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1. INTRODUCTION

Various differential and integral equations can he reduced to the followmg

. operator form : -

Az + F(zx)=0, : o (1 1)
where 4 € L (X, }) is a bounded linear Fredholm operator (of index zero);
F:X -» Y is a nonlinear operator, and X and Y are two Banach spaces.

Bv using the degree theory, one can obtain existence theorems for the
equations (1.1) (see {1,3]). This equation may be solved by projection methods
[4] or by a special iterative method {5]. .

Another iterative method, combining Seidel’s and Newton's methods is given
in [6]. For a discussion of the Seidel — Newton method see also [10].

Since the operator A is a Fredholm operator we can write X and Y as direct
sums:

X=X, & X,;3 Y=Y, @ Y,, where X, = Ker 4 and ¥, = R(4)

It is well-known (see [1,2]) that X, has finite dimension, Yl.is closed,
dim X, = codim Y;=m <+ =, and the restriction A of A to X; has a bounded

inverse. -

Denote by P the bounded linear projection, satisfying PY = Y PY, = 0.

We shall solve (1.1) by the Seidel — Newton method, i. e. Imowmg the
n — th approzimation (the o—th approximation x, is supposed to be given),
we consizuct the (n - 1)—th approximation by the formulas :

Un-l-l' =—A4"7 PE(I:H) 4 (1 ) 23)

T T r'In'i'l + vn ' - (1 .2b)
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' - N ~ -1 ~ a
Vo1 ™ Yn —. LF (wn)].\'.) .QF(J:H)’ (1.2¢)
| . :
P Hn—i‘I + Vptt e -2d)
where ) = I — P, [ — the identity operator in ¥, U v1€% and v, € X,

~ Thus, instead of linding the exact solution of the infinite-dimensianal
nonlinear equation (1.1) in each step we have to solve the linear equalion for

0oy eX, and the linear linite — dlmensmngl equation for v 4 € Xo

The limiting cases of (1.2a — 1.2d) are: X =Xp (A= 0), and X = X,

(4 is invertible) can be considered by Newton's and Picard’s methods, respectively.

5. CONVERGENCE THEOREMS

THEOREM 2 . 1. Let F be continuously dif ferentiable (in the Eréchet sense)
in an open set, including the closed ball S with cenfer at %o and radius v >0,
and for all x, v €353 : ‘

EPR() < e WO @I B3 JOF (x) — QF( Il < p (2 — gl

where p: |0, 00) — [0, =) 15 conlinuous, nondecreasing function, and (0) = 0.

‘Further, suppose thal the restriction of the derivative QF(z) to X; has a
wniformiy bounded inverse: ' '

LEQF (I < (w & S).
CIR -

If « is sufficiently small and the initial approximation o is good enough,
so that:

1
g=2upy A1 + v\ p(d0d <157 ‘ 2.1)
0
| W1 —@t <5 (2.2)
where & is defined by the formula: -
&= Bt A A%+ PEG L+ v I QF @ s @3)

then the seq{lence fz 1 constructed accordings (o (1.2a)—(1.2d) converges to 2

solution z* of (1.1) and ' ,

e, — 2% < rg™ (n > 0). ' (2.4)
"This theorem is a épecial case of Theorem 5.1, which will be di_scussed

in §5.

Remark 2.1. Theorem 9.1 remains valid, when r = 4o (in this case, (2.2)
automatically hold), and we have ' '

| m, —a = < 2001 — @7 ¢" (0 >0 | (25)
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Remark 2.2, Theorem 2.1 was proved in [6] under the assumption that
QF(x) is Lipschitz conlinuous. Note that, Theorem 2.1 holds in the more general

case, when QF(x) is Holder continuons: ,
1OF(@) — QF @I < LIz —y1°. 0< w<1)
In both cases, putting p() = Lt ®, we may apply Theorem 2.1.

From theorem 2.1, we obtain the following results:

COROLLARY 2.1 Le E be conlinuously differentiable in an open set, including

a closed ball S with cenfer at zy and radius r >0, and for all x, y € §:
| PRy o I (),-F’(:c) I<<B: QF(@ —QFPWI< e(llx—yll),
where: p: |0, oo} — [0, =) is a continuous, nondezreasing function, and p(0)= 0.
If vo(r) < 1 and (2.1), (2.2) hold, where '
v = vo (I—a(P)vo) ™! 5 | [QF('%)];,; 1< v, and 3 is defined by (2.3), then the
{:cn } conperges 1o a solulion x* of (1.1) and the eslimation (2.4) holds.
COROLLARY 2.2, Lel F be twice conlinuously differentiable in the closed ball
S with center x, and radius r >0, and for every xe S:
[PF@i<e 5 HOFP@I<E 3 Q@I L
If Lry, < 1 where || [QF’(xD)];{i i < v, and

(2.1), (2.2) hold with v == v (I — eryO)‘j and 6 is defined by (2.3), then the
conclusion of theorem 2.1 holds. ) )

We end this section with results on the ‘local co:wergéuce of (1.2a — 1.2d).

THEOREM 2 .2 ([8]). Let £ be conlinucusly differentiable in an open neighbo-
rhood of a solution x* of (1.1). Then the restriction of the derivative QF (x*)
fo X2 has a bounded inverse, and

21 PF* (z) 1 I1QF () I H{QF )iz ) 1A ~ 4y <1 (2.6)
2

If the initial approximation\\ro is suiliciently close to x*, then the sequence
{z },constructed by (1.2a — 1.2d) converges io a” and the estimation:
n , .

” .’l‘n —® H { an

holds, where ¢ > 0 and“qe [0,1] are constanis, independent of n.

COROLLARY 2. 3. Let F be continuously differentiable in an open neighbor-
hood of a solution x* of (1.1). If the restriction of the derivative QF’ (x*) to
X, has a bounded inverse, and PF* (x*)= 0, then x* is a point of atiraction
(see[7]) of (1.2a — 1.2d).
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3, THE HILBERT SPACE CASE.

In this section, ihe previous results are applied to equations in a Uilbert
space.
Let us consider a nonlinear equation:

x = Kz 4 F(@) ‘ (B

in a real separéble Hilbert space H, where K: H— H is a linear, self — adjoint

and completely conlinuous operator, and E: H — [ is-a non-linear operator.

By the Hilbert-Schmidt theorem, there is an orthonormal basic e; of eigen-

yectors of K in H. We may assume that, the corresponding eigenvalues satisfy

A=y == Ay =154#1 (i > m).

According to Fredholm’s theorem (see [2,8]) A= T — K is a canonical
Fredholm operator, and m < |- o= Clearly, the Seidel-Newlon .method in this
" case may be written as follows: '

y 2, = 2 _:%\__(F(:cn), L, ' (3.2a)
i=m i .
) m . (n) ‘ :
@y =ty gt 2 B e (3.2b)
moo .+ ) -,
O (F(x)e e) (37 ! -—éf” ) = —(F(x’, )¢ (3.2¢)
=1 " g _

(j = 1, 2..,,111)

x =u . 1121: St 1)6 (3.2d)
a+1 n—-1 " X 3 i (3.2
i

Applying Theorem 2.1 to equation (3.1) yields the tollowing:

THEOREM 3. 1: Let F be continuously differentiable in open‘ set, including
1he closed ball S (with center at 2° and radius r > 0) Assume that for every
ze S, the matriz (a,; ) where a;; =F'((x) ¢ » lj) (i, j =1s 2,.., m), has a nonzere
determinant ; and that

L % A 2 (zeS) (3.3)

=~ .+ () = TES )y .

d(x) ij==11 zJ( l s .
where, Aij (x) is the,algebr‘aic' complement of a;; Further, assume that

(FeEl<s | B@)— Follse (lz —yl|) forallz, y &S, wherep(t) is
a nonnegative nondecreasing conlinuous function, and. p (0) =0.
If «, r and 2° salisfly :

. 1 ~ o
g =22 v o+ 1 e @d=1;28( —q)yl<r

on

14

—y

e i



where w >> sup | 1 = &, | "L and & is defined by
i>m

‘ m m !
&= aYol Axo -+ F (x0) — Z(zeh e, ) e, i +T 1 2 (F(z), ¢ )e Il
i=1 =1
then the sequence {Aa:n }» consiructed by (3. 2a — 3 . 2d) converges to a solution
x* of (3.1) and (2,4) holds. )

4. EQUATIONS WITH A SMALL PARAMETER

The previous results can be applied to equations with a small

parameter ¢ > 0:
Arv 4 ¢ F(z) =0 ’ (4.1)
COROLLARY. 4.1 Let & be continuouslj differentiable in the closed ball S
wi th center at xy and radius r > 0, and for every x,yes :
| F'@) <l e WQF () — QP <e(le — 7l )
where p is a non-negative, non-decreasing, confinuous function, and o (0) = 0.
, ‘ )

Suppose that, the restriction of QF’ (x) to X, has a uniformly bpunded
inverse: T ' )

:—[QF‘(J:)];; 1 <7 (xeS).

If the initial approximation a, satisfies the following conditions:

s 1
g, +7 Sp(ag 1) di < 1:25, (I—q, )1 < r,
0

where: :
8y I exlQn b AT | 1Az, il +v 1 QF(zy) i,
then for a sufficiently small € > 0, the sequence {:cn {constructed according

to the formulas:

Upg= "¢ A 1pR(¢ x » 7 (4.2a)
o=, b o ‘ (4.2b)
opr 1=V [OF (@) 1O, a2



converges to a solution z* (g) of (4.1) and the estimation

jz, - @ 1< Ca" )

"holds with € > 0 and g () € (¢, 1)

COROLLARY 4, 2. Lel I be coniinuously differentiable in an open set U, and
the restriction of QF’ (x) to Xp has a uniformly bounded inverse:

SO @) 1< T P I <e (@el)

If for every sufficiently small ¢ > 0, the equation (4.1) has a solution x(é) el ),
then there is a number g, > 0 such’ that, for any € € (0,8,) » xeg)is a point
attrac{tion of (4.2a — 4. 2d).

5. MODIFICATION OF TBE SELDEL~— NETWON METHOD

. Consider the lollowing moditication of the Séidél—-Newton method

~ :

Au = — PF@,) (5 . 1d)

T, = Upyg +0, (5.1b)

D= n M1 (@ )OF (@), C(5.10)
| (5.1d)

Tpa1 = Unt1 t Vppr
where M: X - L(X,Ys) and ir (x) is a restriction of M(x) 16 Xo.

THEOREM 5. 2, Assume'that_ F: X~ Y is continuously dif ferentiable in an
open set, including the closed ba{l, S with center at Xo and radius r > 0, and
for all z,ys S:

|PF () 1< a3 I QP () I < B3 QF'(®) ~ QF' () | < ST &=y

.

where p : [0,2) = [0,°°) is a non-decreasing coRlnuous function, and p(0)= 0.

Further, suppose thal, the restriction fv}."(x) of M(x) to Xy has a unif ormly
"bounded inverse: :

. 1T @) ) < ¢ @) \
and , | M(z) — QF(@) I<et®e S -
If «, & and the initial approximation .rn‘saiisfy the following conditions:
_ 1
g2 TIE T e+ p @ <1,
‘ o - 0
! B E—- <Y ' where
s=( + BT IZ 771 1A% + PE@) I+ T QF (@) 1»
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then the sequence {x } , constructed by (5.1a— 5.1d) converge lo a solutior
of (1. 1) and the estimation (2.4) holds.

Proof: For n > 0, let us denote:

—_ ; H = — ey — g — — == -2
hn - mn—l—l Tps 7k1'1 = Uyt U, =T, = Xy un Vott Yn xn-l—l, % 'n
Assume that @ a7 e § for every n ;> 0. Then

o
~~ =1 .
e (RN CRIPE L M) ML)

hence, _ .
DA <l D7 HCHA TR, 1) B )]
Further, I H=13"" (= )QF ) <v I QFx )<
<Y QF(x ) |l +By A, .
But - .
1QF(x Y=l QF(x ) — QF(@ _ ) — M(z' _ W, _,lI=
1 R

=1 Q@ g bty ey A= M@ )W 1<

1 ‘ ‘ .

g’s NQF (' _ 4+ th _ (-QF )@ I I fp—1ll di 4

1
F QP _ ) — M@, ph It _ 1< {DS p(E 1l ey 1) d + ST

Therefore

(™

. 1 N ’
TR, I<ByHA +vUp(illun,ill)dﬂ-S}IIRH_IH S - (5.3)
) . ] ‘ - .

Next we prove by induction the following relations:
%% n S A, | <80 I, | <Bg™(n > 0). 6.9
:By assumption, @, eS. | QObserve that, '
1207 @ M (@) 1<y | Mz,) | <viME) 1<
< (1l M(z,) = QF' ) 14 11 QF (2,) 1) < ¥l + B)
Then we have:

1A, <UAT ) Az, + PR YIS G+ B v I A1) N4z, + PR@,) | <
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Since (&', — l-—”?» | <d<r, it follows thata, 5 &S
Furthermore, | ”'o =llv, —v, ”— WM A, )QF (@ ) <v 1 QF(x’ YIS

<y QF@) i +Byliz, — %, ug(s + Ry A1) 1 Az 4 PE(z,) I+

y I QF(z,) It =5 :
Now assume that @ ,x", eS and that (5.4) holds fk<n

Then ||z, — %, I <

4]

-
R

n
<25F gfcodl - P <,
k=0

which shows that = -y es.

Smcem , ¥’ €5, we have from (5.2):
WAy < 26311 807 20l + By & 771 8g" < g™

12y — o N APl o] AR A

L dqrt! +26 (1 g+ + ¢ <201+ Qi< ’

" It follows from the induction agsumption and the monotonity of » (t) that

’ 1
e 1< ﬁvll?thrIll—l—m'{Sp(tllllnIl)dt+€]!:unll<
) |
oo+ By 1A~ 1577+ o dqmydi+edqt <

<dq{2GE+BYIAT I [§ p(t0m dt e} =8g"t.
0 v )

Hence 7, :x:;teS foraill n>0, and so (5.4) holds. Note that (5.4) implies
. 12 = P V< By = ZimeglF
% ppm g™ Tptmeg I Tt 1% per™ %0 <
<28t Agm <231 —g) " gt <rg”. (5.5)
Hence { z_} is a Cauchy sequence, Let z* be a limit of {z }. Clearly a* is a

solution of (1.1), The error estlmatwn (2.4) follows (5.5) when m — oo,
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Note that Theorem 2.1 is a special case of Taeorem 5.1 when ¢ = 0
(M (@) = Q F (). |

We next ¢consider the simplified Seidel-Newlon method &

Al =—PF() G . 6a)
T =y, (5 . 6b)
Vpiy = Vp {QF‘(wM;;QF(x;) T (5.60)

( . 6d)

Eog=Upy Ty

THEOREM 5.2. Let F be continuously differentiable in an open sef, including
ihe closed ball § with center at x, and radius r >0, and for all T, ye S

HPP @) <31 0F @I < B I 0F @ — QP @<z —yl"O< o<,
- QP @) HI<v  and
2

q=22(Gr+B) vo A "1+ v,e (0 + 8%/ A+ o)) <1,
S 28d—q)T<r
where 8= (s +-R) v N A T | Ao+ PFag) +1, 1 QF (2
Then the sequence {xn},construclgd by (5.6a — 5.6d) converges lo a solution
x* of (1.1) and (2. 4) holds.
This theorem follows direcily from Théorem 5. 1, if we put ¥ (x)=0Q F (x,)

and p({ = ct*)The above observation suggests that we may consider equation(1.7)
eve whea F is not differetiabie. In that case, we use the following algorithm

Au,,, +PF@,) =0 6.72)
x,n = un+1f + Dn (5' 7b)
Voyy =2, — [QG@ I QF@ ) (5.7¢)

Torg = Upsg T Phpq (5.7d)

where (¢ is a continuously differentiable operator and GF approximates QF,

" The proof of Theorem 5.1 can easily be modified to yield the following
result : :

THEOREM 5.5 Le! the operator G be continuously differentiable in the closed
ball S with center at x and rad’us r < 0, and for all z, 3. S
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| PF (@) —PR@ I < slle — gl 106 = 0@ I < el )
106,@) — QG @I <elz—yl _
where p Is a non-negative non-decreasing €ORINUOUS function (o) = 0 and
G, =F —G. |
Further, suppose that || QG'(x) | < B and the restriction of QE(z) to X, has

a uniformly bounded inverse.
Qe @Iy, I < v @es)

If wand e afe suf ficienily small and %, is good enough, so lhat:
g= 2By lA 10 + v}a + fp(ﬁi)df{ <1;21 -yt <r
2]

»

‘ where & =Byl I | Ay -+ PF(a) fj + v QF@) 1l
then the sequence {xn}, consiructed dy (5. 7Ta—5.7D) is convergeni and (2.%)
holds,

6. PERIODIC BOUNDARY-VALUE PROBLEMS
Consi’der‘the following periodic boundary-value problem:
o+ f(f @, T, veny @)= 0 (E{< i<1) ) (6.1a)
2N @@= @) G — 0,1 2., 2—1) | : (6.1b)

Problem (6.1a — 6.1b) may be reduced to the form (1.1) by introducing
the following spaces and operators: ' _

X ={xeCt01]: 2P 0y = 2P (1) (j =0.1 ., n— 1)}

n

izl =2 max 1P 1 3 ¥ =C[0,1]; §yl= max | y(t) |
i=0 0l _ OIS
1 : 1 .
Xl=)a:eX:f:c(s)ds=0E Y1=3"er: fg(s)ds.——..Oé
U, i . _

X,= Yy = {const} ; Ar= 2 5 ) = f(t, 2, T yorey W)

LEMMA 6.1.4: X — Y is & bounded linear Fredholimoperaior with Kerd = X,
R(A) =YV, and X = Xy & Xz ) Y=Y, ® Y, Moreover the wrestriciion

A of AtoX, hasa bounded inverse:
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A,
L

| ok G(L,s) , i !

where G(f, s) is the Green’s of the following problem:

. \1’(11'{"1) = (} . .
1 W) = Wty = 0 ' (6.2)
T WO=wID (=12 ..,n=1)

) ‘

Set Qy ={y(s)ds ;' Py==y—Qyg. Clearly P and ¢ are bounded linear
p _ :

projectors P: Y —Y;; Q:Y =Y, and 1P} < 2; {[QII<1

LEMMA 6.2. Suppose that the fanction'f (¢, &, &8, ) 1s conlinuous inl and

continuously differentiable in the remuining varidbles, and thal for all pairs
(1), (1, &) €l
T {6 BB 8,) £ 0I5 G (ST E=01Luen )

1%(1,9——-(1 )| < LZ:!E-—EI !

J=0

‘ - (1, &) ‘ < o (i=0,1y000p 1)

Further, assume thati (LE) = a(ty for every (1, %) e I where the.

function a () is such thatg a(s) ds=+y71=>0 Then F (ac)———f(t TT . (“))

is continuoudly dif ferentiable in the closed ball § = {zeX: [l] r ][| <r} and

for all z,yeS | PF ()| <2¢; QI @) <o | QF (@) —QF' DI Lz —g
Moreover, the restriction of QF (:r) to Xo has a uniformly bounded inverse:
: 1L QP @), I <v(@eS)

The proofs of Lemmas 6.1, 6.2 for the case n=2 may be found in [6]. Using
Lemmas 6.1, 6.2 and Theorem 2.1, we can now prove the following:

THEOREM 6.1. Suppose that the conditions of Lemma 6.2 hold. If
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; . 1 .
where d =a¥w max | x4 f (t,xo,...,wo(“))—— S f(8:20 (8)seres xo(”) (s)) ds | +
f ) 0 ' '

.
411 (e 2™ ds |

Then the sequence {:c]_ }» consiructed acccrding lo the formulas

1 - .
o ‘(n) . , (n)
yk (z):gf(ss-l‘kxk,"" a’k ) CKS‘ f(t) R'J'f,xk !---:xk )

1

SR ESCIACL

1 i . (n) .
Sf(s’uk-l-i Tt O gy g uk"H) ds
0 .

_f_(s,u ) ds

' i) : .

’ I S NPT |
Sa&g E+17 R k1 k+1

Ty, O=u+ Dy

converges to a solution of (6. 1a — 6. 1b), and the estimation (2.4) _hblds.

7. NON-LINEAR NEUMANN PROBLEMS

Consider the non-linear Neumanp:p,roblem:

£

Au=F (z,u,D%u) (xeG) _ . (7.1a)
B 0 (vesG) , . (7.1b)
on

where G — RN is a bounded connected open set with as mooth boundary 3G,
and « is a2 multi-index 1 < | « | <2 '

By | . | we.mean the absolute value or the Euclidean norm on R™ for some
0 < m < N (N & 3)/2 Further, the inner product on R™is denoted by

-

‘ E.n= b ‘3;. N and the inner product on L, (G) by (ese)e
i=1 '

Define

Y — faew? 6): 2 —0(ed Gy
(1e} ©): Lm0@ea0)
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lal={ ID“ 2d2}112; ¥ = Ly (6)

-

&

G
Ilgilﬁ(SIQIle)ﬂ?,X = {ueX : _fu(r)d =
G

— {gel’: Sy(a:)dx = l.')};X2 = Y2 E{COﬂSf}
G

I
3
73

gu:_aa,-zr(u):f(xuna) |

Then the problem (7. la — 7, 1b) can be reduced to an operator equation of the
form (1.1).

An interesting discussion on existence and uniqueness theorems for the linear
Neumann problems is given in [9]. A proof of the following facts may be
found in [6].

LEMMA 7.3 A: X — Y is a bounded linear Fredholm operaz‘or with Ker
4 = X PR = }

b . X:_'XI@_XQ‘.}:TIGB},?
Moreover, the resiriction :L/l\Of A to X1 has a bounded inverse with the norm B.
Set Q =] y.(2)dw ; Py = y — Qg. Clearly, P and Q are linear hounded
D G ! .
“projectors [ QI<CH; | PN <141 where U = mes (G).
LEMMA 7. 2. Suppose the funciion f (z, u, ) satisfies the conditions :
ij a
Qf:6xR x R" P .
ou ok
-
) . n 2 12
are joinily conlinuous for x€G;|u| woeand |E| = (T | §1) =<4 o
‘ i=1
) L@y <o Leny<a ’
) ] PR _
A -(:c,,u,a)—a—f(z.u’a’)| <L(lu—wpf 41z—pP)P
.
[ ny - @en|<Liu—uf +iz-gH"
e Y xeG ¥ (ul |0, 5] (8] <o
\ of ~1_

) — @k >g@ fg@)dr =y
au ‘ G

(eG: Jul, [E]<<Te)
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Then the operator F(u) == (@ u, D) 18 continuously differentiable on X, and

forall u,w e X:
4 QF (1) — QF ()i < VRH Liju—ul
IF@l < VZai I[QF (u)] Y
2.1 we get the following

£

From Lemmas 7. 1 — 7. 2, Theorem 2.1 and Remark

- THEQREM 7.1 Assume that ihe, condilions a) — c) hold.
If q_4a2M(1+M)By+V2u vL&2 < 1

whete &= VT Hapylibuy — F@ wy, DUEp) + L (@ Uy D*uy) dx || +
FYE I FE g D) 451
then the sequmce {a, }s constructed as folluws ;
Dw,, .y == f(w,u, ,D‘*u ) -—j f(:t:, PR L o

dw
il g (wed6)
on

. Sf(x’"wk+1 + 0Dty g) 42
G
@ T+ v, D*w, ., d%)
Py g S k7 Prt

V1 = %k

Up g = Wptt -+ Vet

converges tod solution of (7.1a — 7. 1b) and the error estimation (2. 5) hoida

8. NON — LINEAR INTEGRAL EQU ATIONS

We shall consider an integral equation of the form :

1 1 .
x (i) - of-K (t.s)yx (3)ds + Of fd,sx (s) ds
g the Hilbert — Schmidt condition :

(8.1)

where the kernel K (f, $) satisfie
K@=k  (&ielhiD

(,flf]L LK(L, 5) |2 dsdt < oo
0 .

Set Tw = | Kt 9) a(@ ds3 - F@) =ﬂf F (&, 8 2 () ds
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]
H= L2[0,1]. Then T is a linear, self-adjoint and completely continuous
operator and we can apply the results of Seétion 3.

Assume that, -the eigenveciors {LI }:’;1 of T form an orthonormal basic

in L,[0,1] and the corresponding eigenvalues are such that :
M=l=..=k, =141 (i>_m)

The general scheme (3.2a — 3 . 2d) leads to the following iterative
process : )

1 =6fl!(7 (Lsyu,. ,(s)ds+ (ff (t, s, (5)) ds —

-5 } JE (s @, (e, (0) dsd e, (2) 3. 2a)
i=1 -
| _ o
T o= U .4 = ge , (8.2b)
11
5 ?SS o & s 22 (s)He. (D) (lsdt{ (g("*"f) E(H))
i=1 ¢ §
= jﬂ [ 1527, (S) e;(Ddsdt . (8.2)
(G =1, 2y m)
L = e(ntl) . & .
T+t 0= Uon+1 (t) a : lgl & ® (8. 2d)

As an application of Theorem 3.1 to non-linear integral equations we can
state ;

TREOREM 8. 1 Let f (i, s x) be continuous in i, s and twice continuously diffe-

renliable in z, and for all {, s |[0,1] |2 | <Tco: 59-— s 8 X)) I all,s);
. . ez

\ .
.._a_i (t’ s, )
ax?

11 1/2
‘with  w={ S S | a(f,s) | 2dsdt} << + oo
(L]

Further, suppose that the malriz.

7 |
()= ( Sgaf (1 5 2(s)ey ()¢ (Ddsdl) (i = 12m0m)
) 00 )
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. .- . 1 m '1/2
—_ t d ——— a
has non-—zero determinan with — 52_ i Aijl ,‘ < vo
, ij=1
where 4. ; is the algebraic complement of a3
" |

' If there is a number r2>0, such that Lry,<<l _
= 20ty b+ Ly 82<1528 (1—q) < 1 where v =, (1= L voy™s
w>sup |1 —Ar |t and 8 = ay ol A%+ PF(o) i+ il QF(xy) |, then the
i>m J T
sequence {X,} constructed according to (8.2a—8.2d) is convergent and the error
esiimation holds. : ' (2.4)
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