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This paper is devoted to the theory of ctraces» in the Sobolev — Orlicz -
classes of infinité order, The questions to be treated here are closely related
here are closely related to the subject malter of the author s papers [1, 2, 3],
where criteria were obtained {or the nontriviality of Scoholev—Ozlicz classes

»and spaces ol infinite order and the hoinogeneous Dirichlet problem was studied
for the equations with arbitrary non-linearities :

12 (—1)* DA, (%, D¥n) = h(x)2 e O, |y ]| < ]l, ©.1)
«|=0 |

D5 =0, |w}=0,1,. : (0.2)

In order to study the inhomogeneous- Dirichlet problem, namely to solve

. equation (0.1) under the boundary conditions

DYy ‘ag=fm(m’), 2 63, |w|=01,... (0.3)
we note the foll(;wing.

As in the case of equations of [linite order, it turns out that, in going over
from the homogeneous boundary conditions (0.2)' to the inhomogeneous
conditions (0.3), one does not encounter fundamental difficulties as long as
there is available a method for silving the homogeneous problem, and
the boundary values fm(x-)’ fo]=0,1,., °ao be extel_lded into the inferior of



the domain as functions of the corresponding energy spaces. Thus the stody of
the inhomogeneous problem (0.1), (0.3) resis on the theory of traces : of
{unctions from the Sobolev—Qrlicz classes of infinite order. |

It is the aim of the present paper to discuss. We [irst give necessary and

sufficient trace conditions for the case of an arbitrary domain QR These
conditions, being universa}, are not easily verifiable in our opinion. Therefore
it seems natural to seek, in conjunction with the trace criterion, sufficient but
easily verifiable conditions on f @) 1o]l=0L.. , under which there

exists an extension from the Sobolev—Urlicz class of infinite order. This
question will be solved for the case where dim Q@ =1,

Note that the method we shall use in tkis paper has been worked out by -
Dubinskii in [4] for the traces of functions from Sobolev spaces of infinite
order. ’

.1, TRACE CRITERION

In [1, 3] we obtained -a criierion for nontriviality of the Sobolev—Orlicz
classes

0 oo oo
W 2 iga @} ={u@):a(x)eC ()
) = lE § 0o (DPu(E) doe <+ et
: oot '
where ¢, R'— R! ore N—functions [6,7], a~—multiindices of differentiation,

D* = a*? ax‘;l‘" a“nlaxﬁ?’ Q CREn>1. is a region whose boundary is

denoted by 39, x = (Zp,..» ) € R". In this seclion, assuming that the classes

w2 { @.,2} are nontrivial we consider the following question :

What must the f,(z), * €9, Jw | = 0,1,... be in order that there exists a
function u(x) 3 C~(Q), such that D% | 3Q = £, (x"), | v | = 0,1,..., and, in addi-
* tiom, p~(u)<-t-o? We say in this case that the functions f,{(x"), |w[=0,1,..
are the traces on 9% of a function u(x) from the class

W= £{p.0) = {U(x) € €= (@),
p(u) = ’Eo J @ (Déu()) dx < 4-e0},

and that U(x) itself is an extension of a Lrace in the just mentioned class.

Before stating the trace criterion, let us introduce the following definition:
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DEFINITION 1.1, [8] T'he domain 2 ¢ Rn"is called admissible if for any p>1
the imbedding
| Wh® > L, (@), p'= "L,
’ b (n — p)
is valid,

We denote by We (@) the following set of functions

W;d Q= {ux):D*uecr {92 Q1 ‘

)

where g {9ar Qf = {u(z) : Efz‘ Pu({))dr < H-col.

jLet N be an arbitrary positive integer. Suppose that for any N the boundary
values £,(2"), | w { <N — 1 admit an extension into the interior of  from the

, class - !

W@ = N We (@),
[N - 7"

i.e. there exists a function u(z) satisfying the conditions

Dmu|aﬂ = be (x’)’ @ g BQ’ I W i = 0,1,-.0

e = I oD, 9.) < +oe
|of=0
THEOREM 1.1. .Lét the domain Q be admissible. A family of boundary func-
tions f, (), " €9, | w | =0,1,... isthe lrace of a function ux) e W= £{o,, Q)
if and only if .the following conditions are satisfied :
1) For any N'= 1,2... the funciions fo(x), e, |w| <N —1admit ai
extension in the class, W (Q); ' '

2) There exisis a sequence of extensions uy e W(Q) such that

oMuy) < Const, for all N.

Proof. In fact, if a family of functions fu(z’), =’ €30, | w | = 0,1,... is the trace
of a function u(r)in W= £{o,, Q},then for any N:=1,2,... the system of functions
fo(x?), €0 | w | < N — 1, is the trace of u(x) in W o(€2). In this connection,
clearly

oM uy) < N < p=(1) < e,



Conversely, il conditions 1) and 2)'of-the theorem are salisfied, then by
imbedding W, () in G (2) (k depends on N (theorem 3. 9, p. 71 [3}) and

using the diagonal process we obtain ‘that there exists, a subsequence ol lic
sequence U \(x) which converges to a fqnction U (x) € € () locally uniforml;

together wilh all of its derivalives. Il is evident that U(x) satisfies -the
conditions. ‘ '

DI{? as) = fu) (X’), "€, v = 0,1,...

Also, condition 2) implies that o™ () < const, and hence U(x) is the
desired extension. The theorem is proved.

Remark. As noted belore, the verificadon of the conditions of Theorem
1. 1. is difficult. Therefore in the seque. we shall seek very simple sufficient
trace conditions more suitable for practical use in the case dimQ =1, 1. e

Q= (O,a)cR}-'

2, SUFFICIENT TRACE CONDITIONS.

We consider the following classes of fu_nétions defined on Q = (o, a) T R
R .
W= £{e,, 0, a)} = {U@) € CF (0, a), /" () < + o}
. o :
From the results of [1, 3] it follows that the class W™ £ {cpn , (0, @)} is

nontrivial if and only if the sequence M {(p n(l/a), Il g, = 0; o, if q)ﬂ

=0}, n=01. . defines a nonquamanalvhc Hadamard class (see [5]). This is

equivalent to saying that the sequemce ‘J satisfies the condftion

‘. 1 oo ’
lim M {.:1 = too, X Mr;:zlﬂ[n-i-j << +on, @ 1)

n—roce . n=0
where M/, isa convex regulsrization of the sequence M by means of

logarithms [5]. Suppose
o .
W= £ {r\on » (0, @)} is nontrivial and consider the class;
0 . : . _
W= £ {¢,» O a) } = {U) € C= (0, a), p~ (V) < oo}

Further let there be given two sequences of real numbers bm, ¢ .,

m’
mr_O,l,... . s ’
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We wish lo [ind a {unciion ({dye v g2 {i

PPN
O ]

m’

m’

D™ g (0) = b ooy (@)= c_,m = 01.,

Here we give simple sullicicnt conditions for ihe sequences H . ¢  to be

L m* g )

he i = i ¥ 1 P A7 2 EETER . .

the trace of a function u{xle W= 2 {{pn > (0, @)}, As will be scen below, it sul-

fices in the connection to consider the case ¢, =0U, Lo to conmsider conditions

et . : en Too [t . . P

on b under which a Iunction u(z) e W~£ { ¢, 10, a)} can be found satislying

the conditions

DM u@) = b DM u(@y=0,m=01,., . 2.2

THEOREM 2. §. Let the numbers bm be boundary values of afunction f () that
is analylic in a neighborhood of zero, i. e. such {hat the series

= £

m—y m!

converges on some (nierval [0, b) C |0, al. Then there exists a function v{x)e
W=2{ & (0, a)} salisfying condition (22).

Proof. For the construction of the desired function wec use the following
classical result [5], which is a corollary of Lemma 1.1 in [3].

LEMMA 2.1 Suppose .UC is a requence of posiiive number a salisfying condi-

tions (2.1). Then for any b > 0 and q € (0, 1) there exists a,:mcizon F(a) efeo 0, by
satisfying the condilions

1) F(0) =1, Dk F(0)=0, k=01,...
2) DX F(b) =0, I = 0,1,...
3) max | D" ()| < gF Me >
Te (O b)
Let

F(x) f(x). x [0, b],

u(x) = 0. v eb, dl

where /(r) is delined as in Lemwma 2.1 for b < e and q < 1/2. Clearly, the func-
tion u(x) satislies the houndary corditions (2.2). We claim that 0™ (1) << + oo,
foe. that u(x)y e We 2 10, K0, @)}
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Ind(;,ed. using Leibniz's formula and the analyticity of the (%), we get for
any & € (0, b) ]

D° (@) | <@L T (n—K) i @D @3)
k=0 .

where L is some constant. Farther, using the logarithmie convexity of the

sequences M;andn!, we get from (2.3) t]flat : : TN
- 1 . -
D" u@) | <@L nt I - 2.4)
k=0 -

where In_-—.(.h'f!/ n!)]{/n q/L. We now show that
] 5= ifn—soe,ie
n .
- 1/n :
lim (n!.,f Mc) =0, - (2.5)
n-—»oco n . :

Indeeds for any N any 22> N and the followng inequality is valid:

C‘ ¢ 1 n !
3 . [ ——
c\—=1/n ¢\ ~1jn Mn....l Mﬂ_z MN ~ |p—Nfn—N
(M ) ==(M ) : N |
N N ME M Me <
n n—1 N+1
¢ n—N
M
c\—1n| & g—1 1 |7
V)
\(1 N k::I\H-I :lff,: n—-N <
.—N -
: 1/n 1 z _
<(u )" vz | | @)

where, using condition (2.1),

14 c .
EN = M M’k —3-0,.N-*m.

Nkt KT1
Hence by the Sterling’s formula we obtain that

i/n in
n! - n
(Uc ) ““‘[ e ( )\/21111] “é"‘é
K N F n,__l\'r
7/ " N/n o ;
M;T n—N- EN e ‘ -
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.

waere K is a positive constant, It is obvious that for any fixed NV with 1 — o=
) i

we have:

S— N
(K“\?znn )m n RH—N)‘__B_I
' — n

71—'N (LN

f{;

This means that for sufficently large .n we get [rom (2.7) the inequal{ty

Tin Ve rr . . :
nr! < 61\ . 2.8)
M :
AN

By (2.5) the last inequality mecans:

Y :
(n;)/n""‘ﬁ, I —> oo
My

So the formula (2.5) is proved. : ,
We now return to the inequality (2.4). Since [ — o= as n — =, we have

for large n and any xr e (0,0)
: s

‘ , [, —1
[Du(@)| << 2L)"al 3 () << @Ly"n! -l—'-’-—l < 20L)nr 7 <
k=0 n -
A2q)n M§ < q," MG, where q, << 1 since q << 1/2. Hence

oo o a \ o . m“.
o ()= 2 [, (D uf@))de< K = o (@2 M) <K I q7 lja <o
. == n=o :

n=o0 o n=o
We have thas proved that u(x) ¢ W= £ {¢ . (0,@)}. Theorem 2.1 is proved.
‘We now consider the more general case. In order to state the theorem, we

introduce the sequence ol numbers

‘ = ¢ ¢ ' .
Sm= ]2’ ‘ Mm-l—.l.' Mm+k+1 ) (2°9)
k=0
Note that S — 0  as m — e by virtue of (2.1).

THEOREM 2.2. Suppose the sequence b_ salisfies the following condition:

There exisls a numbers r << 0 such that

. oy - rin °o\_ .

L = ‘;bm lmax ) S_ — (M )y <+ oo (27.10)
W m=og

Then there exists a function u(x) in W= £{g , (0,a)} satisfying - (2.2).

Proof. The proof comnsists in constructing the desired function u (2) e
€ \\‘”g{(p,t » (0, a)} and will be carried out in several steps:
103



1) We conswruct the basis funclions v (x) such that v, () el (U,b),where
b<{a and .

Do (0)=
where &
ni

2) We put

Wxy= % b v ()

m=10

n is the Croneckel delta,

=0,1,...

(clearly v(x) satislies the boundary conditions D™ p(0)=0b_, m = 0,1,...) and

we establish that the boundary values D™ p(b) satis{'y conditions

1 Dm o) { K™ m!

where N is a posilive constant.

3) We construct the function w(®) in W=£{ ¢

use of Theorem 2.1}

D™ n(by ==
4) We pat

u(x) = v(a), € (0, b)

. » (b a)}such that (with the

prp®), D™ w(a) =0, m=0, 1.

w(.r), re(b a)

and show that u(z) is the desired lunction.

1. Construction of the basis functions. We denole by € > 0 the sum of the
series (2.9). Lel m

be a non-negative integer and let b > I'j2, We choose the
npumerical sequence ’

“ME

& m*
m

where d =
m

o b
k=0 k-1, m

- ‘Then by virtue of Lemma

F_{x)eC” (0, b)
8 F (0)——2(: D F

such that

b) D”Fm (b) =0, n=0,1..,

104

L(O)=0,n=1,2,.

A\

=48 1 band S_is defined by (2.8). It is easily seen that

2.1 there exists 4 function



pu

qJ'.‘ dlf ye

L . m mt+k
¢) max | DVF (2) | ——, £2.11)
x €(N.b) JME

m

where ¢ <1 is a positive number. We now put for x € (0, b)
UO (:E)— E 0(‘T")5'

d1 -‘U.’ld}
v, (¥)= 5 S F (...
0

i

p (%) dm .r(x E;)m--;’ E'Jdm F(z) ct, d 9
fr _——mm -5 ! S {] ] \?’ ¢
m 2C(11172)!S : (S) m(3) €8y dm
f}

This is the desired family of basis functions.

. . i P Ehe e i T . . .
Cleary, the functions v (z) satisly tie e>ndilions D v (0= 6nm n=01."

'1n addition, by the costruction of () and (211} we have that for any

o a_ pm=1=n

| D", (@) | <5

Som—1—mr . tsm—b C(2.12)

n—m )¢
n

| D, (@) | <——, nim. ‘ (2.13)
2C . M7 . :

2. Construction of the function » (x). We put

o0

- b , | :
v (x) > b v, (&) . 14)

m=

It is evident that D™y ()= b m, m=0,1.. We consider the values
D™y {b)y, m =0, 1,..- and we wish to show Lhai

| D™ v () ’s;KmrnL
Indeed -
D,v(by="7_" b_1D"0 (b),

I
m=n
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since D™ () = 0 as m < n, Hence, by virtoe of (2. 12) we have

1 oo d bm-i_n
m
‘ pn v () I“‘i R S LY R e <

P RPN . Lol A PN S 3

m m(m__l)!

<

2 C ~ . m=n

where K = 0 is a constant (Here we use the condition b < r/2 and the inequal-

ity (2. 10)).
3. Construction of the function W (z). On the ba
unction W (x) € W= 2 {g (b, o)} satisfying the conditions

D* w(a) = 0, n=0, L...

sis of Théorem 2.1 we

now choose a f
Dwd=D"w (by= D" v (b),
4, Construction of the desired fuanction. Finally, we put

1 (%) = p (x), v € (0, b)

w (x), © € (b, «)

how that u(x) is the desired fuaction. Clearly, u (x) satisfies conditions

and s
(2. 2). Further, it is enough to show that
@ eW= i 9,,0 0 t since
supp v {(z) N supp w (x) = q.
By virtue of (2. 12) and (2. 13) for any x & (0, b) we have

lD”u(:c)!“\: 0\ bml‘lf)“\ o, @) <

m=

C .
N G M o dy b ™70
< = —= | | gn=m~— — + =10
S B2 ™ T gt me=eh 2C m! Tm o1
whence
1 n- b R P
® (D”v(w))é 5~ ®n - $ ’"' Mo+
‘ m=0 C. M
m
L _1‘-_
+ 1 ® i’i $ bm \ dmbm " -
-2 n Kmmn_;_j C (m—1—n)! o
! (2. 15)

23
“

1
i~
+
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By virtue of (2. 10) we can write

1 i bm | g~ m o
T M R UAE
m
gl |
= 26‘m=0 Mc (1' . (216)

nt

Further, using (2.5) and (2.10) the following inequality ix valid for suffici-
ently large N.

1 o [d_bpm~ 1—n
I, <—2— ®, ( T { bm ! )g
m=n+i C(m—l—n)!

. sl -1
<go (ot 7 Unldn Ty

2 m=ati  C(m— 11

1 (P (b nnr) \-ﬂ l bm I (1!11'1(2‘5)"’11“1
2C

rnwe md

. (2.17)
m=n+1 (m—1)t -
. From (2.15), (2.16) and (2.17) we deduce.

L ——

1 n I b ] dn—m
D“v x — ¥ m S
0, D0(z) < 1 . +

m i

o |b_|d_(2p)m-1
+———<p (6~ 1. L .
neit @Dl

Consequently,
© p
c@W= I o (D u(m)dz <
n=09

b3 oz b, lgm

Z
2ca n=0 m=0 M;

<

-+

+ b z (b~ "n1) )E' -——___Jb"‘ldm(zb)- 8
2 ag " m=n+1 (m-—1) @1y
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We show that series in the right hand side of (2.18) converge when b < rf2.

Indeed, by virtue of (2.10).

oo ' n Lb | —m
2 mlg” <
n=0 m=0 M" -
m -
. oo R +1 o -
< T ib, 1O 1D df <o
n=m ' k=0

Further, from (2. 10), (2. 8) and (2. 1) we get that

T T N e B L
n=0 m=n-11 (m — 1!

o
Lei 9, (b TnY) < + oo
m=10 .

These concludes our proof that v(a)e W™ £'{ ¢, » (0, a)}. The theorem

is proved.

Example.’ %uppoqe \\ =L {9, O a)} is a nontrivial class [1, 3] and

?pi¢a), n= 0,1 . is a logarithmically convex sequence, then

M l13.‘1 = Pu ! (a)’

P @ o (@ -1
Sm=————+1—-—-’ _mr2 L < Ke) s
“1(@) ¢ 1 (@
n m+1 )
where K > i8 a const’:int.. Consequently, for 1a_rgé m ,
h m -1 e L B -1
mazx kSm = _1), ; (M, )) = 1fg _ (@)

then the condition (2. 10) takes the form
.
< oo
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