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1. INTRODUCTION

Suppose {that X and Y are Hausdorff topelogical spaces, F: X — 2¥ is a
multivalued mapping. F is said to be upper semicontinzous (u. s. c)at r € X
if whenever V ¢ Y is open and F(x) C V one has a neighborhood U (z) C X
with F(x) C V forxz e U(x). F is said to be lower semicontinuous (1. s.c) at
(¥) € X if whenever V is open and F@) NV #¢ one has F () N V o @ for
x ¢ U (%), some neighborhood of . F is said tohe w.s.c (or L. s.c) on a set
CCXit Fisws.c (or L s. c) at each point of C when F is considered as a
mapping between C and Y. F is said to be continuous if I is w. s. ¢ and L s. c.
These notions are essentially given in Berge [1]: In general, there are mappings

which are u.s.c, but not I, 5, ¢ and vice versa.

It is natural te ask which u. s. ¢ muliivalued mapping isl. s. ¢ and vice
versa.

In what follows, we shall show that if X is a barrel space and ¥ is a topo-
logical locally convex Hausdorff space and {F,, v €I} is a family of ws.c.

convex multivalued mappings with v F_ (¢) bounded for each x ¢ X, then
ver ’
]

the family {F,,v e I} is lower semi—equicontinuous in a sense fo.be defined

(see Definition 2, 4)
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Furiher, let C ¢ Y be a closed convex subset, F: X x C = 2l au.s. ¢

convex compact multivalued mapping with nonempty closed values, then the

multivalued mapping I': . X — 2C defined by I'(z) =11 {y eC/y € F(x,y)}is convex
and continuous. In addition, -let (@, €, ) be a complete meas urable bpace Y a

separable Frechet space, F:0x X x Y — 2 be a multivalued mappmc with
nonempty closed convex values. Suppose further that F is measurabie infe
and convex w.s.¢ in (z, y)eX X Y, with /(4 7 (I, X,Y) compact, for any fixed /& {2
Then the multivalued mapping A : & X X — 9Y defined by A (, @) =

={yeYye F{, =, y)} is measurable in f and convex continuous in £,

Finally, applying the above results we shall prove some properties on the

continuity of solutions of some variational inequalities.

- 2. COMTINUITY OF MULTIYALUED MJ&PPINGS

Let X, Y be topological Hausdorff spaces and I the index set, Consider the

multivalued mwapping F: X — 9¥ with nonempty values, Using Theorem 2in
({1], Chapter VI, 7) one can easily prove the following lemmas :

LEMMA 2. L. F is w.s-c if and only if for any closed subset A C Y, the sel
B = {x e X[F(x; N A # @} is closed in X.

LEMMA 2. 2. Fisl.s.cif and only if for any closed subsel. A c Y the set
= {x & X/F () C A} is closed in X.

Now suppose that- X and ¥ are real topological linear spaces.

DEFINITION 2. 3. a) F is said to be convex z‘f'
L F@) + (1 — ) F @) CEOE + (= DY)
for any x,’y & X. » & [0,1).
bY F is said to be concave if
FOx+d —Ny) CAF@+I—0F@)
fhr all z, y € X, » € [0,7]. ‘
Tet{F,,ve I'} bea fam1hly of . muttwalued mappings from X into 23

with nonempty valaes. We' introduce the toliowmg definitions:

!
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DEFINITION 2.4. a) The family { F,, vel}is said lo be lower semi—

equicontinuous (1. s. e. c.) at xeX if for any neighborhood V of the origin
in ¥ the set :

U -='f; 1{ re X /R, () n (F, (x) + V) 5 &}
¥

is a neighborhood of x. If {E, ,2el}isl. s.ec. al every point of X we say

that it is 1. s. e. c.

‘ | . ‘ :
b) The family { F, , ve I} is said to be upper semi-equicontinuous (u.s.e.c)

at xe X if for any neighborhood V of the origin in ¥ there erists U, a neigh-
borhood of the origin in X such that

F,(x) CF(x)+ V, forall xe U, vel.

If {F,,vellisu. s.ec at every point of X we say that it is u. s. e. c.

THEGREM 2.5, Let X be_ a barrel space, Y a topological locally convex
Hausdorff space, {F,,vel}la family of u. s. ¢c. convex multivalued map-

pings with v F, (x) bounded for each z ¢ X. Then {F,, vel } is lower semi —
ve S

I i
equicontinuots,

Proof. Replacing F, by E, (¥)=F, (z+2), vel, e X, it sulfices

to show that { F, ,vel}is . s e. cat 0, ‘
Let V be an arbitrary neighborhood of the origin in Y. We may choose a
closed absolutely convex neighborhood V*C V such that V4 V' V. Pat

By ={2eX/F, &nF, OFVN+0}

'VI_/'=r\Bv .
ve]

Since OeB,‘, . for all ve I, we have U + (7,

and

Let z, , x, e U and A €[0,1] then

AF'\’ (xj )+ (1 _'A)Fv (.’L‘2 = -f"\j (Arj 4 (1_ ?") 2:2 )
and bonsequently,

B+EAFy @) nE, DFV Y+ =N E 2,) N F O TV



C(AFy @, )+ =NF (@, )" F O+ V)T F, (ha, -+ U-—h)2,) r
F, O+ V)vel

This shows Az, 4+ (1— W)z, € B, , for all vel

which implies that A x, +(I—Mx, & U and moreover U is a convex
set in X ' '

Further, by Lemma 2.1 B, is closed, hence U is closed,

Settlng W Un(—U), we deduce that W is a nonempty closed abso-
lutely convex subset of X.

We claim that W is absorbing. Indeed, let « be an arbitrary point in X.

Since ] F (x) and J F, (— ) are bounded subsets in Y, there exists
ver ver

<, > 1 such that

1
F .o (@) v F, (—x)T«, V) torallvel

We can write .
F (a:)\./F (——x)Ca V’+Fv (0)—F (©).

Smce {J F, (0) is also bounded, one can hnd @, > 1 such that.
vel

F, (x)VF, (—:r)(;Fv (0)+ e, V', for all velL 3 )

Hence it follows that

1 o oy 1 .
P @ c o F (D+V

and
Lr@+(1-H)p0c RO+ (1= *_11')1?" ®+Vc

%4 1 1

C F, (05+ V’ for allve I. 4]

On the other hand, from the convexity of F, we have

% 1

T Fy @ (1= o) Fy O, (5)
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A combination of (2) and (3)

P

n

- o
‘b\: (—m;) a (F-V (0) - "") == Y, for all v

which proves that ZeU.
“1

I3y the same argument as above we can show that — % A
- ‘ - € . Therefore

e ; v T 17 s
—c-; e U n (— ) = W. Consequently, W is absorbing,

Now, since X is a barrel space and 'V is a nomempiy closed absolatel
convex absorbing subset of X, W is a neighborhood of the origin in ¥ g

But, for each v & I - .

S eXiFy ) n (F, Oy V) = 0} C{a e X, (2) A (F, (7 4

+ 2V # @} C{a:e NIF, (@) n (F, (0) + V) =00
Therefore,

W o n{xeXIF, (@ n F (0 =3}
vE]

which completes the proof.

CORCGLLARY 2.6. Lel X be a barrel space, Y a topological locally convex
Hausdorff space F: X — 2¥ a u.s.c. convex multivalued mapping with ronemply,

bounded palues. Then F is L s ¢.

Proof. It suffices to show that Ff is L. s. ¢ at O, Iadeed, ¥t & be an
arbitrary open subset of Yand F (0) n & <= @. Then Ior each y, € F (0) NG

there exists a neighborhood V of the origin in V such that
_ go‘,VC(J_'. _ o (@
By Theorem 2.5 the set V
= {x e X\F(@) n (FIO) + V) =

, , 2} B
is a neizhborhood of the origin in X, o S
Since F(0) and {go } are bounded in Y one can choose « > 1 such that
Fy+VCyg, +FO@—y, + V&V
- “Consequently, ‘

{@ ¢ X/F@) NFO)+ V) + 2) — { & X/F(z) A (v, + V) - &)
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= fpeXNLF@ A (g u v V) =0}
= {xexx(r;- F @)+ A= D) g 0, + ) 9
C {r e X\F (% r\) (g, + V)= C= {w e XNF(2)n (y, + V) = ¢}

By (5) and (6) the set 4 = {x € XNF (@) ny, -+ V) = ¢} is a neighborhood
of the origin. Moreover, by (4), -

Ac{xeXé\F'(x)r\G#qb}

Therefore the set W = {x ¢ A\F(@)n G ¢}isa neighborhood of the orgin
in X, ' '

This completes the proot.

THEOREM 2:7. Let X, Y be as in Theorem 2.5 and ‘{Fv', vel}a family of
Ls.c concave mullivalued mappings, with nonemply conver values. Suppose that

UIF\, (x) is a bounded subsel for eue}'g x & X. Then {Fv’ vel}is ws.ec.
Ve ) .

Proof. Without loss of generality, it suffices to prove that {F,. v el} is
u.s.ec at the origin.

~ Take a closed " absolutely convex. neighborhood V of the originin ¥ and put
4, = jxeX\F (x) C l;— +F,(0) . B =vfe\1A-" . 'Since e A, for allvel we
have B == (5. By Lemma 2.2, A, isa closed subsetof X, ve [. Therefore B 1s closed.

Suppose now that Z;, ‘e B and Ahe[0,1] Since F_is concave, for all
veI one has '

F (1x1+(1—k)xz) C AF. (x1)+(1-7\)1‘ (ﬂfe)C l(g +.Fv(0))+

+(1 —-?\)(?-FF,\,(O)): 5 +F(0) , vel.
This shows that A xy + (1 —r)xed,, for all vel,

‘There Ay + (1 —A) ;€ B and B is a convex subset.
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Setting U= B N (— B) we claim that U is abqo;bmg Assume Lhal xis
an arbitrary point in X. Since U F.(x) U F (—x) ‘and U F,(0) are.

bounded subsets, one can find a real number « > 7 such that
U Fy(z)v | F,(—2)C o« ~1+F (0),foralvel
V&I vel | 2

‘We have
F, -(;’3_)=1<‘v(,.§._;_ (1_._.1._)0) C—I-E\:(m)—}-
- <4

= =

-1

+(1———1—)F (0) ¢ %+ L0+ (1—-%)1?1,(0)

C—Z-—}—Fv(ﬂ) , forallvel,

This implies that Y Similarly, one gets — L eB, and 50~ eB AN (-B)y=U,
@ o « .
then U is absorbing.

Note that X is a barrel space and U is a nonempiy closed absolutely convex
absorbing subset of X, so U is a neighborhood of the origin in X. Further

we have

FV(U')C?[ +F,(0) C V+F,(0) forali vel.

This shows that {F,_,vel} is upper semi-equicontinuous at 0 compleies the

proof of the the_orem‘.

‘ COROLLARY 2.8. Let X, Y be as in Theorem 2.5 and F : X — 9Y & Ls.c concave
multivatued mapping with nonempty convex bounded values, Then F is continuous.

Proof, This follows immediately from Theorem 2.7,

" 3. STABILITY OF FIXED POINTS “

from now on, (Q,4,H) is suppdsed to be a complete measurable space
(cf.[2]). Let Z be a topological space, by B (Z) we shall denote a s-field of
all Borei subsets of Z, 4@ ® (4) the smallesl o-field containing all subsets
of @ xZ of the form 4 X .7, where AeAfand BeB(Z): € a topolomcal
closure of € ¢ Z, R stands for thé set of all real numbers.
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Let X, Y be topological spacé‘,. Consider the multivalued mapping F: X —2Y,
We recall the following delinitions :

DERINITION 3.1, (of. {1]. ¥ is said lo be closed if for any nel (x,) C X
x, —»n:,.vaF(:cv) , Yy, 2 Y, ONE hasyeF (x). |

DEFINITION 3. 2. (cf. [2]). A multivalued mapping T : @ —2Y is said to be
measuralbe if r—1(B) = ftea\TOnBZ=D } € A for each B e B (X).

In this section, we shall apply Theorem 2.5 to proxr'e the stability of fixed
points of convex multivalued mappings and of solutions of some variational
inequalities. :

THEOREM 3, 3. Let X be a barrel spuce, Y a topological locally convex
Hausdorff space, C-a closed convex nonemply subset of ¥ and {F,,v ¢ It a

family of ws.c convex multivalued mappings from X x C into 2€ with non-
emply closed values and F. (X, C) in compacl for «each v e I.

Then the family{ T, ,v &1} with T, : X — 2 € defined by

[ (@)=1{gel\ye F. (z, g)}'

isl.s.e.cand for exchvel, x € X, I, (%) is compaci convex nonempty.

Proof. Applying Himmelberg’s Theorem of fixed points (Theorem 2 in [3])
we infer that Fv (z) # @, for eachx € X, vel e

Now, we verify that T,oval is convex. Suppose that x, ,a:'z eX and

g.ue [0,1]. Taking y, € T '(asi_)? y2 e'.f.?;(a‘sg ), we have
ay, + (I — 0y, € T, (x,,y,)+ T — a) F (%, 4 Y,) -l
Non Fv(axl-{—(i-m)xg, ay, + (1 — ;)gj)
This shows «y, (1 — =3y, eI‘\, (oc. x.j 4 (1 &) .1‘2) But y1 and y, are ‘arbitrary
points of T (z,) an(d Ly (z,)s therefofe one has « [ (a:iH—(l —a) T, (a:é) -
(:; T, (v zy —'1—-(’1 — @) 7,) and I', is a convex multivalued mapping tor ecach

v ¢ I. In particular, I‘v (x) iz convex for all z € X, v ed.
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It is easy to see that for each v ¢ I, ', is 2 closed multivalued mapping.

Furthermore ‘T (X) < F,(X,0). v, € /, is 2 compact subset, Therefore I, is

u.s.c for eachv € I (cf) [1]). In view of Theorem 2.4, this cGmpletes the proof.

COROLLARY 3. 4. Suppose that X is a topological localfy convex meirizable,

spaceand Y is a Banach space and C is a closed convex nonempty subsei of X and

F:X x C—2C is u.s.c convex multivalued mapping with nonempfy closed vaiies

and F(X,C) is compact. Then there erists a conlinuous singte-valued mapping
¢ XN — C such that ¢ (x) & F(z, ¢ (), for all z& X.

Proof. Since Y is a topological locally convex metrizable space it follows
that X is a barrel and paracompact space (cf. in {5]). By Theorem 3.3 it follows
that the multivalued mapping I': X > 2C defined by [(2) ={y eC/y e F (z.y)}
satisfies the conditions of the Selection Theorem due to Michael [4]. Therefore
there exists a continuous single valued mappingp: r — C such that p(@)e [ ()
for all x € X, This means Lhat (p(?:) el (x, ¢ (x)) forallx e X rwhmh completes
the p1ooi

THEOREM 3.5. Let X be a barrel space, Y a separable Frechel space, (Q, A,
W) a complele measurable space, and F: Q 3 X X Y —»2¥ ¢ multivalued mapping
with F (I, =, Yj compact, t € Q. Further, assume thaf F satisfies:

a) For any fixzed element (x, y) € X XY, the multivalued mapping t — F(1x,y)

is measurablefrom Q. to 2¥

b) For any fixed element | & £, ihe mulfivalued mapping (x, )-o F (i, z, y)

- i§ convex closed from X >< Y to 2Y

T hen the mulfwalued mapping [\ Q X X 2Y defmed by

A (t x)—{yc—.Y[yeF(i a:,y)}
has the follz)wmg properir,es

.1) /\ (f :c) is nonempty compact convex for all (1, x¥) e Q X X,

2y for any fixed element t € Q, the multivalued mapping
x — A (I, ¥) is convex conlinuous from X to 2Y.
3y For any fived element x's X, the multivalued mapping

{ — A (& @) is measurable from © to 2Y



Proof. Applying ThLeorem 3.3 yiclds the properties 1) and 2), It remains 16
prove 3). Indeed, let x5 € X be fixed. We have

A xo) = {y e Y\y & F it To, §}} = {y e Y\d{y} F (1, o y) =0}
where d is a distance on Y. '

Consider the subset A = {(t, y) ¢ @ X Y | d(y, F (I, To ) = 0}
and put

h{t, y) = d(y, F (1, 2o, ¥))-

By the Debren — Gastaing’s Theorem (Theorem 1T . 30 in [2]) for any
fixed element y, € ¥ the function t — k (1, yo) i? measurable from Q into R.

Now, take a fixed element f, & . The multlvalned mapping G 1 ¥ — 2¥
defined by G (y) = F (l %o §) 18 closed convex. Since F (ig To, Y) I8
:a compact subset of Y, it follows that G is a u. s. ¢ (see [1]). Hence and by

Corollary 2.6 G is conlinuous. Therefore the function

Rt ) =d (u, G ()= min dy, 3)
z € G(U)

is continuous from Y into R (cf [1]). .

Further, Lemma IIL.14 in [2] shows that h is measurable from £ XY into R.
Consequently ' ‘

A={tLNeaxXY |ty =0c4d 2 Y)
Note that

Graph Aoz ={ (LY e XX ¥ |y &AL 2o}
= ¢ y)eﬂ X Y |yeF b Zo M} = {(f.y)eQ X Y [ h(t, g)
= 0} =
Hence graph A (» Z) €4 ® ® (¥). On the basis of Theorem III . 30 in 2]
we again conclude that A (., mp) is a measurable multwalued mappmg from Q

into 2Y.

This completes the prooi.

Next, assume that X is a barrel Space, Y a topological locally convex.

Hausdorft space, (' a compact convex nonempty subset of Y. Consider the
functiong: X X C X C — R with the following propertles ,
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1, For any fixed elcment yo € C, the function ¢;: X X C—~ R defined hy
¢1,(2,4) = o=, Y, yo) is concave and for (z,) X, (y,) & G, @y —> % Yy —> Y ONE
has ¢, (z, y) > lim lnf P1{Xys Yy)-

N y

2, For any fized clement x & X, there exists a pointy € C such that

Q (x,/y\, y) > 0, for all y e G,

‘We have:

THEOREM 3.6.
With the above assumptions, the multivalued mapping % : X — 2C defined by

S (@) = { TeC\g (:n,?y) >0, forall yeC}

is convex conlinuous with T (x) nonempty compac! convex for atl x & X.

Proof. The assumption 2 shows that Z (x) == ¢, [or € X.

e X, «c[0, 1] Taking y; e S (x, ) » ¥y, € 2 (%),

Now, let 3{;1 s T,

one has

(ex, + (1 —a)yzy , ey, + T —a)yy,4) >0 (T4, ¥+

(M- p(zy, ¥, 5 > 0for all y & C.
This shows ey +{(I1—}y, € Z  (ex, ‘-};(I—a).rﬂ)“, - and so

e T (@) + (1 =) Z(@) CI(er + (1~ cc).l:?) which means that 2

is a convex multnalued mappmg
Let (z, ) C X, T, > x ,yv » §) > lim inf ¢ (z, ,?v s > 0 ' for
all y € C, | '

Therefore; /y\ g€ 2 (x) , and so Z is closed. But 2 (x) C €, a compact subset
of Y, therefore £4s u.s.c.

Using Corollary 2.6 we then conch}de the proof.
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