ACTA MATHEMATICA VIETNAMICA
Volume 8 Number 1 (1983)

ASYMPTOTIC REGULARITY AND THE STRONG
CONVERGENCE OF THE PROXIMAL POINT ALGORITHMI

LE DUNG MUU -~ DO BA KHANG

Institute of Mathematics

Hanot

" INTRODUCTION

Given a rea! Hilbert space with an inner produet (.,.) a multi-valued
mapping A from H into itself is said to be a monotone operator il {(x —z°,
¥y—Y’) > 0 whenever y € Az and y’ ¢ Ax’. Ais called maximal monotone it it
. "is monotone and the graph G(4) = {(x, y)eH X H:y ¢ Az} is not properly
contained in the graph of any other monotone operator.

It is well-known that many problems from convex programming, variati-
onal inequélities, partial differential equations and other fields can be convert-
ed into a problem of finding a solution to an equation 0 € Ax with 4 béing a
maximal monotone operator. A fundamental method for.solving such equations
is the proximal point algorithm which is based on the fact that the «proximal
mapping» P, defined as P = (I + A) ! where I is the identity mapping of H,
‘is a single-valued and monexpansive mapping from all of H into itself, i. €.,

| Pz — P2’ || < | & — x’ | for every x and «’ in H, and Px = x if and only if
0 ¢ Az. The proximal point éIgorithm generates for any initial point & ; 2
sequence of iterates { @ } by an approximate rule T ~ Pz _, or more exactly
I X1 Pxn | < e, where {sn} is a sequence of positive numbers satisfying
Ze n < oa, ’ '

. The question arises as to whether the sequence {xn} converges to a fixed

point of P whenever such a point exists. The question can be formulated ip
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the following general form, Firstly recall that (see, for instance, T. Rockafellar

[11] the proximal mapping P = (I 4+ 4)Tis not only nonexpansive bui satisfies
a stronger condition, namely

) “Px—Py”'g:ﬁx——y[]ﬂ—”(f-—P):r:-.--(I-—-P)yIIQ
- for @, y in H, or equivalently, that P is of the form P — % (I + T) where T

is sofhe nonexpansive mapping. The question now is whether the proximal
point algorithm, applied to a mapping of the form P = I + (1 — AT with an
arbitrary nonexpansive \mapp-ing T and with 0 <<-A <T7 will converge to a fixed
point of, P. Such a question can naturally be posed in any normed vector Bpace
Problems of this kind have attracted the attention of several authors (see for
instanceF. E. Browder, W. V. Petryshyn [4], Z. Opial [9), T. RockafeBlar [11]
and H. Schaefer [13]). '

In‘this paper we are concerned with the strong convergence of the proximal
point algorithm, In the original case we give a sufficient condition .which is
much weaker than the one given by T. Rockafellar in [11] and which does not 7
© require the uniqueness of solutiqn of the equation 0 € Az. Our result can be

extended to the problem in an arbitrary normed vector space. It is worthwhile
to notice that we need no assumption about completeness or convexity on the
space. Our proof is based on a new result on the asymptotic regularity of
nonexpansive mappings which has its own interest, being an extension {0 an
érbitrary normed vector space of classical results oh'taine‘d_ in uniformly convex
Banach spaces by M. A. Krasnoselskii [6], H. Schaefer [13] and F. E. Browder-
W. V. Petryshyn [4]. In addition to these results, another sufficient condition
for the strong convergence of the algorithm is obtained by using a rather deep
_theorem of R. Robert [10] and E. Zarantonello [14] on the generic single-
valuedness of maximal monotone operators. '

. . The paper consists, of two sections. In the first section we prove some
results on the asymptotic regularity of nonexpansive mapping. In the second
we present various sufficient conditions for the slrong convergence of the
proximal point algorithm. '

1. ASYMPTOTIC REGULARITY OF NONEXPANSIVE MAPPINGS

In what follows D will always denote a subset of a normed vector space X
and [ : D — D the identity mapping of D . A mapping P : D — D is called
nonexpansive if [ Pr — Pyi<|lx — y| for every x and yin N. P iz said to

- be " asymptotically regular if for every point x-in D, | P2ty —Plzji—Q
as n —» oo, ' '
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THEOREM 1, Let D be a given bounded convex subset of a normed vecior space
X and let T : D — D be a nonexpansive mapping. Then for all \ salisfying
0 = &< 1, the mapping P: D — D such that P=\] + (I —A) T is asymptotically
regular and nonexpansive.

Proof. It is clear that P isa nonexpansiv‘e self-mapping of D, so taking an
arbifrary point z, in D and T, q,=Px forn =1, 2,... onz has only to prove

. thatllxn+1— T ]—-0asn— .
Setting L =2,4,—T, and bn = T:cn+1 — T:cn » we have

a =Aaﬂ+(1—l)bn

1

n41

The sequence of nonnegative numbers {H a, H} I8 nonincreasing, since

!
”an_l_jli:" P$n+1—PJJn ]E"\<\”‘rn+1'—xn “=” a" H!

L

therefore jla |\ r > 0 and we must prove that r == 0.

Suppose the contrary, that r > 0. We choose an integer k = (1 — A1

such that k™1, diam D < r/2 and a positive number e such that €. (1 — A% Y rf2.
Since [ta_ ||~ r there exists an integer m such that for n>> m we have
r<fila, | <r + e For notational simplicity and without any-loss of generality

we can assume that m = 1.

Now it follows from (1) by simple computations that

k .
k_.
Gpg=Ma + @ =) = 2T

i=1 !

Therefore @, € B=co {aI b b2 s b .

1 - Ak

- k
Taking x =k~ 1- 3 byand y = E+1 vz
i 11—k

i=1 1)K

it is easily verified that y € Band a,, = Mz 4 (1 ~2k)

Hence we have
=t IS ML (=) g <AF 2 (=) (4 g

then
Neh>r —e(1—A)>r—r2=r2 -
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On the other hand,

lzl=k™1. T b=k T2, — Tz, I< k' . diamM

- i

I B

1

or rf2 < k Idiam D which coniradicts our choice of k. Hence r == 0 and
the proof is completie,

Remark L. Theorem 1 is an extension to normed vector. spaces of well-known
results of M. A. Krasnoseiskii [6], H. Schaefer [13] and ¥. E. Browder —
W. V. Petryshyn [4] in uniformmly convex Banach spaces. The result can be
extended further to the class of multivalued nonexpansive mappings in the
sense defined by S. B. Nadler in [8]. The interested reader is referred to
D. B: KEhang [15] for other developments on the notion of asymptotic
regularity.

2.- STRONG CONVERGENCE OF THE PROXIMAL POINT A‘LGORI'I.‘HH

Let D. be a convex subset of a normed vector space X and T: D — D be a
nonexpansive mapping of D. For an arbitrary A with 0 <TA <{1, define a
mapping P: D~ D by setting P=AF - (1 — M) T. It is easy to verify that the
fixed point set of P coincides with the fixed point set of T. Therefore, instead
of computing fixed points of T one may compute fixed points of P, where P
has the advantage of being asymptotically regular.

The proximal point algorithm, in this general case, follows the scheme of
successive approximation. That is, starting from any point z, in 1), we choose

in the n-th iteration an arhltrary point Zn, ; in D) satisfying |I~ — Pz Al <<

where {¢_} is a given sequence of posmve numbers with Z¢ < oo;

In this section we give some sufficient conditions for the algorithm to-
converge strongly fo a fixed point of P.

LEMMA 1. Let D be a subset of a normed vector space X, P:D—>Dan asympto- .
tically regular and nonexpansive mapping and {_sn} a sequence of positive numbers’

satisfying E <, < oo, Then for every point z, in D and every sequence {z }inD

satisfying Hzn; — Pz | < e, for n>1, the sequence {l]z — z_}i} converges to
Zero as n—» co.

Proof. Given an arbitrary positive number ¢, there exists an integer N such

that &

;n < ¢, We construct a sequence {xn} in D by setting x, =z, and
n= :



£, ;= Pz . Then'taking u = z — Pz andp =z x., we have

ny nyd "‘Nyn - hn
la h <e,and o l|=lzy ,—a | = lay +Pzg, , —Pr s
Sluy U+ ey, =2 = Hag, 0+ ¥o,
Upon easy computation we get for all n '
N+II_1 - oo s -
le, I Zllug | <2 | []<Z€ <&
. n k=N k k=N k k= N
Hence
”zN_‘.n_‘.fl:__zN-i-ﬂ ”\i JEZN+H+1—$R+1H+ UZN+H—-$H ll’+ "zn+1 __a:n "

<o Mo, M+l —x I <2%4+iz,  —z |
Sinee P is asymptotically regular one can choose n_ such that || Tt ™ Ty | <

<~ ¢ for n >‘ﬂo,' Then for n » N < n, we have || zn+1 -z, | << 3z, which
completes the proof. '

THEOREM 2. Let D be a convex set in a normed vector space X and T bea
nonerpansive mapping from D into ltself For 0 < A< 1 defme P=ui1I+4
+ (l - A)T and Q=1 — P and suppose that

(i) P has at least one fized pomt (or, equivatently, Q" 1(0) 23 );
i) Q1 is upper semi-continuous at 0.

Then the algorithm applied to P converges sirongly to a fixed point of P, i.e.
for every point z, in D) and every sequence {z,} in D satisfying

Hzn,.‘l - P‘zn' \<\€n w“‘hi;sn< 0

{z,} converges strongly to a fixed poirit z of P. _
Proof. We can assume in addition that D is bounded since for every sequence
{zn} we can restrict ourselves to the convex and bounded subset D’ of D

defined by ! )

D’;"xen:ﬂx—{z’n < u?:o— Eg+'isnf
1

where z is an arbitrary' fixed point of P. Nofice here that P mapsl n
into itself. ) , _ .

Then by Theorem 1, P is asymptotically: regular and it follows from
Lemma 1 that {iz +1—z | = 0as n — oo, .

Now let F be the (strong) closure of the set { zj s Zg .} in X, We show

that F A Q 1(0) is nonempty



Suppose the contrary, that ¥ A Q~1 (9) = &, Then since F is closed and
Q- 1is upper semi-continuous at'0 there exists a neighbourhood W of 0-in X
such that F ~ Q™ 1 (W) = @. On the othert;and, we have

lQz, || = Wz, —Pz 1<z, — 2, Ly e, —=0asn— o

Therefore for n large enough we have Qz, e W, or Q1 Qz,)nF=g
which is a contradiction since z & Q71 (Qz,) n E. -

Hence there exists a point zg Q™! (0) N F which is also a fixed point of

P, It follows from the definition of F that either z = -z, for some . .n, and the
g

algorithm stops after a finite number of iterations, or there exists a subsequence
{znk } strongly converging to z. Bat we have

”zn+1 —zl< 2, ci— P L+ 1Pz, —PzliCe, +iz, — 2],
so [z — z||— 0and tl:[e proof of Theorem 2 is complete.

The following finite-dimensional case of the theorem seems to be of interest
since it cannot be reduced — at least by simple way — to the well-known
results on the weak convergence of the algorithm (see Z. Opial [9]). -

COROLLARY ‘1. Let D be closed convex sef in a finite dimensional Banach
space (which may not be euclidean)and T:D — D a nonexpansive mappmg For
0 <A< 1defineP= 04 I 4 (I — \)T and assume lhat P has a fized point.
Then the proximal point algorithm applied fto P converges to a fixed point of P,
Proof. As in the proof of ’I:heorem 2 we can assume D to be bounded, so
since X is finite dimensional, D is compact. The mapping Q" 1, where Q is
defined by Q = I —P, is a closed mapping defined on'a compact domain, since
dom Q = range Q = (1 — &) (I — P) (D). Therefore Q ! is upper semi-conti-
nuous (see for example C. Berge [1], Ch. VL, Th. 1.7) and Theorem 2 applies.

In the rest of the paper we shall consider the important special case
where X is a Hilbert space and P is the proximal mapping of a maximal

‘monotone (multii-valued) operator 4 .fromX into itself, 1. e. P= (I + A)_'I Let
us recall that Pis then of the form P — -1 I+ T) where T: X — X is
a nonexpanswe (single-valued) mappmg defined- on all of X apnd the

mappmg Q defined by Q=1—P = — (I — T) can be written in the form

Q =( 4+ A 1)1 and thenis both nonexpanswe and maximal monotone (see
for example T. Rockafellar [11]). The fixed point set of P IS clearly the set of
solutions of the equation 0 & Ax. Hence Theorem 2 implies
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COROLLARY 2. Lel X be a Hilber!spaceand A a mawimal monolone (multi-valued)
operalor in X, Suppose that the sef of solutions of the equation 1 € Ax is com-

pact and nonempty, and the mapping A ! in upper semi-conlinuous at 0. Then the
proximal poini algorithm applied to the mapping 0 converges slrongly to a solu-
tion of the equation 0 s Az,

Proof. As mentioned ahove, the mapping P can be written in the form

D= —21- (I4+T)with T being some nonexpansive mapping, Moreover Q“f=I—]—A_1

is upper semi-continuous at ¢ since 41 js upper seini-éontjnuous at 0 and
AT (0} is compact. Corollary 2 then follows immediately from Theorem 2,

In order to give another sufficient condition for the sirong convergence of
the proximal point algorithm we recall some well-known definitions (see for
example P. C. Duong —H. Tuy [12]).

Given a Hilbert space X, a multi-valued mapping A from X into

itself is called locally sur Jective at an interior point T, of the domain D( 4)=
jzeX: Az ¢} it A maps the neighbourhoods of Z,onto neighbourhoods of Axo.

4 is called loeally surjective if it is locally surjective at every interior point of
D(A). Finally 4 is said to be surjective if A(D(A))=X.
Qur last theorem can now be stated 4s follows

THEOREM 3. Let X be a Hilbert space and A be 'a maximal monoione ( malti-
valued ) operator in X. Define P = (1 +A4)and Q=1-P aqnd suppose that
(i) A is surjective

(i) Q is locally sur jective

Then the proximal point algorithm applied to P converges strongly to a solu-
ation of the equation 0 ¢ Az, :

We will need the following lemma of the theory of maximal monotone
operators

LEMMA 2. (E. Zaranionello [14), R. Robert [10] Let X be a Hilbert space and A
a maxrimal monotone operator in X such that'int D(A) <= ¢. Then there erists a
subsel Gy, dense in int D A ) al every point of which A is single-valued.

Proof of Theorem 3. Let {zﬂ } be a sequence of proximal pointsand § = {xeX:
fe—z || <8, } (n 2> 1) where { ®,} 1is anm arbitrary. sequence of

-positive numbers converging to zero. _
" Since Q is locally surjective at z  there is an open set Bn such that

Q(Sn) > Bn > Qzn. But Q 1isa maximal monolone opérator defined on all of
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X (for Q7 1=1— AT and Ais surjective) so Lemma 2 implies the existence

of x € B, such that Q- a: .consist of a single point. Since B QS ) there
exists a point 23 € S such that Q- I(Qz )= Q_'“—’ , consists of a single
point, that is Q 1(Qz ) =1z, }. - .

As in the proof of Theorem 2 we have only to consider P on a bounded set.
Then Theorem 1 and Lemma 2 imply || an Il —0asn — o, But an —-Qz; 1<

<lz,—z, < S, since z &S, , therefore [l Qz2 | -0 as n—> oo,

Finally let z be a fixed pomt of P and V an arbitrary neighbourhood of z
Since Q is locally surjective at z, there exists a neighbourhood W of 0 = Q@)

such that V A Q" (w) & ¢ for every w € W. Then for n large enough Qz’ cw,
so V. N Q"T(Qz;l) +¢orz € V since Q™ I(Qz;z) = {z;l}. Therefore n >z and

hence z, —> Z.

4 - A .
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