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The aim of this paper isto present some fixed point theorems for nowhere-
normal-outward set-valued mappings. In Section 1 we {irst recall some defini-
tions and auxiliary facts concerning properties of projection onto closed convex
sets in Banach spaces. Next, we present a fixed peint theorem for compact
nowhere-normal-outward set-valued mappings. A more precise version of this
.result will be given in Section II for the case of Hilbert space, Finally, in
Section III we give two fixed point theorems for non-compact set-valued

~ mappings, which are condensing or non-expansive. The readers are referred to-
(2], [3]. [4], [3] for {he fixcd point results, comcerning set-valued mappings,
satisfying other boundary conditions.

1- A FIXED POINT TEROREM FOR NOWHERE-NORMAL-OUTW ARD
MAPPINGS IN BANACH SPACES.

First we recall some delinitions and properlies of the projection onfo a non-
empty closed convex set im a Banach space, A norm |). | in a linear normed
space X is said to be smooth if the unit ball in X has at each boundary point
exactly one supporting hyperplane, it is said to be rotund (or strictly convex) if
there is no open line segment in the unit ball meeting the unit sphere. We say
that a linear normed space‘ X has property (H) if:

g, ~xand|lz, | — @] imply " ||:ck—.--:1:”-—> 0.

k
w
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LEMMA 1: (Lemma 3, |3]). Lel € be a non-emply closed convex set ina
reflexive Banach space X with a rofund norm. Then for every x e X there is

exvactly one y = =, (¥) € C salisfying

ly —xil=minjlu—z].
ueC.

The mapping = X — C is weakly continuous in the sense that: © — x

implies =, (¥, ) = 7 (r). If Cis compact or X has property (1), then T“b is
48
conti nuous.
Obscrve that = (x) =« for all xeC and ﬁ:c (x) & 8, C ior all x ¢ € (here
aaC denotes the algebraic boandary of (). The mapping = is called the projec-
tion onto €. )

DEFINITION 1: Lot X be a Banach space ‘and C a closed non-empty convex
subset in X . Let x be a point of the algebraic boundary 3 Gof Cand r, the

projeciion onto G. Then @) ={y:m, (N = x} is called the normd! outward

sef at . A mapping F: € — 9Y is called nowhere-normal-oulward iff lor al

-

d eaaC we have:
-1 sy — [
T, (%) N F) < {a}.

DEFINITION 2 : The set 2x — :rcc_.j (x) is called normal-inward set at =x.

Fis called nowhere-normal-i nward iff forall x € aa . we have:

2x - 7:51 s 1 Fun) C {a:}

THEOREM 1 : Lel C be a non-emply closed convex subset in a reflexive
Banach space X, E:— 9X gn upper semiconiinuous set-valued mapping with
non-empty closed convex values, sizch that :

1) F is néwhere-normal-outward

2) The image F(C) is relatively compact.
If, in addilion, either G is compact pr X has property (H) lhen F has a fixed

point.
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Proef : Since the projection T X — ( iz continuous (Lemma 1), the
mapping F,: cleo F () — 2% defined by P, fx) = F (=, (x)) is upper semi

continuous with non-empty, closed convex values. Moreover clco V¥ (C) is compact,

Hence, according to the Tikhonov-Kakutani-Ky Theorem [1], F (v has a fixed
point, Let x be a fixed point of FI , 1.6, 2% @& F;f (x). We claim that x* ¢ C. Sup-
pose contrarily that x* € . Then = (2} € 3 (C) and I, (g7) = F(m(x%)) 2 x.
‘Thus, we obtain

xemg T (w, (@) N F (@)
This contradicts the nowhere-normal-qutwdrd conditlion of F. We have now

TcC(a:‘) =% g E1 (x*)y = E(:c*-). This completes the proof.

COROLLARY : Theorem 7 is still wvalid if the condition « T is nowhere-nor-

mal-outward » is replaced by « F is nowhere-normal-outward »,

Proef : Obviously, the mapping B oG —> 2% defined by, E'I (¥) = 22 — F(x)
satisfies the conditions of Theorem 1, So F, has a lixed point. Since, obviously,

every lixed point of F1 is also lixed point of F (and vice versa ), fhe corollary

follows.

1I. A FIXED POINT THEOREM FOR NOWHERE--NORMAL—OUTWARD MAPPINGS IN
HILBERT SPAGES

In this section we show that the projection onito a non-empty closed convex
set in Hilbert space H is non-expansive. i. e.
Mm@y —=og) | < Nz — gyl foraliz, ysH.
-
We also prove that the normal-oulward set P (x) coincides with the normal-
outward cone, which is delined below,
Let H be a Hilbert space { a non-empty closed convex set in it and x a
point of 8 C. The cone
Nc(rn)z {y.eH:Re <Yy—z U—x>0torall ue ()}
is called the normal-oulward cone of € ai x.
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Let z,, e be two vectors in H with e == 0. Consider the straight line L =
={z, 4+ he: } e R). It is easy to see that for each w e« H its orthogonal

projection, =, (), is of the form

Re (e, a:——?vo)

leli?

Hence, tfor any x, ' € H, weget

_ | Re { e, :r—w')['2 (e, &) — |Re<e,x—x’}1'2<

.Y 2
@) = e kK HE

| (e, x—x' Y1 2
I eedl

By means of the Cauchy-Schwartz inequality‘rit follows that

. i TEL(x) """“:L(x’) " < ” x‘_q:, ”

the projection =y is non-expansive,
LEMMA 2: The projection =, onto a non— emply closed convex sel in Hilbert
space is non— expansive,
Proof : It is well known that =.is well defined (Lemma 1). Let x,x’ be two
points with 7, (x) # = (x"). Consider the straight line passing through
o (x) and : . .
T, (@) L= {“C @+ A (mp (@) — (=g (%)) - A € R}
Observe that on the strz{ight ling L the poinis w¢ (x) and I’TC (x") correspond to
the valueé A=0and =l 1 , rgspectively. The interval [ (¥), 7 (x")] corresponds
to [0, 1] and is entirely contained in € because of- the convexity of (. Suppose
=, (®) =T¢ @) + A, (7¢ (@) — = @) We claim that A < O. First A can not
belong to (0,1]. Suppose contrarily that Ay e (0,1]. Since TC,L (@) + =, (@) and
-n:L(x) e C we have j| n;(x) — & | < |l ep@) — |. This contradicts the defini-
tion of =, Further, A, can not be greater than l, Othen‘vise, we shouild have

| o ) — @) > Il mg (@) — i

’

J .
which again contradicts the definition of w. Similarly

e () = mp(Y) M (mp() — m(5) with A
Then
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T (X)) — 7, {T) = h; — Ay il =) —th(;l‘) > wo() e

{i follows from the non-expansiveness of ® that:
brg(@) — 7@ P <l =y @) = 7@ | < )2 —~ 2

This proves the non-expansiveness of e

LEMMA 3: Lef G be a non-emply closed convex set in Hilbert space H.
Then the normal — out ward cone NC (x) coincides with the normai — ouitrard

sel Tr:(x) for every a g C.

I;roof: We' lirst prove that Nc(m) D 7:;1(:{:). Let i.;e N ¢ (®). For every
7 e C we have:

flog 2= 00— T+ v—z %= || o~z ||? +2Re < vz, — gy~
Flz—gP>1a—y|? |

Thus, z is the point in C nearest to y. Therefore 7o (Y) = x, that i.s y e 7::(3;)

Now we prove -n-.._j(:c) C N(z) . Suppose To(y) = = . We have to show that
c

Re<{y—x, v— x> 0forallvecdC.

Suppose contrarily that there exists v ¢ C such that Re <C y —a, v — 2~ 0,
Clearly, v # z. Consider the straight line I, = {a: A —x): heR.} We have

lp—2 A —2) ?=<y—z—h(@w—aly—z—h(»—a) >—
=8 v—z|? 2N Re<v —z,c—g>+ [z—y

This expression attains its minimum only at

>0

A=h, = Re-::v—;v,ﬁ:z:—y>
v — = f*
Becanse of the convexity of C, for 0 <= A = min {4, %} we have x -
+ MV —X) e C ‘
On the other hand, | X - A(p —2) —y|| < g2 — yll.
Hence, ng(y) = x. This contradicts the assumption. The proof is complete.

COROLLARY : Lei' C be a non-empiy closed convex set in a Hilbert space
H, F:C — 2 an upper semi-continuous sel-valued mapping wilh non-empty
closed convex values satisfying : '

1) F is nowhere-normal-outward.
2) F (C) is relatively- compact.
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Then F has a fived point,
Proof : Consider the set-valued mapping Fi: cleoF(C) — 2¢lcoF(C ) defined
by F (X) = F(r () Clearly, F, is upper semizconiinuous. An argunent

anologuous to that used in the proof of Theorem 1 shows that it has a
fixed point z*. Clearly x* is also a fixed pont ol F,

Remark : This result is stated with the assumption «( is compact and
intC == ¢» in [2}. Therefore, the space considered in Theorem 20 of {2]
is in fact of finite dimension. : '

Ill. A FIXED.POINT THEOREM FOR NOWHERE-NORMAL-OUTWARD
SET-VALUED MAPPINGS WITH NON-COMPACT IMAGE IN A
BiLBERT SPACE.

Let (Y, d) be a metric space and R a bounded subset of Y. We
put a(B) = inf {r > 0: B can be covered by a finite number of sets of
diameter less than or equal to r) (compare with [5]). Let S be a non-emply set

in(¥,d), F: §— 2Y 3 mapping. .
DEFINITION 3: F is called condensing il for évery bounded subset B of §
with a(4) > 0, the set F(B) = v F(b) is bounded and a(F(B)) < a(B).

- beB

THEOREM 2: Let C be a non-emply closed convex sel in a Hilbert space
H,F:C— 27 an upper-semicontinaous condensing set-valued mapping with
" compact convex values, satisfying;

1) cleo F(Cyis bounded

2} F is nowhere-normal-outward.

Then F has a fived point. . |
Proof : Comnsider the _set-valuéd n_iapping F cleoF(C) — 2clcoF(C) defined
by E, (z)=F(n (). Clearly, F, is upper semi-conlinuous and takes non-
empty closed convex values. Moreover, F{ is condensing, Indeed, let B bea
bounded set incleoF(C) }vith a(B) = 0. We have to show that a(Fl (B). Since T
is mon-éxpansive, we have a(r (B) < a(B). I a(z(B)) = O the inequalities

a(E(ch(B)) = (a(nc(lj) < a(B)
follows immediatély from the assumptions on E. Consider the case where
a(r(B)) = 0..

Since =(B) is totally boundéd, cl = (B) is compact in C, F(cl m(B)) 1is
compact by the upper semi-continuity of F. This implies that Er(B)) is
totally bounded, i.e. a(F(z (B))) == 0 and we have a(F, (B)) < a(B). Thus, the
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mapping F, satisties the conditions of Theorem (4.1) in [4] and hence, admijs
a fixed point & & F, (X). This point x can not lie oulside C. Indeed, if x* ¢ C,
then = .(z%) e 6aC and hénce x* e NC(“C(C))' This contradicts the assumption 2;
of Theorem 3. Thus, 2* ¢ € and we have z* ¢ Fw (X)) = F(X").

This completes the proof. 7

THEOREM 3: Let C be a non-empfy closed conver subset in a Hilbert space

H F: C— 2Hq non-expansive sel-valued mapping non empty compact convex
values satisfying:

1) clco F (C) is weakly compact,

2 Fxyn No@yC{a}foralae 5, c.
Then IF has a fired poinl.
Proof: Comsider Fy: clco F(C) —» 2¢co F(C) defined by F) (@)= F(n,@)).
Since ™ is non-expansive and single-valved, F.! is non-expansive. By Theorem
5.4 in-[5] F| bas a fixed point = ¢ F (x7). From the assumption 2), it follows
that 2* € ¢ and x* is a fixed point of F,

It should be noted that in the proof of Theorems 2 and 3 we used the non-
expansiveness of the projection 7. In Banach spaces the projection T is not

always non-expansive and it can really vary in different equivalent norms. This
is illustrated in the following example, -

Example : Consider the unit ball.

S={(zy) eR*: 2*+ y> < 1} in R?, S is non-empty closed and comvex set
in every equivalent norm. Consider an another norm defined by [l (zy)]’ =
= max{ [ x|,lyl} Then the projection 7g in (R% |.|°) is described as in
the following figure:
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Take M near B and N such that MN | VB. Denote by d aad d' the usual dis-
tance in R? and the distance. in (R% ||. 1 ") respectively. We have d'(M,N) =
— d(M,H)y=d{H,N) and d'(M,B) = d(M,K). It is clear that mq (V) = B, a (M)= M,
d'M.B) tends to 2 as M tends to B. Thus the projection =4 in (1%, |l.[) is not
d(M,N) : 8

- pon-expansive.

I would like lo thank Dr. Phan Van Chuong for suggesting the considered
topic.
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