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‘In the present note a generalization of a theorem of Jain f1] is obtained.

1. A non-decreasing, continuous real-valued function ® defined on the

Jnon-—negative half line and vanishing only at the origin is called an Orlicz

function (OF). Function ® ¢ OF is said to satisfy A, — condilion for large u if
there are constants C > 0 and u, > 8 such that .

OQ2u) = C ®(u), for u > . /

A sequence {an} of non-negative numbers is said to be quasi-monotone

if for some « > 0, . '
3 14
an-+1 San( F ?).

An equivalent definition of quasi-monoione sequence is that h—-PanJ,O for
somef = 0,

We write 7 )

| Fx) = Sa2k (o < x <1

and : o
| . Anmao—}—ai—f— ....... < ta,.

2. We take our start from the work of Woyezynski [4] who proved the
following theorem, '

* This is based on Chapter I of the author’s Ph. D. Thesis entitled «Integrabitity;_
of function fepresented by Trigonometric series » submitted under the supervision of
Dr. Z. U. Ahmad at Aligarh Muslim Universiiy, Aligarh in 1980. ‘
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THEOREM A.If ¢, = .y =0 (n = 1,20 0 v oo y then F(x) € L(b(o,'i),zf and
only if ‘

. {An}'e L@(N’ V), - y:
where @ is an Orlice function, saiis'fyiqg A, — condition, dp = d%, N siands for  ° j
the set of all posilive integers and V is the measure of N concenlrating the mass n? 1
al all point n & N. L

] Recently, Jain [1] generalized Theorem A by replacing the condition a ],' 0
by the less stringent condition that {an} is _quasi-monotone in the following i

form.

THEOREM B. Let © be an Orlicz function satisfying Do — condition. If {a,}
is quasi-monoione sequence “such that 0 < Bp = nfa, = B, with some g > 0,
=120 ) then, for 0 =71 =< 1, '
(1 —x)""2(Cl Fmyiyel (0,1).
if and only if
T2 O(A) < > . ¢
n=1 ' ' -

‘We prove the tollowing theorem.

THEOREM. Lel ® be an Orlicz function satisfying Do — condition, and let
A(t) be a positive, non —increasing, integrable funclion on the interval 0 < 1< 1.
If {a,} i quasimonolone sequence such thal 0 < B, < rfap < B, with some

g >0, (n=1. 2,...), then we have
| a1 — )& (| F(x)1) e 10, 1
if and only if : .

z K(}")W‘P'(A)<oo.' A
=1 n n o
fn the case when My=t""< 1), our theorem reduces to Théorem B;_.‘
4, Proof of the \heorem. Set y = 1—2- Since, (1 — —;)nis an increasing sequen-
1 1 .
ce, we have, for ——— Y S n= 2
n 41 n :
n
Fl—-p< = ad- y*
k=0 ,
1\ 2
< (1 -—-—-) 3 oa, v
n/ k=0
1
< 7
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Thus, we get
F(i-—-y)} '—-j A R for - 1 < y g.i_,né'?‘
& 0 n+ 1 n

Now,

1
A ("f?) R0 (4) < 2 ‘;i‘g My) O(4, ) dy

I b4g

n=1

n+-1
1
i

<2 My) D4, Hdy

o)t

1
M) O, ) dy +2 S S
n=2
1
n+d
1 |

<o)+ B ¥ Suwmwu—mwy

n==3

1
P
1
<O+ B | Mt-2) o(F(@)) da < o,
]
by hypothesis,
Conversely, we have
" I
1 o én . a
At~y 0 FEyde =3 , MI-a) @ (Fa)da.
o - n=2, _*
! (n4-1)
2
oo (a+1)
=2 | M) o F(I—a)da
. R=2 g- .
n
S
oo (R—“I) o
=2 | A@0(Z o (1 —2)) dx
n=2 1_, k=0
i3
1
= {(a~1) oo
=X S —1 \k
n=2 ¢ l(r)‘p(}lioak(j n ) ) de
n
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=0 = A (L)amte ((Ta (1o 1))

=3

-2 e n{k+1)

—0(1) % a(—l) q:( 5 "4, ( m-l)v’)

n= n k=0 j«— nk J n
= (1) Z ?L(———)n (D( 2 e ( Z a; aj ))

n=3 n k=0 =0 nk

o 7y -2 e —k 1
=0() I (_) 2 O( 3 e (4 +Bn  (kR1)
=1 n k=0

o 1 -2 co —k
=01 = 'x{-—)ntf)(ﬁl Bk +2) e A)
n=2 VA L=}
o 1 —9
~0(1) = A(T)n G )
. n=2 ‘ -

<] o9,

by hyp othesis.
This completes the proof of the theorem.
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