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More a decade have passed since lhe appcarance of the famous paper
by H. Kunita [1] on nonlinear filtering of Markov process. During this time the
nonlinear [iltering theory has grown out of works of M.Fujisaki, G. Kallianpur,
H. Kunita, T. Duncan, E. Wong, M. Zakai, P. Brémaud, Marc Yor, Van Schup-
pen, ete (3, 4, 5, 6, 7]. Most of these works concern the model of dynamical
Wiener driven systema with white noise while a filtering theory for the case of
point process observations is only at an early stage of development (Sec [2]).

It may be worthwhite to insist on the [act that there is a parallelism
between systems driven by Ito differential equations.and point process sys-
tems and almost the results on the former found counterparts in the lalter,
Such is also the case of [liltering problems: Almosl the essential resulis of
Kunita in {1} can be translated into the case of dynamical systems of « paint
process noise ».

In this context the present paper aims at considering the problem of
nontinear Tiltering of Markov processes with point process observalions, by
reference probability method, i.e. by alternative to innovations method that is
taken use in [1]. The paper is constructed as follows:

in Section 1, we recall some facts on point process martingales and state
the problem in which we are cohcerning the so-called «quasi — filtering »

=, (f)instead of the filtering =, (f)that is defined by the conditional expectation
EIf (%) %]
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in Section 2, alter recalling a quasi-fillering equation (due to'P. Brémaud)
_for Poisson driven Markov processes, we prove that this equation is, in some
sense, equivalent to that of Kunita *s type with point process innovations,

Sechion 3 is devoted to a theorem on existence and uniquengss & the solution
of a stochastic differential equation for quasi-filtering process.

1. PRELIMNARIES AND NOTATIONS

Suppose that the signal process X; is a Feller Markov process on the
probability space (2, ¥, P). The state space U is a compact separable Hausdorff
space and Py, t > 0 is the. Fellerian semigroup asso.ialed with the transition
probabilities P, (X, ), that is

P (X) = [ P, (X, dy) f (y) (L.1)

maps G (U) into itself for all t >0 aad satisfied

lim Pf(X) = f(X)
t—0

uniformly in U for all f € C(U), where C(U) is the space of all real continuous
functions over U. ~

Let ¥, be a point process adapted to some history ¥, (that is to a non-
decreasing sub o — fields ¥, C, t ?>0) and by is an ¥, — progressively measu-
rable such that for every t > 0, ‘

t
[hds < P —a,s (1.2)
; :

:

~ The point process Y, is said to haye the (D» %) — inlensitir h, if the
following reiation holds '

oo

E[Scpdes]= Effq;,,hsds] 1.3y
0 0 '
for every ¥, — predictable process ¢y. ' L
It is well-known that if (2.-) is satisfied and Y, is a P — non-explosive
4 t
point procass then M, = Y, — f hds is a F,—lo al martingale [2}, This
0
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relalionisalso a martingale characterization of th= mtensu} ol a point process by
" anextension of Watanabe’s Theorem [2]: Let Y, beanon- -explosive point process
adapted to F, and suppose that for somg nonnegative F, — progressive process
t . | -
b, Y, — f h,ds is a local martingale, then h, is the I, — intensity of Y,.
0
Thus, in our stochastic dynamical system, we consider a Feilerian syslem

process X, direct observasion of which is not possible, and data concerning &, is
observed by point process Y, of intensily hy, i. e, as an observation of the form

t .
- Y, = fhyds + M; (1.4
, T ,
where ), is a G, — martingale and called the « point process noise »,

Denote by Q\ the = — field generated by the family of (Y;, 0 <C s<(t). The

iamiiy (& Y, t > 0) is called the internal history of the process Y,

Let B(Xo) be a sub o — field o(X) and lel G == ¥, \/ B(X,).

The conditional distributi on of X; by the observation data &,
7,(F) = Ep [1(X) | G*). £ & C(U) (1.5)

ié called the filtering of X; based on the data ‘EF? VB (Xy)

in the method of reference probabitity, the probability P actually gover-
hing the statistics of the observation Y, is obtained from a probability Q by
an absolutely continnous change Q — P. We assume that Q is the reference
probability such that Y is a (Q, &,) — Poisson process of intensity 1, where

gt:‘“g};vg:o b

(@ is the o — field o(X; t 2> 0) which records all the evenis linked to the

»

system process Xy

Denoting for every t 2> 0 by P, and ), the restrictions of P and (} respecti-
vely to (Q, &) we have P, « Q,, and the corresponding Radon — Nikodym

derivative is given by -

. t ’
L, = g&‘ — ( ‘1T . hAY, ) exps S (1—h,)ds , (1.6}
Qt o~<ssut ( |
Q

where h, is a nonnegative bounded measurable and G, — predictable pro-ess
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The following assertions are known {2}

.' t
1. L, is a {Q, %) — martingale and M, = Y, — [hyds is a (P, &) — mar-

o]
lingale.
9. The restrictions Q, and Py of Q and P respeclively to (2 Gyp) = (€, g;)
are such that L, = dP/dQy = 1.

3. Cj:; and gi are independent

4. Let Z, be a real — valued and bounded process adapted to &, then for
every history G, such that G, € T t > 0, then
Eo [Ly | Gil Ep [Z, 1G] = Eo _[Zt L 16) Q-as ’ 1.7y
or equivalenily, '

BolZL 1G] p. ‘
Bl G (.9

This analogy of Bayes formula allows us to replace the estimalion problem under

Ep [Zt | gt] =

P byan estimation problerﬁ under Q. Namely, by putting §t=94t=g='f vV G X
we have to be concerning with Eg [LZ, | F'] instead of Ep[Z;]§¢']. Let us
introduce '

DEFINITION. Under the above assumplions on state process X, and r)bservation-

Ty, the quantity
() = Eo[Lf(X) 1 F°), T € () (IR

is called the quasi-fillering of X, based on dala G* = 91: v B (Xg).

It is obvious irom this definition that

o m®
7, (1) = (1) (1.10)

The problem under consideration in this paper is that of finding a con-
pection between the filtering equation of Kunita’s type for m, (f) and the
quasi-filtering equation for . (f), and that of proving the existence and
uniqueness of the solut on for the latter. ‘

Before dealing with the quasi-fil:éring, let us ¢translate » some facts in
the Fujisaki — Kallianpur-Kunita Theorem [1,4] to our case of point process
~observation. The proofs can be fonnd in [7] and [2].
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THEOREM 1.1, Lel =, = Ep [[(X) | G be the filtering of X, based on
Gt = 917 YV B(X,). Then the process

— t
- ' Mi=Y, — ] =ng,(h)ds (1.11)
Q -
is an ¥ — marlingale. Farthermore, Gt and o (M, — M,: t <L u < v) are

independent for all t > 0

THEOREM 1.2. If m, is a separable square-iniegrable G* — marlingale, il'is
represented ds ' :

t , -
my — m, | H(dY, — agds) (1.12)
0

where H, is a G* — predictable process such that

t : . : .
[l Hy| hods << oo P-tts,, 0<<t<Toe {1.13)
o :

¢
A modification of this theorem can be found in [2] where the considered

point process is a multivariate one of intensity hy = (h(i)) I<i1<<N

THEOREM 1.3, If A is the mf:m!eszmal generalor of the semigroup P, of the
signal process then LA satzsfzes the followmg two type of slochastic differential

equalions:
t

t
(1) = =) + | w(a)ds + § Gra(fh) — m(O)m()) i,

T E DA) (1.14)

t .
) =P + | (Rl(PeDb) — 7 (Pl 7 () A

0

¥t € C(U) S (1.15)

J. Szpirglas (See [3] for instance) has proved that the two equations (1.9) and
(1.10) in [1] are equivalent. Of course, the same thing can be done for our
case to conclude that (1.14) and (1.15) are equivalent.
Now wé turn back to the quasi — filtering.
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%, QUASL-FILTERING EQUATION

The assumplions are the same as in the last Section. In particular, X, is a
J — valued Feller process with semigroup (P, t = 0) and Z = [(X,), f: U~ Ris

bounded and continaous, The following result is due to P, Brémaud :

The quasi-filterfag () = Eo [L(X) | 7] satislied the following equation:

t
F,(0) = M) + | For ((b—1) Piul) dvas PRV

where =, () = Eo[f(X,)] and v = Y, —t (which isa (Q, ") — martingale).
g} '

Now ive will show that the quasi-filtering 7, () defines uniquely the filte-
ring =) satisfying the Kunita’s equation (1.15). '

THEOREM 2.1. Lel % f) be a solution of the equation 2.1). Then wf) =
==, (P, (1) satisfied the equation (1.15).
Proof. According to Ito’s [ormula, we have

L —

(f) ___?(i) Sdﬂs(f) S () dm(D) o

s U Jmo ) =IO

, () F d(mD), (1)

+S“( d< s1), 1) > — S__-S——-—: 2.2
AERTEV R, e (D) ‘

Denote by (1), (2), (3), and (4) respectively the integrands in the right hand
side of (2.2). |

Since 7, (f) is a solution of (2.1) one can see that
d_’;; ) =?;— (b — 1P, —,Dd7,

hence

Ay mf(h—1) Pt—sf]
e (1) XY

=m, [(h — 1) Py-5f] deer

R, .
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. £
Noticing that LL::I-}«SLS_ (b, —1) d7, (see |2])

) . v

L
w) =14\ "% (h — 1) dv., we have
_l\ 5 J '}t
Q

E YO e (S B (s | S
— ==t ey () T (R Dy,
Ry mm T rOmG=Di

(2)

A computation for the integfand (3) yields:

=, (f L Ts(h — 1) | T(Py_,f)
(3) é%ld<mﬂlmm>”=[%L )]T{ia’d
BRI ) T (1) w5(1)

| = (Pyf) m¥(h — 1)ds

[

And finally we have

o AED, m ) (NP ] T (h— 1)
© = wD (1)

8 =

= = f(h — NP, _flr(h —~ Dds.
S0, summing up (1), (2), (3) and (4) we have:

m[h — 1)l)$—sfl d(Ys - S) - nﬂ(Pt‘"Sf) mg(h — 1) d(Ys = S) -+

and  therefope

+ m(Pol)md (b — Dds — 7, (Py_f) m(h — 1) (@Y, — ds — m,(h — 1)ds} =
= my(hPy_[)(AY, — m(h)ds) — me(P_ D)m(b) (@Y, — my(h)ds) =

= [my(hP,_£) — = (P,_.p)w, (h)]d M.,
This completes the proof, '

3. EXISTENCE AND UNIQUENESS OF THE SOLUTION
OF A STOCHASTIC DIFFERENTIAL EQUATION

As in [1], the set of all probability measures on U is denoted by 2,

Let v, bea point process G* — martingale and x, be an J'?{('U) — valued
variable independent of(y), defined on a probability space (Q, %, P

Consider the following equation

ﬁ@=%m+g@ﬂmﬁﬂﬁﬂn

& - 408

CS.i)
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A _U) — valued stochastic m, is called a solution of (3.1) if =, is inde-
pendent of oy, — Yu» 8 <L U << V). The quasi-filtering =, defined in Section 2
where y, = Y, — tis a solufion of (3.1) in the above sense. The main result of
this Sect’ on is an analogy of Theorem 2.1 in [1] The method of Kunita is applied
but the proof is simpler than of [1] because the equation (3.1) here is simpher
than (2.1) in {1}

THEOREM 3.1.. There is a umque solutton of (3 1) for arbttrary initial con-
- dition T

Proof. First we show the uniqueness. Assume =; and =, are two solutions of

(3.1) corresponding to the same condition =,. Put

o) = E(| =) — = (D) ), (3.2)
where T is' the mathematical escpetation under P, then
o) S2E(Im(®) 14 = (D)% < 4]t 3.3)
where !
§f1l = sap [ {(X) |
XeU
We have also
t
o) < g pa-((B—1)) P,_yf) ds 3.4
0

Substituting (3.3) into the integrand of (3.4) we get

el S Afh— 1l ' (3.5)
Applying repeatly this estlmatlon n times to the right hand side of (3.4) we ‘see
that

Al <Ih— TR fge | (3.6

. Letting n tend to infinity we have p({) = 0 for allt > 0 and f & C(U) and
thlS fact shqws the uniqueness of the solution of (3.1).

To prove the existence we notice at first that in above Section where
Ny = v, — t, the quasi — tillering =, based on gﬂt{ v o(r,) 1s a solution of (3.1).

This quasi — filtering w, can be expressed as a functional of (7o yﬂ—q}o,
0 < s < t) which is denoted by
(7o s — 10 0 <5< ) 3.7



Now in our situation, by replacing this_(r,, v} by (gt’, v,) where 7, is anew ini-

tial condition and ﬂl'; is a poinl proecess Gt marlingale we see that

=0, v, 0 s < 1) ,

is a solution of (4.1). The proof of Theorem 3.1 is complete,

Remarks,

1. "We can see that the solution =, of (3.1)is ¢ (y, — ¥,; 0 < s < t) — me-
surable by applying the successive approximation method of Kunita {1] lo
solve the equalion (3.1). Unce again, the proof is simpler than thal of |1]
because of the simple form of (3.1).

2. In the case where ¥, = Y, = t, it is not difficult to see that o(y, — v,

t
0 < s < 1) coincides with (3L, 0 < s << t) where M, = Y, — S x, () ds i

Q

the point innovation process mentioned in Theorem 1.1,
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