1
where

z* (a:* x’; a:*) g* = (y*, y*,..., u* ).
(III)Ify* eX*, k=12, .. , N, and if y* __(y* y* e y_‘l’t?) € Y*, then
" J— .3 '
5 = (0, y% p y%)ez .

(av) z* = (a:;, a:’;,..., x;r) € a?(g)}n) x; €d g (aQ:N )s ;r;—_—. 0y k=0, 1yey N— 1,

§ 5. CASE WHERE X IS A BANACH SPACE

While the theory of discrete optimal systems in finitedimeﬁsional space
has been extensively developed in the last decade, liftle attention has been
paid up to now to the infinitedimensional case. The only paper dealing with
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this case is the one by Dzyuba and Psepitchnyi [14]. It should be noted,
however, that the optimality criterion given in [14] suffers from the defect that
the conditions for its'svaiidity are difficult to check, In this section,‘j'we shall
show that Theorem 2.1 still holds for the infinitedimensional case, assuming
only that g and F, are locally Lipschitzian. Unlike Theorem 3.1 the following

resull is established without nondegeneracy assumption, *

THEQREM 5.1. Assume that
1. X is a Banach space.

2. g is locally Lipschitzian at ;N .

3. For every k, F, is locally Lipschitzian (at ;k) map with closed

convex palues.

Denote by ag(:g N) the Clarke generalized gradient of g at T N and by t, the
. map whose graph coincides with the Clarke tangent cone of graph F,

at (x,, z.;k—l—i)'

If (3.2) is a solution of Problem (3.1), then there exist funcfiona‘ls T* & X-*,
i

i = 0,1,.., N, satisfying conditions (3.4); (3.5), (3.6), (3.7).

Becall'from [10] that the Glarke tangent cone to a set CX at fcoeC is the
collection of vectors x such that, for every Ve N(x), there exist U € Mx,) and’
& > 0 satisfying the condition (x' 4-¢ V) N C 5£  wheneverz’ 6 C N U and ¢ &(0,),
This definition has been known [10] to be equivalent to Clarke original
deflinition {15]. '

The Clarke generalized gradient' ag(;:) of a lo'éally Lipschitzian function
g at x [16] is the subdifferential (in the sense of Convex Analysis) of the
function 90(_;; .) defined by .

¢% ; x) = lim sup IE& 1) — 9(=)
z'— T €
€l0

In other words,
ag (;:): {z*eX": go(; ;) > {x*, x) for all g }

Proposition 2.2 shows that the map G’ whose graph coincides ‘with the

df 0
Clarke tangent cone to G = epi gat x€G is an epiderivative of g at :g. In that
case, it follows from Proposition 3,17 in [15] that the Clarke generalized

+
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gr‘adient 9 g(g) is a generalized gradient in the sense of Definition 1.6.

PROOF OF THEOREM 5.1. Let us set i
X, =X, Z= i X,
k=g
N
Z=($O,x1 povey -rN)s UZH== :Oﬂxi ﬂ‘
i=

Since Fk is a map with closed values, we can assert that Probiem (4.1) is
equivalent to the following one '
min {g(z): b(z) =0} ) (5.1)
where ' - ’ - ‘
(Z) =g (xN )
N—1

b(z)=Y_ d(z

F, (@, )
i=0 Xk

k+1°*

We are going to show that z= (::: s :%1 y ooy z ) 15 a regular point for b in
the sense of loffell), Indeed, let g be the L1psch1t21an constant for F in the

nelghbourhood

f (5.9

of ;:k. Let us set

ON—1 . ‘
k=0

By the continuity of b and the fact that b(‘:z) = ( we can choose a positive
number ¢ <—% such that . .

b(x) < K C (5.3)

. © = )
1) Recall that z isa regular point for b[17]}if there exist k>0 and U € N (z} such that
=] <
d(z, @ < k|8 — b(2) | for all z € U where (J ={z 1 b(2) = b(:)}.
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whenever .
°
hz—-zj <& \. 69

To prove the regularity of :?, it 'suffices to check that, for every z satisfying
(5. 4). there exists a point y € Zsuch thatb(y) =0 and ||y — z | < K b(z). To
this end, }et us construct by induction the points Yo s Ygses Uy satisfying

o — 2] <di=01..,nN SR CEY
5; GF;‘-;-I (gi...i)(e' g d(y; » IEI-_;[' (4 N=0, ' (5.6
. . i=1,2,..,N,
| o = | <20 Gy By @) + 352 dizy Fy (= )+

et g d(:x:i ,Ei_ (a:i_I Y i=1, 2,,.., N. . 3.7

1
Indeed, if z = (xo s Ly geees Ty ) € B (oz, g), then

" x; — “.Ei H e < —Z— foralli=0, 1, .., N. (5.9

Settingy, =z, , we get (5.5), . Now, since F, (z, ) is closed. we can pick
y; € F,(x, ) such that
” ¥, — Ty ”g 2d(zy, Fy(x,)).

We then have

. . & .
91 == ||< 2d02y, Fy @) < 2b(z)_<2,@<?’

and this together with (5.8) implies (5.5),. We have thus constracted y; { =0,1

satisfying (5.5)o, (5.3)1»- (5.6)1, (5.7);. Assume now that (k + 1) points y,
Ygrer Yy (k << N—1) satisfying (5.5);, (5.6);," (5.7); for all i< k. have beén .-

constructed. Let us find a piontyk +7such that conditions ‘(5.5)k 41 (5'6)1< e
(5.7),. 41 bold. Indeed, in view of (5.5) and|| z, —=, || <¢< & we get
h(fy @) Fy WN< ||z =y || < ag||® =Y || (5.9)
The set F, (x, ) being closed, there' exists a point
_ e ey (“’1; ) ' | (5.10)

106



such that

1% 1= T s I < 2d(z ) o F () ~ (5.11)
Using (5.9) and (5.10) we can choose Y, .4 satisfying (5.6}, .,
and ‘ ‘
f §k+1_gk+1 I = q; 1z, —g. 0. (5.12)
Hence,

= Yprg D <9y I 30—y |+ 2d(z,, - Fi (o)) <
<2 3 qf d(z . Fo(%,)) + g5~ Td(z, F (z,)) +.. +
1 Fk(xk))f\ 2 RI b(z)

e.g (5.7 ) 44 holds.
On thie other hand,
Yk+1™ Tpag

]
” Y41 ™ Frr1 ” < I
o

< ?Kjb(z)-[—eg S =%

qD d(x

4] -
Tr+1 "‘“”k+1‘(<

which proves (5.5),, .
By adding (5.7); from { = 7 to N, we obtain"
I y—zi < 2k, b(z)= Kb(z)
where y = (uo, Yygaerns gN).

. o
By virtue of (5.6); we have b(y) =: 0. Therefore, y € {y*:b(y’) = b(z) = 0}.

a o
This completes the proof of the regularity of z.

Note that z ia 4 solution of Problem (5.1), We now 1nvoke Theorem 2in (7]
to deduce a positive number r such that

00 8z)+r0 b3,
hence

N- o
Oeag(z)+r Z aa’k(:ck, Tppgh

This shows that coqditions 3.4), (3.5), (3.6) hold for some x; eX*, i = 01,...,
" N.To complete the proof of the Theorem, it remains to note that (3. 7) is an
- immediate consequence of condition (3 4) and the followmg fact [18]:

F (xk) k+1 C (o)
Received July 18, 1982
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