ON THE SEIDEL - NEWTON METHOD FOR SOLVING QUASILINEAR OPERATOR EQUATIONS

PHAM KY ANH
Hanoi University

1..INTRODUCTION

Various differential and integral equations can be reduced to the following operator form:

$$Ax + F(x) = 0, (1.1)$$

where $A \in L(X, Y)$ is a bounded linear Fredholm operator (of index zero); $F: X \to Y$ is a nonlinear operator, and X and Y are two Banach spaces.

By using the degree theory, one can obtain existence theorems for the equations (1.1) (see [1,3]). This equation may be solved by projection methods [4] or by a special iterative method [5].

Another iterative method, combining Seidel's and Newton's methods is given in [6]. For a discussion of the Seidel — Newton method see also [10].

Since the operator A is a Fredholm operator we can write X and Y as direct sums:

$$X = X_1 \oplus X_2$$
; $Y = Y_1 \oplus Y_2$, where $X_2 = Ker A$ and $Y_1 = R(A)$

It is well-known (see [1,2]) that X_2 has finite dimension, Y_1 is closed, $\dim X_2 = \operatorname{codim} Y_1 = m < + \infty$, and the restriction \widehat{A} of A to X_1 has a bounded inverse.

Denote by P the bounded linear projection, satisfying $PY = Y_1$; $PY_2 = 0$. We shall solve (1.1) by the Seidel — Newton method, i. e.: Knowing the n—th approximation (the o—th approximation x_0 is supposed to be given), we construct the (n + 1)—th approximation by the formulas:

$$U_{n+1} = -\widehat{A}^{-1} PF(x_n)$$
, (1.2a)

$$\tilde{x}_n = u_{n+1} + v_n$$
 (1.2b)

$$v_{n+1} = v_n - [QF(\tilde{x}_n)]_{X_2}^{-1} QF(\tilde{x}_n),$$
 (1.2c)

$$x_{n+1} = u_{n+1} + v_{n+1}, (1.2d)$$

where Q = I - P, I — the identity operator in Y, $U_{n+1} \in X_1$ and $v_{n+1} \in X_2$

Thus, instead of finding the exact solution of the infinite-dimensional nonlinear equation (1.1), in each step we have to solve the linear equation for $u_{n+1} \in X_1$ and the linear finite — dimensional equation for $v_{n+1} \in X_2$

The limiting cases of (1.2a - 1.2d) are: $X = X_2$ (A = 0), and $X = X_1$ (A is invertible) can be considered by Newton's and Picard's methods, respectively.

2. CONVERGENCE THEOREMS

THEOREM 2.1. Let F be continuously differentiable (in the Fréchet sense) in an open set, including the closed ball S with center at \mathbf{x}_0 and radius $\mathbf{r} > 0$, and for all $\mathbf{x}, \mathbf{y} \in S$;

 $||PF(x)|| \le \alpha$; $||QF'(x)|| \le \beta$; $||QF(x) - QF'(y)|| \le \rho (||x - y||)$, where $\rho: [0, \infty) \to [0, \infty)$ is a continuous, nondecreasing function, and $\rho(\theta) = 0$.

Further, suppose that the restriction of the derivative QF'(x) to X_2 has a uniformly bounded inverse:

$$\|[QF'(x)]_{X_2}^{-1}\| \leqslant \gamma(x \in S).$$

If α is sufficiently small and the initial approximation x_0 is good enough, so that:

$$q = 2\alpha \beta \gamma \|\widehat{A}^{-1}\| + \gamma \int_{0}^{1} \rho(\delta t) dt < 1,$$
 (2.1)

$$2\delta(1-q)^{-1} < r, (2.2)$$

4

where δ is defined by the formula:

$$\delta = \beta \gamma \| \widehat{A}^{-1} \| \| Ax_0 + PF(x_0) \| + \gamma \| QF(x_0) \|, \qquad (2.3)$$

then the sequence $\{x_n\}$, constructed accordings to (1.2a)-(1.2d) converges to a solution x^* of (1.1) and

$$\|x_n - x^*\| \leqslant rq^n \ (n > 0).$$
 (2.4)

This theorem is a special case of Theorem 5.1, which will be discussed in § 5.

Remark 2.1. Theorem 2.1 remains valid, when $r = +\infty$ (in this case, (2.2) automatically hold), and we have

$$\|x_n - x^*\| = \leq 2\delta(1 - q)^{-1} q^n \ (n \geq 0). \tag{2.5}$$

Remark 2.2. Theorem 2.1 was proved in [6] under the assumption that QF'(x) is Lipschitz continuous. Note that, Theorem 2.1 holds in the more general case, when QF'(x) is Holder continuous:

$$||QF'(x) - QF'(y)|| \le L ||x - y||^{\omega} \cdot (0 < \omega \le 1)$$

In both cases, putting $\rho(t) = Lt^{\omega}$, we may apply Theorem 2.1.

From theorem 2.1, we obtain the following results:

COROLLARY 2.1. Le E be continuously differentiable in an open set, including a closed ball S with center at x_0 and radius r > 0, and for all $x, y \in S$:

$$\|PF'(x)\| \leqslant \alpha; \quad \|QF'(x)\| \leqslant \beta; \quad \|QF'(x) - QF'(y)\| \leqslant \rho(\|x-y\|),$$

where: $\rho:[0,\infty)\to[0,\infty)$ is a continuous, nondecreasing function, and $\rho(\theta)=\theta$.

If
$$\gamma_0 \rho(r) < 1$$
 and (2.1), (2.2) hold, where

 $\gamma = \gamma_0 (1-\rho(r)\gamma_0)^{-1}$, $\|[QF(x_0)]_{\chi_2}^{-1}\| \leqslant \gamma_0$ and δ is defined by (2.3), then the $\{x_n\}$ converges to a solution x^* of (1.1) and the estimation (2.4) holds.

COROLLARY 2.2. Let F be twice continuously differentiable in the closed ball S with center x_0 and radius r > 0, and for every $x \in S$:

$$\|PF'(x)\| \leqslant \alpha$$
 ; $\|QF'(x)\| \leqslant \beta$; $\|QF''(x)\| \leqslant L_{\bullet}$

If $Lr\gamma_0 < 1$ where $\|[QF(x_0)]_{X_2}^{-1}\| \leqslant \gamma_0$ and

(2.1), (2.2) hold with $\gamma = \gamma_0 (1 - Lr\gamma_0)^{-1}$ and 6 is defined by (2.3), then the conclusion of theorem 2.1 holds.

We end this section with results on the local convergence of (1.2a - 1.2d).

THEOREM 2.2 ([6]). Let F be continuously differentiable in an open neighborhood of a solution x^* of (1.1). Then the restriction of the derivative QF (x^*) to X_9 has a bounded inverse, and

$$2 \| PF'(x^*) \| \| QF(x^*) \| \| [QF'(x^*)]_{X_0}^{-1} \| \| \widehat{A}^{-1} \| < 1.$$
 (2.6)

If the initial approximation w_0 is sufficiently close to x^* , then the sequence $\{x_n\}$, constructed by (1.2a-1.2d) converges to x^* and the estimation:

$$\parallel x_n - x^* \parallel \leqslant cq^n \quad .$$

holds, where c > 0 and $q \in [0,1]$ are constants, independent of n.

COROLLARY 2. 3. Let F be continuously differentiable in an open neighborhood of a solution x^* of (1.1). If the restriction of the derivative $QF'(x^*)$ to X_2 has a bounded inverse, and $PF'(x^*) = 0$, then x^* is a point of attraction (see [7]) of (1.2a - 1.2d).

In this section, the previous results are applied to equations in a Hilbert space.

Let us consider a nonlinear equation:

$$x = Kx + F(x) \tag{3.1}$$

in a real separable Hilbert space H, where $K: H \to H$ is a linear, self — adjoint and completely continuous operator, and $E: H \to H$ is a non-linear operator.

By the Hilbert-Schmidt theorem, there is an orthonormal basic e_i of eigenvectors of K in H. We may assume that, the corresponding eigenvalues satisfy

$$\lambda_1 = \lambda_2 = \dots = \lambda_m = 1; \lambda_i \neq 1 \ (i > m).$$

According to Fredholm's theorem (see [2,8]) $A \equiv I - K$ is a canonical Fredholm operator, and $m < + \infty$. Clearly, the Seidel-Newton method in this case may be written as follows:

$$u_{n+1} = \sum_{i>m} \frac{1}{1-\lambda_i} (F(x_n), l_i) l_i,$$
 (3.2a)

$$x'_{n} = u_{n+1} + \sum_{i=1}^{m} \xi_{i}^{(n)} e_{i}$$
, (3.2b)

$$\sum_{i=1}^{m} (F(x_n^i) e_{i,i}^n e_j) (\S_i^{n+1} - \S_i^{(n)}) = - (F(x_n^i) e_j),$$
 (3.2c)

$$(j = 1, 2..., m)$$

$$x_{n+1} = u_{n-1} + \sum_{i+1}^{m} \sum_{i+1}^{g(n+1)} e_{i},$$
 (3.2d)

Applying Theorem 2.1 to equation (3.1) yields the following: **THEOREM 3.1:** Let F be continuously differentiable in open set, including the closed ball S (with center at x^0 and radius r > 0) Assume that for every $x \in S$, the matrix (a_{ij}) , where $a_{ij} = F'(x) e_i$, l_j (i, j = 1, 2, ..., m), has a nonzero

determinant; and that

$$\frac{1}{d(x)} \left\{ \begin{array}{l} m \\ \sum \\ ij = 1 \end{array} \mid A_{ij}(x) \mid^{2} \right\}^{1/2} \leqslant \gamma \qquad (x \in S), \tag{3.3}$$

where, $A_{ij}(x)$ is the algebraic complement of a_{ij} . Further, assume that $||F'(x)|| \le \alpha$, $||E'(x) - F'(y)|| \le \rho (||x - y||)$ for all $x, y \in S$, where $\rho(t)$ is a nonnegative nondecreasing continuous function, and $\rho(0) = 0$. If α , r and x^{0} satisfly

$$q = 2\alpha^2 \gamma \omega + \gamma \int_0^1 \rho(\delta t) dt < 1; 2\delta(1-q)^{-1} < r$$

where $\omega \gg \sup_{i > m} |1 - \lambda_i|^{-1}$ and δ is defined by

$$\delta = \alpha \gamma_{\omega} \| Ax_0 + F(x_0) - \sum_{i=1}^{m} (x_0), e_i \rangle e_i, \| + \gamma \| \sum_{i=1}^{m} (F(x_0), e_i) e_i \|,$$

then the sequence $\{x_n\}$, constructed by (3. 2a-3. 2d) converges to a solution x^* of (3.1) and (2.4) holds.

4. EQUATIONS WITH A SMALL PARAMETER

The previous results can be applied to equations with a small parameter $\epsilon > 0$:

$$Ax + \varepsilon F(x) = 0 (4.1)$$

COROLLARY 4.1 Let F be continuously differentiable in the closed ball S with center at x_0 and radius r > 0, and for every $x,y \in S$:

$$||F(x)|| \leqslant \alpha$$
; $||QF'(x) - QF'(y)|| \leqslant \rho(||x - y||)$,

where ρ is a non-negative, non-decreasing, continuous function, and ρ (0) = 0.

Suppose that, the restriction of QF'(x) to X_2 has a uniformly bounded inverse:

$$= [QF'(x)]_{X_2}^{-1} \| \leqslant \Upsilon(x \in S).$$

If the initial approximation x_0 satisfies the following conditions:

$$q_0 + \gamma \int_0^1 \rho(\delta_0 t) dt < 1: 2\delta_0 (1 - q_0)^{-1} < r$$

where:

$$\delta_0 \parallel \alpha \gamma \parallel Q \parallel \parallel \widehat{A}^{-1} \parallel \parallel Ax_0 \parallel + \gamma \parallel QF(x_0) \parallel,$$

then for a sufficiently small $\epsilon > 0$, the sequence $\{x_n\}$ constructed according to the formulas:

$$u_{n,1} = -\varepsilon \widehat{A}^{-1} PF(x_n), \tag{4.2a}$$

$$x'_{n} = u_{n+1} + v_{n}$$
, (4.2b)

$$v_{n+1} = V_n - \left[QF'(x'_n) \right]_{X_9}^{-1} QF(x'_n),$$
 (4.2c)

$$x_{n+1} = U_{n+1} + V_{n+1} \,, \tag{4.2d}$$

converges to a solution x^* (ϵ) of (4.1) and the estimation

$$\|x_n - x^* (\varepsilon)\| \leqslant Cq^n (\varepsilon)$$

holds with C > 0 and $q(\varepsilon) \in (0, 1.)$

COROLLARY 4. 2. Let F be continuously differentiable in an open set U, and the restriction of QF, (x) to X_2 has a uniformly bounded inverse:

$$\|[QF'(x)]_{x_2}^{-1}\| \leqslant \gamma ; \|F'(x)\| \leqslant \alpha (x \in \bigcup).$$

If for every sufficiently small $\varepsilon > 0$, the equation (4.1) has a solution $x(\varepsilon) \in \bigcup$, then there is a number $\varepsilon_0 > 0$ such that, for any $\varepsilon \in (0, \varepsilon_0)$, $x(\varepsilon)$ is a point attraction of (4.2a - 4.2d).

5. MODIFICATION OF THE SEIDEL - NETWON METHOD

Consider the following modification of the Seidel-Newton method

$$\widehat{A}u_{n+1} = -PF(x_n), \tag{5.1a}$$

$$x'_{n} = u_{n+1} + v_{n}, (5.1b)$$

$$v_{n+1} = v_n - \widehat{M}^{-1}(x'_n) QF(x'_n), \qquad (5.1c)$$

$$x_{n+1} = u_{n+1} + v_{n+1} , \qquad (5.1d)$$

where $M: X \to L(X,Y_2)$ and $\widehat{M}(x)$ is a restriction of M(x) to X_2 .

THEOREM 5. 2. Assume that $F: X \to Y$ is continuously differentiable in an open set, including the closed ball, S with center at x_0 and radius r > 0, and for all $x,y \in S$:

 $\|PF'(x)\| \le \alpha$; $\|QF'(\tau)\| \le \beta$; $\|QF'(x) - QF'(y)\| \le \beta$; $\|x - y\|$, where $\rho: [0,\infty) \to [0,\infty)$ is a non-decreasing continuous function, and $\rho(\theta) = \theta$.

Further, suppose that, the restriction $\widehat{M}'(x)$ of M(x) to X_2 has a uniformly bounded inverse:

$$\|\widehat{M}^{-1}(x)\| \leqslant 8 \quad (x \in S)$$

$$\|M(x) - QF'(x)\| \leqslant \varepsilon \quad (x \in S)$$

and

If α , ϵ and the initial approximation x_0 satisfy the following conditions:

$$q = 2\alpha (\epsilon + \beta) \gamma \| \widehat{A}^{-1} \| + \gamma (\epsilon + \int_{0}^{1} \rho (\delta t) dt) < 1,$$

$$2\delta (1 - q)^{-1} < \gamma \qquad \text{where}$$

$$\delta = (\epsilon + \beta) \gamma \| \widehat{A}^{-1} \| \| Ax_0 + PF(x_0) \| + \gamma \| QF(x_0) \|,$$

then the sequence $\{x_n\}$, constructed by (5.1a-5.1d) converge to a solution of (1.1) and the estimation (2.4) holds.

Proof: For $n \ge 0$, let us denote:

$$\mathbf{h}_n = x_{n+1} - x_n; \ \lambda_n = u_{n+1} - u_n = x_n - x_n; \ \mu_n = v_{n+1} - v_n = x_{n+1} - x_n$$

Assume that x_n $x'_n \in S$ for every $n \ge 0$. Then

$$\lambda_{n} = -\widehat{A}^{-1} \left(\int_{0}^{1} PF'(x_{n-1} + th_{n-1}) h_{n-1} dt \right)_{n}$$

hence.

$$\|\lambda_{n}\| \leq \alpha \|\widehat{A}^{-1}\| (\|\lambda_{n-1}\| + \|\mu_{n-1}\|). \tag{5.3}$$

Further, $\|\mu_n\| = \|\widehat{M}^{-1}(x'_n)QF(x'_n)\| \leqslant \gamma \|QF(x_n)\| \leqslant$ $\ll \gamma \|QF(x_n)\| + \beta \gamma \|\lambda_n\|$.

But

$$\|QF(x_n)\| = \|QF(x_n) - QF(x_{n-1}) - M(x_{n-1})\mu_{n-1}\| =$$

$$= \|\int_{0}^{1} QF'(x'_{n-1} + t\mu_{n-1})\mu_{n-1} dt - M(x'_{n-1})\mu'_{n-1}\| \le$$

$$\leq \int_{0}^{1} \|QF'(x'_{n-1} + t\mu_{n-1}(-QF')x'_{n-1})\| \|\mu_{n-1}\| dt +$$

$$+ \|QF'(x'_{n-1}) - M(x'_{n-1})\| \|\mu_{n-1}\| \leq \left\{ \int_{0}^{1} \rho(t \|\mu_{n-1}\|) dt + \varepsilon \right\} \mu \|_{n-1}\|.$$

Therefore

$$\|\mu_{n}\| \leq \beta \gamma \|\lambda_{n}\| + \gamma \left\{ \int_{0}^{1} \rho(t \|\hat{\mu}_{n-1}\|) dt + \varepsilon \right\} \|\mu_{n-1}\|$$
 (5.3)

Next we prove by induction the following relations:

$$x_n, x'_n \in S; \|\lambda_n\| \leqslant \delta q^n; \|\mu_n\| \leqslant \delta q^n (n \geqslant 0).$$
 (5.4)

By assumption, $x_0 \in S$. Observe that,

$$\begin{split} \mathbf{1} &= \| \, \widehat{\boldsymbol{M}}^{-1} \, \left(\boldsymbol{x}_o \right) \widehat{\boldsymbol{M}} \left(\boldsymbol{x}_o \right) \, \| \leqslant \gamma \, \| \, \widehat{\boldsymbol{M}} (\boldsymbol{x}_o) \, \| \leqslant \gamma \, \| \, \boldsymbol{M} (\boldsymbol{x}_o) \, \| \leqslant \\ &\leqslant \gamma (\, \| \, \boldsymbol{M} (\boldsymbol{x}_o) \, - \, \boldsymbol{Q} F'(\boldsymbol{x}_o) \, \| \, + \, \| \, \boldsymbol{Q} F'(\boldsymbol{x}_o) \, \| \,) \leqslant \gamma (\varepsilon + \beta) \end{split}$$

Then we have:

$$\parallel \lambda_o \leqslant \parallel \widehat{A}^{-1} \parallel \parallel Ax_o + PF(x_o) \parallel \leqslant (\varepsilon + \beta) \ \gamma \parallel \widehat{A}^{-1} \parallel \parallel Ax_o + PF(x_o) \parallel < \delta$$

Since $\|x'_{o} - x_{o}\| = \|\lambda_{o}\| < \delta < r$, it follows that $x'_{o} \in S$.

Furthermore, $\|\mu_o\| = \|v_1 - v_o\| = \|\widehat{M}^{-1}(x'_o)QF(x'_o)\| \leq \gamma \|QF(x'_o)\| \leq \gamma \|QF(x'_o)\| + \beta \gamma \|x_o - x'_o\| \leq (\varepsilon + \beta)\gamma \|\widehat{A}^{-1}\| \|Ax_o + PF(x_o)\| + \beta \gamma \|x_o - x'_o\| \leq \varepsilon + \beta \gamma \|\widehat{A}^{-1}\| \|Ax_o + PF(x_o)\| + \beta \gamma \|x_o - x'_o\| \leq \varepsilon + \beta \gamma \|\widehat{A}^{-1}\| \|Ax_o + PF(x_o)\| + \delta \gamma \|x_o - x'_o\| \leq \varepsilon + \beta \gamma \|\widehat{A}^{-1}\| \|Ax_o + PF(x_o)\| + \delta \gamma \|x_o - x'_o\| \leq \varepsilon + \delta \gamma \|\widehat{A}^{-1}\| \|Ax_o + PF(x_o)\| + \delta \gamma \|x_o - x'_o\| \leq \varepsilon + \delta \gamma \|x_o - x'_o\| + \delta \gamma \|x_o\| + \delta \gamma \|x$

 $\gamma \parallel QF(x_0) \parallel = \delta.$

Now assume that $x_k, x_k \in S$ and that (5.4) holds $f k \leq n$,

Then
$$\|x_{n+1} - x_o\| \leqslant \sum_{k=0}^{n} \|x_{k+1} - x_k\| \leqslant \sum_{k=0}^{n} (\|\lambda_k\| + \|\mu_k\|) \leqslant \sum_{k=0}^{n}$$

$$\leqslant 2\delta \sum_{k=0}^{n} q^{k} < 2\delta(1-q)^{-1} < r,$$

which shows that $x_{n+1} \in S$.

Since x_n , $x'_n \in S$, we have from (5.2):

$$\begin{split} &\| \lambda_{n+1} \| \leqslant 2\alpha \| \widehat{A}^{-1} \| \delta q^n \leqslant 2\alpha (\varepsilon + \beta) \gamma \| \widehat{A}^{-1} \| \delta q^n < \delta q^{n+1} \\ &\| x'_{n+1} - x_o \| \leqslant \| x'_{n+1} - x_{n+1} \| + \| x_{n+1} - x_o \| \leqslant \\ &\| \delta q^{n+1} + 2\delta (1 + q + \dots + q^n) < 2\sigma (1 - q)^{-1} < r. \end{split}$$

It follows from the induction assumption and the monotonity of ρ (t) that

$$\begin{split} &\|\mu_{n+1}\| \leqslant \beta\gamma \|\lambda_{n+1}\| + \gamma \left\{ \int_0^1 \rho\left(t \|\mu_n\|\right) dt + \varepsilon \right\} \|\mu_n\| \leqslant \\ &\leqslant 2\alpha \left(\varepsilon + \beta\right) \gamma \|\widehat{A}^{-1}\| \delta q^n + \gamma \left\{ \int_0^1 \rho\left(t \, \delta \, q^n\right) dt + \varepsilon \right\} \delta q^n < \\ &< \delta q^n \left\{ 2\alpha \left(\varepsilon + \beta\right) \gamma \|\widehat{A}^{-n}\| + \gamma \left[\int_0^1 \rho\left(t \, \delta^n\right) dt + \varepsilon \right] \right\} = \delta q^{n+1}. \end{split}$$

Hence x_n , $x_n \in S$ for all $n \ge 0$, and so (5.4) holds. Note that (5.4) implies

$$||x_{n+m} - x_n|| \le ||x_{n+m} - x_{n+m-1}|| + ||x_{n+m-1} - x_{n+m-2}|| + \dots + ||x_{n+1} - x_n|| \le \le 2\delta (q^{n+m-1} + \dots + q^n) < 2\delta (1-q)^{-1} q^n < r q^n.$$
 (5.5)

Hence $\{x_n\}$ is a Cauchy sequence. Let x^* be a limit of $\{x_n\}$. Clearly, x^* is a solution of (1.1). The error estimation (2.4) follows (5.5) when $m \to \infty$.

Note that Theorem 2.1 is a special case of Theorem 5.1 when $\varepsilon = 0$ (M(x) = OF'(x)).

We next consider the simplified Seidel-Newton method:

$$\widehat{A} u_{n+1} = -PF(x_n) \tag{5.6a}$$

$$x' = u_{n+1} + v_n {5.6b}$$

$$v_{n+1} = v_n - [QF'(x_0)]_{X_2}^{-1} QF(x_n')$$
 (5.6c)

$$x_{n+1} = u_{n+1} + v_{n+1} \tag{5.6d}$$

THEOREM 5.2. Let F be continuously differentiable in an open set, including the closed ball S with center at x_0 and radius r > 0, and for all $x, y \in S$

$$\|PF'(x)\| \leqslant \alpha; \|QF'(x)\| \leqslant \beta; \|QF'(x) - QF'(y)\| \leqslant \varepsilon \|x - y\|^{\omega} (0 < \omega \leqslant 1).$$

$$q = 2 \alpha (3r^{\omega} + \beta) \gamma_0 \| \widehat{A}^{-1} \| + \gamma_0 \varepsilon (r^{\omega} + \delta^{\omega} / (1 + \omega)) < 1,$$

$$2 \delta (1 - q)^{-1} < r$$

where $\delta = (\Im r^{\omega} + \beta) \gamma_0 \| \widehat{A}^{-1} \| \| Ax_0 + PFx_0 \| \| + \gamma_0 \| QF(x_0) \|$,
Then the sequence $\{x_n\}$, constructed by (5.6a - 5.6d) converges to a solution x^* of (1.1) and (2.4) holds.

This theorem follows directly from Theorem 5. 1, if we put $M(x) = Q F'(x_0)$ and $\rho(t = \varepsilon t^{\omega})$ The above observation suggests that we may consider equation (1.1) eve when F is not differentiable. In that case, we use the following algorithm:

$$\widehat{A}u_{n+1} + PF(x_n) = 0 \tag{5.7a}$$

$$x'_{n} = u_{n+1} + v_{n} (5.7b)$$

$$v_{n+1} = v_n - [QG'(x'_n)]_{X_2}^{-1} QF(x'_n)$$
 (5.7c)

$$x_{n+1} = u_{n+1} + v_{n+1} (5.7d)$$

where G is a continuously differentiable operator and GF approximates QE.

The proof of Theorem 5.1 can easily be modified to yield the following result:

THEOREM 5.5 Let the operator G be continuously differentiable in the closed ball S with center at x_0 and radius r < 0, and for all $x, y \in S$:

$$\|PF(x) - PF(y)\| \le \alpha \|x - y\|; \|QG'(x) - QG'(y)\| \le \rho(\|x - y\|)$$

$$\|QG_1(x) - QG_1(y)\| \le \varepsilon \|x - y\|$$

where ρ is a non-negative non-decreasing continuous function $\rho(0)=0$ and $G_{\bullet}=F_{\bullet}-G_{\bullet}$

Further, suppose that $||QG'(x)|| \leq \beta$ and the restriction of QE'(x) to X_2 has a uniformly bounded inverse.

$$\| \left[Q G'(x) \right]_{X_2}^{-1} \| \leqslant \gamma \left(x \in S \right)$$

If a and ϵ are sufficiently small and x_o is good enough, so that:

$$q = 2\alpha \beta \gamma \|\widehat{A}^{-1}\| + \gamma \left\{ \varepsilon + \int_{0}^{1} \rho(6t) dt \right\} < 1; 26(1-q)^{-1} < r$$

where $\delta = \beta \gamma \| \widehat{A}^{-1} \| \| Ax_0 + PF(x_0) \| + \gamma \| QF(x_0) \|$, then the sequence $\{x_n\}$, constructed dy (5. 7a-5.7b) is convergent and (2.4) holds.

6. PERIODIC BOUNDARY-VALUE PROBLEMS

Consider the following periodic boundary-value problem:

$$x^{n} + f(t, x, \dot{x}, ..., x^{(n)}) = 0 \quad (0 < t < 1)$$
 (6.1a)

$$x^{(j)}(0) = x^{(j)}(1) \ (j = 0, 1, 2, ..., n - 1)$$
 (6.1b)

Problem (6.1a - 6.1b) may be reduced to the form (1.1) by introducing the following spaces and operators:

$$X = \{x \in C^{n}[0,1] : x^{(j)}(0) = x^{(j)}(1) \ (j = 0,1,..., n-1)\}$$

$$\|x\| = \sum_{i=0}^{n} \max_{0 \le i \le 1} |x^{(j)}(i)| \ ; \ Y = C[0,1]; \ \|y\| = \max_{0 \le i \le 1} |y(i)|$$

$$X_{1} = \left\{x \in X : \int_{0}^{1} x(s) \, ds = 0\right\} \quad Y_{1} = \left\{y \in Y : \int_{0}^{1} y(s) \, ds = 0\right\}$$

$$X_{2} = Y_{2} = \{const\} \ ; \ Ax = x^{(n)}; \ F(x) = f(t, x, x, ..., x^{(n)}).$$

LEMMA 6.1. $A: X \to Y$ is a bounded linear Fredholm operator with Ker $A = X_2$, $R(A) = Y_1$ and $X = X_1 \oplus X_2$; $Y = Y_1 \otimes Y_2$. Moreover the restriction \widehat{A} of A to X_1 has a bounded inverse:

$$\|\widehat{A}^{-1}\| \leqslant \omega = 1 + \sum_{k=1}^{n} \left\{ \max_{0 \leqslant t \leqslant 1} \int_{0}^{1} \frac{\partial^{k} G(t,s)}{\partial t^{k}} \right| ds \right\}$$

where G(t, s) is the Green's of the following problem:

$$\begin{cases}
W^{(n+1)} = 0 \\
W(0) = W(1) = 0 \\
W^{(j)} = W^{(j)}(1) \quad (j = 1, 2, ..., n-1)
\end{cases}$$
(6.2)

Set $Qy = \int_0^1 y(s) ds$; Py = y - Qy. Clearly P and Q are bounded linear projectors $P: Y \to Y_1$; $Q: Y \to Y_2$ and $||P|| \le 2$; $||Q|| \le 1$

LEMMA 6.2. Suppose that the function $f(t, \xi_0, \xi_1, ..., \xi_n)$ is continuous in t and continuously differentiable in the remaining variables, and that for all pairs (t, ξ) , $(t, \xi') \in I$

$$I = \{t, \xi_0 \xi_1, ..., \xi_n\} : \theta \leqslant t \leqslant 1; |\xi_i| \leqslant r (i = 0, 1, ..., n)\}$$

$$\left| \frac{\partial f}{\partial \xi_i} (t, \xi) - \frac{\partial f}{\partial \xi_i} (t, \xi') \right| \leqslant L \sum_{j=0}^n |\xi_j - \xi'_j|$$

$$\left| \frac{\partial f}{\partial \xi_i} (t, \xi) \right| \leqslant \alpha (i = 0, 1, ..., n)$$

Further, assume that $\frac{\partial f}{\partial \xi_0}$ $(t,\xi) \geqslant a(t)$ for every $(t,\xi) \in I$ where the

function a (t) is such that $\int_0^1 a(s) ds \equiv \gamma^{-1} > 0$ Then $F(x) = f(t, x, x, ..., x^{(n)})$ is continuously differentiable in the closed ball $S \equiv \{x \in X : ||x||| \leq r\}$ and for all $x,y \in S$ $||PF'(x)|| \leq 2\alpha$; $||QF'(x)|| \leq \alpha$; $||QF'(x) - QF'(y)|| \leq L ||x - y||$ Moreover, the restriction of QF(x) to X_2 has a uniformly bounded inverse:

$$\| [QF'(x)]_{\mathbf{X2}}^{-1} \| \leqslant \gamma (x \in S)$$

The proofs of Lemmas 6.1, 6.2 for the case n=2 may be found in [6]. Using Lemmas 6.1, 6.2 and Theorem 2.1, we can now prove the following:

THEOREM 6.1. Suppose that the conditions of Lemma 6.2 hold. If

$$q = 4 \alpha^2 \gamma \omega + L \gamma \delta / 2 < 1;$$
 $2\delta (1-q)^{-1} < r - ||x_0||$

where
$$\delta = \alpha \gamma \omega \max_{t} x_0^{(n)} + f(t, x_0, ..., x_0^{(n)}) - \int_0^1 f(s, x_0(s), ..., x_0^{(n)}(s)) ds +$$

$$+ \gamma + \int_0^1 f(s, x_0(s), ..., x_0^{(n)}) ds +$$

Then the sequence $\{x_k^-\}$, constructed according to the formulas

$$y_k(t) = \int_0^1 f(s, x_k x_k, ..., x_k^{(n)}) ds - f(t) x_k, x_k, ..., x_k^{(n)})$$

$$\mathbf{u}_{k+1}(t) = \int_{0}^{1} \frac{\partial G}{\partial t}(ts) \, \mathbf{y}_{k}(s) \, ds$$

$$\boldsymbol{v}_{k+1} = \boldsymbol{v}_k - \frac{\int\limits_0^1 f(s, u_{k+1} + v_k, \dot{u}_{k+1}, \dots, u_{k+1}^{(n)}) ds}{\int\limits_0^1 \frac{\partial f}{\partial \xi_0}(s, u_{k+1} + v_k, \dot{u}_{k+1}, \dots, u_{k+1}^{(n)}) ds}$$

$$x_{k+1}(t) = u(t) + v_{k+1}$$

converges to a solution of (6. 1a - 6. 1b), and the estimation (2.4) holds.

7. NON-LINEAR NEUMANN PROBLEMS

Consider the non-linear Neumann problem:

$$\Delta u = f(x, u, D^{\alpha}u) \ (x \in G) \tag{7.1a}$$

$$\frac{\partial u}{\partial n} = 0 \qquad (x \in \sigma G) \tag{7.1b}$$

where $G \subset \mathbb{R}^N$ is a bounded connected open set with as mooth boundary ∂G , and α is a multi-index $1 \leq |\alpha| \leq 2$.

By | . | We mean the absolute value or the Euclidean norm on R^m , for some $0 \le m \le N (N+3)/2$. Further, the inner product on R^m is denoted by $\xi \cdot \eta = \sum_{i=1}^m \xi_i \eta_i$, and the inner product on $L_2(G)$ by (.,.).

Define

$$X = \{u \in W_2^2(G) : \frac{\partial u}{\partial n} = \theta(x \in \partial G)\}$$

$$\| u \| = \{ \int_{G} \sum_{|\alpha| \le 2} |D_{n}^{\alpha}|^{2} dx \}^{1/2}; Y = L_{2} (G)$$

$$\| y \| = (\int_{G} |y|^{2} dx)^{1/2}; X_{1} = \{ u \in X : \int_{G} u(x) dx = 0 \}$$

$$Y_{1} = \{ y \in Y : \int_{G} y(x) dx = 0 \}; X_{2} = Y_{2} = \{ const \}$$

$$Au = -\Delta u : F(u) = f(x, u, D_{n}^{2})$$

Then the problem (7. 1a - 7. 1b) can be reduced to an operator equation of the form (1.1).

An interesting discussion on existence and uniqueness theorems for the linear Neumann problems is given in [9]. A proof of the following facts may be found in [6].

LEMMA 7.1. $A: X \to Y$ is a bounded linear Fredholm operator with Ker $A = X_2$; $R(A) = Y_4$, and

$$X = X_1 \oplus X_2$$
; $Y = Y_1 \oplus Y_2$

Moreover, the restriction \widehat{A} of A to X_1 has a bounded inverse with the norm β . Set $Q_y = \int_G y(x) \, dx$; Py = y - Qy. Clearly, P and Q are linear bounded projectors $\|Q\| \leqslant \mu$; $\|P\| \leqslant 1 + \mu$ where $\mu = mes(G)$.

LEMMA 7. 2. Suppose the function $f(x, u, \xi)$ satisfies the conditions:

a)
$$f: G \times R^1 \times R^m \to R^1$$
; $f, \frac{\partial f}{\partial u}, \frac{\partial f}{\partial \xi}$

are jointly continuous for $x \in G$; $|u| < \infty$ and $|\xi| \equiv \sum_{i=1}^{n} |\xi_i|^2 + \infty$

b)
$$\left|\frac{\partial f}{\partial u}(x, u, \xi)\right| \leqslant a; \left|\frac{\partial f}{\partial \xi}(x, u, \xi)\right| \leqslant a$$

 $\left|\frac{\partial f}{\partial \xi}(x, u, \xi) - \frac{\partial f}{\partial \xi}(x, u', \xi')\right| \leqslant L(|u - u'|^2 + |\xi - \xi'|^2)^{1/2}$
 $\left|\frac{\partial f}{\partial u}(x, u, \xi) - \frac{\partial f}{\partial u}(x, u', \xi')\right| \leqslant L(|u - u'|^2 + |\xi - \xi'|^2)^{1/2}$
 $\forall x \in G \ \forall |u|, |u'|, |\xi|, |\xi'| < \infty$
c) $\frac{\partial f}{\partial u}(x, u, \xi) \geqslant g(x) \int_G g(x) dx \equiv \gamma^{-1} > 0$
 $(x \in G : |u|, |\xi| < \infty)$

Then the operator $F(u) = f(x, u, D_u^{\alpha})$ is continuously differentiable on X, and for all $u, u' \in X$:

$$\|QF'(u) - QF'(u')\| \leq \sqrt{2\mu} L \|u - u'\|$$

$$\|F'(u)\| \leq \sqrt{2} a : \|[QF'(u)]_{X2}^{-1}\| \leq \gamma$$

From Lemmas 7. 1 - 7. 2, Theorem 2.1 and Remark 2.1 we get the following

If
$$q = 4a^{2} \mu (1 + \mu) \beta \gamma + \sqrt{2\mu} \gamma L \delta/2 < 1$$
where $\delta = \sqrt{2} \mu \alpha \beta \gamma \| \Delta u_{0} - f(x, u_{0}, D^{\alpha}u_{0}) + \iint_{G} (x, u_{0}, D^{\alpha}u_{0}) dx \| + \sqrt{\mu} \gamma \| \iint_{G} f(x, u_{0}, D^{\alpha}u_{0}) dx \|$

then the sequence $\{u_k^{}\}$, constructed as follows;

$$\begin{cases} \Delta w_{k+1} = f(x, u_k, D^{\alpha}u_k) - \int_{\Omega} f(x, u_k, D^{\alpha}u_k) dx \\ \frac{\partial w_{k+1}}{\partial n} = 0 & (x \in \partial G) \end{cases}$$

$$v_{k+1} = v_k - \frac{\int_{G} f(x, w_{k+1} + v_k, D^{\alpha}w_{k+1}) dx}{\int_{\partial u} f(x, w_{k+1} + v_k, D^{\alpha}w_{k+1}) dx}$$

$$u_{k+1} = w_{k+1} + v_{k+1}$$

converges to a solution of (7.1a - 7.1b) and the error estimation (2.5) holds.

8. NON -LINEAR INTEGRAL EQUATIONS

We shall consider an integral equation of the form:

$$x(t) = \int_{0}^{1} K(t,s) x(s) ds + \int_{0}^{1} f(t, s, x(s)) ds$$
 (8.1)

where the kernel K(t, s) satisfies the Hilbert — Schmidt condition:

$$K(t, s) = K(s, t) (s, t \in [0,1])$$

$$\int_{0}^{1} \int_{0}^{1} |K(t, s)|^{2} ds dt < +\infty$$

Set
$$Tx = \int_{0}^{1} K(t, s) x(s) ds$$
; $F(x) = \int_{0}^{1} f(t, s, x(s)) ds$;

 $H=L_2[0,1]$. Then T is a linear, self-adjoint and completely continuous operator and we can apply the results of Section 3.

Assume that, the eigenvectors $\{e_i\}_{i=1}^{\infty}$ of T form an orthonormal basic in $L_9[0,1]$ and the corresponding eigenvalues are such that:

$$\lambda_1 = \lambda_2 = \dots = \lambda_m = 1$$
; $\lambda_i \neq 1$ $(i > m)$

The general scheme (3.2a - 3.2d) leads to the following iterative process:

$$u_{n+1} = \int_{0}^{1} K(t, s) \ u_{n+1}(s) \ ds + \int_{0}^{1} f(t, s, x_{n}(s)) \ ds -$$

$$- \sum_{i=1}^{m} \left\{ \int_{0}^{1} \int_{0}^{1} f(\tau, s, x_{n}(s)) e_{i}(\tau) \ ds d\tau \right\} e_{i}(t)$$
(8.2a)

$$x'_n = u_{n+1} + \sum_{i=1}^m \xi_i^{(n)} e_i$$
 (8.2b)

$$\sum_{i=1}^{m} \left\{ \int_{0}^{1} \int_{0}^{1} \frac{\partial f}{\partial x} (t, s, x'_{n}(s)) e_{j}(t) ds dt \right\} \left(\xi_{i}^{(n+1)} - \xi_{i}^{(n)} \right) =$$

$$= - \int_{0}^{1} \int_{0}^{1} f(t, s, x'_{n}(S)) e_{j}(t) ds dt$$

$$(5 - 1, 2, ..., m)$$

$$(8.2c)$$

$$\mathbf{x}_{n+1}(t) = \mathbf{v}_{n+1}(t) + \sum_{i=1}^{m} \xi_{i}^{(n+1)} e_{i}(t)$$
 (8.2d)

As an application of Theorem 3.1 to non-linear integral equations we can state:

THEOREM 8.1 Let f(t, s x) be continuous in t, s and twice continuously differentiable in x, and for all l, $s \in [0,1] \mid x \mid < \infty : \left| \frac{\partial f}{\partial x}(t, s, x) \right| \leq a(l,s)$;

$$\left| \frac{\partial^2 f}{\partial x^2} \left(t, s, x \right) \right| \leqslant L$$

with
$$\alpha = \{ \int_0^1 \int_0^1 |a(t,s)|^2 ds dt \}^{1/2} < + \infty$$

Further, suppose that the matrix

$$(a_{ij}) = \left(\int_{0}^{1} \int_{0}^{1} \frac{\partial f}{\partial x} (t, s, x_0(s)e_i(s)) e_j(t) ds dt \right) \quad (i, j = 1, 2, ..., m)$$

has non-zero determinant d with $\frac{1}{d} \left\{ \sum_{ij=1}^{m} A_{ij} \right\}^{2} \right\}^{1/2} \leqslant \gamma_{0}$

where A_{ij} is the algebraic complement of a_{ij} ;

If there is a number r>0, such that $Lr\gamma_0 < 1$

 $\mathbf{q} = 2\alpha^2 \ \gamma \ \omega \delta + L \ \gamma \ \delta/2 < 1; \ 2\delta \ (1-\mathbf{q})^{-1} < r, \text{ where } \gamma = \gamma_0 \ (1-Lr \ \gamma_0)^{-1};$ $\omega \geqslant \sup_{\mathbf{i} \geqslant \mathbf{m}} |1-\lambda_{\mathbf{i}}|^{-1}, \text{ and } \delta = \alpha \gamma \omega \|A\mathbf{x}_0 + PF(x_0)\| + \gamma \|QF(x_0)\|, \text{ then the}$

sequence $\{x_n\}$ constructed according to (8.2a-8.2d) is convergent and the error estimation holds. (2.4)

Received April 29, 1982

REFERENCES

- 1. L. Nirenberg. Topics in non-linear functional analysis, Russ-transl., Moscow, 1977.
- 2. S. G. Krein, Linear equations in Banach spaces. Moscow 1971.
- 3. P. M. Fitzpactrick, Existence results for equations involving noncompact perturbations of Fredholm mappings with applications to differential equations. J. Math. Anal. App. 1978, 66, N⁰1, 151-178.
- 4. G.W. Reddien, Approximation methods and alternative problems, J. Math. Anal. App. 1977, 60, No. 1, 139-149.
- 5. Pham Ky Anh, On an approximation method for solving, quasilinear operator equations, Dopl. Akad. Nauk SSSR, 1980, 250, No2, 291—295, Soviet Math. Dokl,21, No1 (1980) 75-79, (in Russian).
- 6. Pham Ky Anh, Dissertation, Voronez 1979, (in Russian).
- 7. J. M. Ortega, W.C. Fheinboldt, Iterative solution of non-linear equations in several variables, Acad. press, New York, 1970.
- 8. L. V. Kantorovich, G. P. Akilov, Functional analysis, 2nd Rev. ed. Moscow, 1977.
- 9. S. G. Mihlin, Linear partial differential equations, Wyss. Skola Moscow, 1977.
- 10. A. B. Pevnyl, On the convergence of the Newton-Seidel method. Izv. Vuzov Matematika, 1978, 187, N°1, 89 -90.