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1. INTRODUCTION

The problem of minimizing a concave funciion over a polytope has been
extensively studied in recent years. In [3] (where a bibliography on the subject
canr be found), Thoai anh Tuy developed a method for solving this problem
which is based upon a combination of the branch and bound procedure with the
cutting plane technique elaborated earlier by Tuy [2}.

In this paper we shall consider a more general problem, viz.
Minimize f(z), s. t. € D, ()

where D is a compact convex set in R?, f is a finite concave funciion defined
throughount R". To our knowledge, this problem was first studied by Horst [1].

The method to be presented below for solving (1) proceeds along the lines
of Thoai and Tuy in [3], with, however, an iniportant improvement in the
bounding procedure. This improvement on the one hand enables the method to
extend to convex constraints, on the other hand dispenses us with the use of
linear subprograms in the bound estimation. From a computational point of
view, this may be an advantage, since computational experience with the algo-
rithm in {3] has shown that most of the compntation time was spenton solving
the linear subprograms.

It should be noted that the problem (1) includes as a special case the con-
ventional problem of minimizing a convex function F(z) over a compact convex

13



set [, Indeed, the latter prob_lem can be formulated as that of minimizing T
subject to F(x) < .
product, an algorlthm for solving convex and, in particular, linear programs,
. which is not related in any way to the simplex method.

nt+i,;
x & D, Therefore, our method will provide, 'as a by-

2. DESCEIPTION OF THE METHOD

We shall assume that the consiraint set D is defined by a system of ine-
qualities of the form

g, (%) < 0 (i =10 m) . 2)
‘where g; are finite convex functions on R" satisfying Slater’s condition:
. There is one z s.t. g, (¢) <'0 for'all i (3)

So D has a nonempty interior and, by translating if necessary, we may
assume 0 € int D, i.e. g, (0) < 0 (i = 1,..., m).

We shall éngage in an iterative process in each step of which we shall have
to examine a collection of comes vertexed at 0 and to perform three basic
operations :

1. select a cone from this collection;
2. split this cone into two smaller cones;

3. assign to each newly generated cone M a pumber u(M)
which is a lower bound for f(x) over ) N M.
The precise rules for the last two operations will be specnfled later. Assuming
for the moment that these rules are known, the methed we pr0pose can be
descr:bed as follows.

Take an n-simplex T = [s,..., s"1]in R" containing 0 in its interior, For
each j = 1,..., n - 1 denote hy M .the polyhedral convex cone generated by n

halflines from 0 through sf with i & j»

Initialization. Set :c"—argmm {F(x): m—esl 8> 0, esf €D, j=1,.,n41}

oz {M . M }. Comipute IL(MO’J.) for each j=1u., 0+ 1,

o,f"' o,n4-1

Step k = 0,1,... Deléte all comes M e #, with R(¥M) > f (z¥). Let %, be the

set of remaining cones.

If X, is empty, stop : z¥ is a solution. Otherwise, select M, € 9’4;1{ such that
(M ,) = min (M) M € K, }, and split if into two subcones M, M, . For
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each h=1,2 compute H(A!k’h). These operations generate some new points of D.

+ .
Let 277 be the new current best feasible solution, i. e. the best among ¥ and
all newly generated points of I}; let Jilk+1 = (X, \{¥, Hv {Mk,t’ M
Go to step k - 1, '

wet

4

To complete the description of the method we still have to specify the rules
for performing the two operations 2) and 3) mentioned above,

As in [3] we use the following bisection rule for éplitting a cone M, into two
subcones.

Suppose that M, is 'gexierated by n halflines emanating from O and cutting
some facet of the simplex T at points vkl ,,., phn Tespectively, Take the long-
est side of the simplex [vk-i,..., v®" (if there are more than one candidafes, '

choose any of them). Let it be [v5{1, »%" 2] and let uXbeits midpoint. Foreach
h=1,2 denote by M x;n the cone whose set of edges obtains from that of M k

by replacing the edge passing through »%! } with the halfline from 0 thrbugh
uk, Then it is straight forward that M is the union of M kg and M, o

Denote S, = [v®7,..., v®7]. In{3] it was estabilished that:

LEMMA 1 If M, ,q=1,2,..,is an infinite decreasing sequence of cones
7

' such that M k obtains from M P by a bisection as described above, then diam
‘ g+1 ' q
S, — 0 as q — . In other words A M, is a halfline from 0 tfzrough
¢ : g=1- 9
2ens, .
g=1 k‘]

Eollowing [3] we say -that the bounding operation (i. e. the operation of
computing L(M) for every given come M) is consistenf if for any infinite decre-

asing sequence of cones M, tending to a halfline as described in Lemma 1,
q

we have f(z%y) — WM, ) > 0 as ¢ — oo,
q :
(recall that 3/, is'the cone to be split in'step k, =" is the carrent best fe-
asible solution in this step). |
In [3] it was also established that:
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LEMMA 2. Let each M, be split according fo the above bisection rule. If
the bounding operation is consistent then: eilher the procedure ferminates al
some slep k with an optimal solution x*, or it generates an infinite sequence

{x*} , every cluster point of which is an optimal solution. FEach point 3% is an
approximate optimal solution with an error not exceeding v, — U, where

v, = f(K), W, = min {MM): M € R} = HOM,).

Thus, to obtain a convergent algorithm for solving our problem (1) accord-
ing to the above scheme the only thing that remains to be done is to construct
a consistent bounding operation. One such bounding method was provlded in
[3]. This bounding method, however, applies only to the case where D is a
polytope; furthermore, it requires for each bound estimation the solution of
an auxiliary linear program, which may be time-consuming. Therefore, we
must seek a more suitable boundipg method for the general case. ’

3. CONSISTENT BOUNDING OPERATION .

Let M be a nev@rly generated cone. We wish to compute a lower boand
for f(x) over the set D N M, using a simple enough procedure, '

Denote " by vl,..., v the points where the nedges of M meet the boundary
oT of T =[s!,.., st (v1,..., v" lies in one facet of T). For each J=1,..,n let

6, = sup {0 : 60/ e D}. } (4)

Clearly 0 < B < -+ oa, because D is bounded by hypothesis. Take | any
point z = z(M) e M . BD (0D denotes the boundary of D). For instance, take
Z = ej v/ for some j=1,..,n Since. z € 8D, there is an index { such that
9; (z) = 0. Select any t & 09, (z) (the subdifferential of g, at point z)1). Then
g;(x) — g, (2) > (&, * — z) and hence,

g; (@) > (&, z—z) for all x e D. NG
Noting that g;. () < 0, this yields {t, z) > —g, (0) > 0, which implies, in parti-

cular, that t == 0. Furthermore, it follows from (5) that D is contained in ine
halispace

' H —{x € R : (ta—z) < O},

(1) Since 9; is a convex function finite throughout R™ , it is continuous and subdif

ferentiable everywhere.
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Therefore, a lower bound [or f(z) over I A M is furnished by the minimum
of f over the set 1 N M (whose structure is very simple). Specifically, let us
distinguish two cases: ' ‘

10 (tpfy > 0 for all j = 1,.... n, then the hyperplane (1,2 — ) — 0
(which is a supporting hyperplane to D at z) cuts every j — th edge of A
at point '

2/ =SJ. v/, with SJ. =<,z /vl )
and, by the concavity of f, the minimum of { over the simplex H n M equals

« (M)= min {f (0), f(z7 Yy (2%}
Consequently, in this case we set ‘ '

-3 (ﬂ'f) if A eﬂ&a H

!J- M)y = ’ 8)
@0 , ; max { « (M), L (M. )} otherwise ' ©

where Mam denotes the immediate ancester of A,

2. If {4, v/ ) < 0 for at least one j, then the j —th edgeof M lies entirely
in H and the set H | M is unbounded. In this case we set
—os if Me M -
B (M) = . ' Y]
WM ) otherwis. _ y
anc . .

(of course, the new bound does not improve ﬁpon the old one, but, as will be
seen in the proof Lemma 3 below, this unpleasant case cannot occur if the
cone M issufficiently «thin ») '

Thus the rule for con;puting M (M) is extremely simple.

LEMMA 3. The above bounding operation is consislent.

Proof. Consider an arbitrary infinite decreasing sequence of cones M r . such

. ) q
that T = A~ M, ies halfline. Let v, = f (x )y, L, =H@ )% we shall
show that —

ve—t, > 0(g o), f ()= v*, ®
where v*=lim v _(this limit obviously exists) and z* denotes the other

g ce
endpoint of the line segment D n T.
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Let v* and v7 be the points where 37 meets the halfline T and the halflin:

from 0 through z% = z (M, ), respectively. We have 7 —» 0* and
. q '

=, v, 29 = gq q”q for some t, >0, §q>0..

If ¢ is the gauge of the convex set D, then ¢ (z*) = ¢ {{. v*) =1, hence
t. =19 (v*). Similarly,¢ (cq q”q)zl, hence Cq =1,/ ¢ (v?) But, ¢

being continuous, t,'q - t,, proving that z¥ —z*,

Now denote by »9/ and # the vectors ©/, f construcied as indicated

above for the cone M =,-Mk . Clearly, for every j, o7 J » p* as ¢ — oo . Since
q N

9 &= 0,. we may assume, by taking a sﬁbsequence if necessary that 19
Wt g -t '

We have seen that (tq & — 29 y<C O for all z € D. Hence, passing to the
limit, we get (*,z — z*) < 0 for all 2 € D, which implies, by making = =0,
(1*, 7*) > 0. Furthermore, we cannot have ({*, z*) = 0 since then (t*,x) <0 for
all 2 & D, which would conflict with tbe fact 0 eint D and * 3 0. So ({t*, z D>
0, and hence, (t*, »*)> 0. This implies that for all large enough ¢ we must

‘have (t9 o/ y >0 for every i Lee. we must be in the case 1) considered

above, Denoting by 207, 0 the z/ 1y constructed for M = M, , we can

q
then write

- L M,20)  (t2)
g/ =t o¥J, with § .= ( =£,
qtj qs7 < tq , uq,j ) ( t D ) !

so that z’N -z : -
Smce for all large enough g we shall be in the case 1) it follows that
R(M, )= a(M, ) (see (B)). Noting that w, = M, )<T@ke) = Ty < f )
q ¢ s q
(because M, eR ) we deduce f(zq’f)<yq for at least some j==j(¢)e{1,....n}.
q q

Hence,lpassing to the limit, f (z*) < ¥* (the continuity of f follows from the
fact that f is concave and defined throughout R®). On the other hand,
Vobr S f (z?)_, and consequently, v* < f (2*).

Therefore, f (z*) = y*. But we have seen that y, >} > f (z0).

Thi? implies _'Ya__ }J»q —» 0, completing the proof of the Lemma.
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Remark 1. We have shown that the unpleasant case 2) where It (M) is computed
according to formula (7) cannot occur when the cones become sufficiently
¢ thin ». However, for the speed of convergence, it is imporlant to avoid this
case whenever po’ésihle, even in the early stage of the algorithm. This can be
achieved by choosing the point z ==z (M) and the vector { = (M) that determines
the supporting hyperplane to D at z, in such a way that this hyperplane meets
all edges of the cone M and defines a simplex [0, 27,..., z?] bounding M as
tightly as possible. Giten a fairly good bound may be obtained without much
effort if z is taken to be the intersection of 3 I with the ray from 0 through

the barycentre of the simplex [vI yoees DR To get a still beiter bound one can

consider z=arg min { f(2z/): j=1,., n}. If Ze D, then f (z) is the minimum

of fover D N M. Otherwise, g, (z)=maxg, (z)>0. LetTedg; (). Then
[} ] [+]

the hyperplane I/ = {5: :(Lx—z)+g, (Z)=0} cuts off z from the simplex
o

[0, #%,..., z*]. The remaining part of this simplex is a polytope A containing
D N M, so we can take as I (M) the minimum of f over A. This minimum can
be computed by comparing the values of f at the vertices of A, Since the
structure of A is simple, the computation of the vertex set of A-presenis no
difficulty. ' ' |

Remark 2, Following the bounding method developed in [5], instead of choosing
first the p_biht z =z (M) where a supporting hyperplane to D must be drawn, |
one seeks the supporling hyperplane to D that is parallel to the hyperplane
passing through the n points where the n edges of M cut the boundary of the
level set { e R™: f () < f (xF)} (k being the index of the current step). As
can easily be seen, when D is polytope this amounts to solving a linear
subprogram (the solution of this linear suhprogram is just the point z =z (M)).

This method reqmres much more computational efforts than the one
presented above, even-though it provides in general a better value of 1 (M),
i.e. a value closer to the exact minimum of f (x) over D N\ M,

4. CASE WHERE, NO INTERIOR POINY OF D IS AVAILABLE

So far we assumed that at the beginning an interior point of D is available.
We now consider the general case. '

1. If D is a polyfope and we know a nondegenerate extreme point of D —
without loss of generality it may be assumed that this extreme point is O —
then we may take as the initial collection _/ﬂo: {MO} where M o is the smallest
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-one vertexed at O thal covrtains D). The reader will have no difficulty in veri-
fying that, starting from M ali the procedure described above can be applied
without any further modification.

. Suppose now that I) is a compact convex set defined by (2) and we do
not know whether or not it possesses an inferior point. Let us consider the
auxiliary problem:

. Minimize y, subject to g, (¥} —y < 0 (i=1,.. m(9

Let 2%an arbitrary point of R”, y® a number so large that gi(cco)— y° << 0

(i=1, ..., m). Then (x%, %) € R**+1 is an interior point of the constraint set of
problem (9) and starling from it one can solve (9) by the previous method. If

after a certain number of steps we obtain & feasible point (g _I;) e R with

¥ < 0, then Ei (x) <Y < 0(i=1, ..., m), which means thatz ¢ int D. This event
necessarily occurs provided int D =+ ¢. Starting now from x we can applyl
the previous method to the original problem 1.

If the optimal value y* of (9) is positive, this indicates that the origina
problem has no feasible” solution. :

If y* = 0 then int D ='¢. In thai case we can always stop the process of
solving (9) when a feasible point (,y) is reached such that y is sulfici-
ently small, for example‘gf = ¢ : since g; (?) <e(i=1 ..., m), x is an inferior
point of the enlarged constraint set D, = {x: 9, @) Seli= 1, ..., m}}. Starting

from x we can then use the previous method to find the minimum of f(x) over
© D, . This will provide an approximate minimum of f(x) over D. ®
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