ON THE SIMPLICITY OF OPERATOR KNOTS

DO CONG KHANH
Polytechnical Institute
Ho Chi Minh City

The problem of the complete nonunitariness of contractions was studied in [1] and [2]. In this paper we obtain a general criterion for the complete nonunitariness of an arbitrary contraction. The obtained results are applied to the study of concrete model operators.

I. INTRODUCTION

Let H, E be Hilbert spaces, F, G bounded operators from E into H, T, S contractions in H, E, respectively. The totality

$$\alpha = \begin{pmatrix} H & T & H \\ F & & G \\ E & S & E \end{pmatrix}$$

is called the operator knot (cf. [5]) if

$$I - T^* T = G G^*, I - S^* S = G^* G, TG = FS,$$

 $I - T T^* = F F^*, I - S S^* = F^* F.$

The knot α is called simple if the closed linear span H_0 of the vectors T^n Fe, $(T^*)^n$ Ge $(e \in E; n = 0, 1,...)$ is the whole space H. H_o is called the main subspace of the knot α and we have the simple following LEMMA 1. H_o is the closed linear span of the vectors

$$f_{\xi e} (I - \zeta T)^{-1} Fe$$
, $g_{\xi e} = (I - \zeta T^*)^{-1} Ge$ $(e \in E, |\zeta| < 1)$.

LEMMA 2. The following statements are equivalent:

- (i) a is a simple knot,
- (ii) T is a completely nonunitary contraction.

The operator — function

$$\theta (\zeta) = S - \zeta E^* (I - \zeta T^*)^{-1}G$$

is called a characteristic function of a.

Let
$$\alpha_k = \begin{pmatrix} H_k & T_k & H_k \\ F_k & G_k \\ E & S_k & E \end{pmatrix}$$
, (k = 1, 2) be knots with the common outer

space E, then the knot

$$\alpha = \begin{pmatrix} H_1 \oplus H_2 & T_1 P_1 + T_2 P_2 - F_1 G^*_2 P_2 & H_1 \oplus H_1 \\ F_1 S^*_1 + F_2 & G_1 + G_2 S_1 \\ E & S_2 S_1 & E \end{pmatrix}$$

is called a product of α_1 , α_2 and denoted by $\alpha = \alpha_2 n_1$.

In this work we will consider the product

$$\alpha = \begin{pmatrix} H & T & H \\ F & G \\ E & S & E \end{pmatrix} = \alpha_{n}, \dots, \alpha_{2}\alpha_{1}$$

of n knots
$$\sigma_k = \begin{pmatrix} H_k & T_k & H_k \\ F_k & G_k \\ E & S_k & E \end{pmatrix}$$
 (k = 1, 2,.. n).

From the definition we have

$$H = H_1 \oplus H_2 \oplus \ldots \oplus H_n,$$

$$(Tf)_{k} = T_{k} f_{k} - F_{k} \sum_{i=k+1}^{n} (\prod_{j=k+1}^{n} S_{j}^{*}) G_{i}^{*} f_{i}$$
 (1. 1)

$$(Fe)_{k} = F_{k} \prod_{j=k+1}^{n} S_{j}e, Ge = G_{k} \prod_{j=1}^{k-1} S_{j}e, S = \prod_{k=1}^{n} S_{k}$$
 (1. 2)

where $f = f_1 \oplus f_2 \oplus ... \oplus f_n$ denotes an element of H. And it is easy to see that

$$(f_{\zeta e})_k [(I - \zeta T)^{-1} Fe]_k = (I - \zeta T_k)^{-1} F_k R(k, \zeta) e$$
 (1.3),

$$(g_{\zeta e})_k = [(I - \zeta T)^{-1} \ Ge]_k = (I - \zeta T_k^*)^{-1} \ G_k \ \Phi(k, \zeta) e^{-k}$$
 (1. 4),

where

$$R(k, \zeta) = \prod_{j=k+1}^{n} \theta^{*}_{j}(\zeta) , \quad \Phi(K, \zeta) = \prod_{j=1}^{k-1} \theta_{j}(\zeta)$$
 (1. 5).

Let $B_k = P_1 + P_2 + \ldots + P_k$ i.e. B_k is the orthoprojector from $H = H_1 \oplus H_2 \oplus \ldots \oplus H_n$ onto $H_1 \oplus H_2 \oplus \ldots \oplus H_k$

LEMMA 3.

$$(B_{k}^{\bullet}f_{\xi_{e}}, f_{\mu a}) = \frac{1}{1 - \mu \xi} \left([R^{*}(k, \mu) R(k, \xi) - R^{*}(0, \mu) R(0, \xi)] e, a \right)$$
 (1.6)

$$(B_k, g_{\xi e}, g_{\mu a}) = \frac{1}{1 - \overline{\mu} \xi} ([I - \Phi^*(k+1, \mu) \Phi(k+1, \zeta)] e, a)$$
 (1.7)

$$(B_k, g_{\xi_e}, f_{\mu a}) = \frac{1}{\xi - \overline{\mu}} ([R^*(o, \mu) - R^*(k, \mu) \Phi(k+1, \xi)] e, a)$$
 (1.8).

Proof. From (1.1), (1.2) we have

$$(B_k f_{\zeta_e}, f_{\mu a}) =$$

$$= \sum_{j=1}^{k} \left(R^*(j,\mu) F_j^*(I - \mu T_j^*)^{-1} (I - T_j)^{-1} F_j R(j,\zeta) e, \alpha \right)$$

but, on the other hand, the relation

$$F_{j}^{*}\left(I - \overline{\mu} T_{j}^{*}\right)^{-1}\left(I - \xi T_{j}\right)^{-1} F_{j} = \frac{I - \theta_{j}\left(\overline{\mu}\right)\theta_{j}^{*}\left(\overline{\xi}\right)}{1 - \overline{\mu} \xi}$$

holds [5], therefore

$$(B_k, f_{\xi e}, f_{\mu a}) = \frac{1}{1 - \mu \xi} \sum_{j=1}^{k} ([R^*(j, \mu)R(I, \xi) - R^*(J-1, \mu)R(J-1, \xi)]e, a)$$

$$= \frac{1}{1 - \mu \zeta} \left([R'(k, \mu) R(k, \zeta) - R'(0, \mu) R(0, \zeta)] e, a \right).$$

The relations (1.7) - (1.8) are proved analogously.

2. THE FUNCTIONAL MODEL

We will use the following functional model [5]. Let α be a knot with the characteristic function $\theta(\zeta)$. Then $\theta(\zeta)$ is also a characteristic function of the following simple knot

$$\widehat{\mathbf{G}} = \begin{pmatrix} \widehat{H} & \widehat{T} & \widehat{H} \\ \widehat{F} & \widehat{G} \\ E & \widehat{S} & \widehat{E} \end{pmatrix}$$

where

$$\widehat{H} = [H^{2}(E) \oplus \overline{\Delta L^{2}(E)} \ominus \{\theta u \oplus \Delta u; u \in H^{2}(E)\},$$

$$\widehat{T} \{\varphi \oplus \varphi\} = \{e^{it} \ \varphi (e^{it}) \ominus \theta \ (e^{it}) C_{\varphi \varphi} \oplus e^{it} \psi (e^{it}) - \triangle (e^{it}) C_{\varphi \varphi}\},$$

$$C_{\varphi \varphi} = \frac{1}{2\pi} \int_{0}^{2\pi} e^{it} [\theta^{*} (e^{it}) \varphi \ (e^{it}) + \triangle (e^{it}) \psi (e^{it})] dt,$$

$$\widehat{F} = \{ (\theta (e^{it}) S^{*} - I) e \oplus \Delta (e^{it}) S^{*}e\},$$

$$\widehat{G} = \{ e^{-it} (\theta \ (e^{it}) - S) e \oplus e^{it} \triangle (e^{it}) e\}.$$

$$\Delta (e^{it}) = (I - \theta^{*} (e^{it}) \theta (e^{it}))^{\frac{1}{2}},$$

$$\widehat{S} = \theta (0) = S, e \in E, \{ \varphi \oplus \psi \} \in \widehat{H}.$$

Hence the simple part of the knot α is unitarily equivalent to α by the following unitary transformation U

$$Uf_{\zeta_e} \equiv U(I - \zeta T)^{-1} Fe = (I - \zeta \widehat{T})^{-1} \widehat{F} e \equiv \widehat{f} \zeta e$$

$$Ug_{\zeta_e} \equiv U(I - \zeta T^*)^{-1} = (I - \zeta \widehat{T}^*)^{-1} \widehat{G} e \equiv \widehat{g}_{\zeta_e}$$
(2.1),

Let $\theta(\xi) = \theta_2(\xi)\theta_1(\xi)$ be the regular factorization (cf. [6]) of the characteristic function $\theta(\xi)$ of the knot z. Then we have the following invariant subspace for \widehat{T}

$$\widehat{H}_{1} = \{\theta_{2} u \oplus Z^{-1} (\Delta_{2} u \oplus v) : u \in H^{2}(E), v \in \Delta_{1} L^{2}(E)\} \ominus \{\theta_{w} \oplus \Delta_{w} : w \in H^{2}(E)\},$$

where Z is an unitary operator mappings $\triangle L^2(E)$ onto $\triangle_2 L^2(E) \oplus \triangle_1 L_2(E)$ and defined (cJ. [6]) by

$$Z(\Delta v) = \triangle_2 \theta_1 v \omega \triangle_1 v$$

Let P_1 denote the orthoprojector from \widehat{H} onto \widehat{H}_1 . Then we have the following (cf. [4]).

LEUMA 4.

$$(\widehat{P} \widehat{F}_{\xi e}, \widehat{F}_{\mu a}) = \frac{1}{1 - \overline{\mu} \xi} \Big(\theta_{2}(\overline{\mu}) \theta_{2}^{*}(\overline{\xi}) - \theta(\overline{\mu}) \theta^{*}(\overline{\xi}) \Big] e, a \Big),$$

$$(\widehat{P}_{1} \widehat{g}_{\xi e}, \widehat{g}_{\mu}) = \frac{1}{1 - \overline{\mu} \xi} \Big(\Big[I - \theta_{1}^{*} (\mu) \theta_{1} (\xi) \Big] e, a \Big),$$

$$(\widehat{P}_{1} \widehat{g}_{\xi e}, \widehat{F}_{\mu a}) = \frac{1}{\xi - \overline{\mu}} \Big(\Big[\theta(\overline{\mu}) - \theta_{2}(\overline{\mu}) \theta_{1}(\xi) \Big] e, a \Big).$$

3. SIMPLICITY OF KNOTS

Let there be given n knots
$$\alpha_k = \begin{pmatrix} H_k & T_k & H_k \\ F_k & G_k \\ F & S_k & E \end{pmatrix}$$

and $\alpha = \alpha_n \dots \alpha_1 \alpha_2$. Then for the characteristic functions we have

$$\theta (\zeta) = \theta_n (\zeta) \dots \theta_2 (\zeta) \theta_1 (\zeta) = \prod_{k=1}^n \theta_k (\zeta).$$

Using the notation (1.5) we will write

$$\theta(\zeta) = R^*(k, \overline{\zeta}) \Phi(k+1, \zeta).$$

THEOREM 5. The knot $\alpha = \alpha_n \dots \alpha_2 \alpha_1$ is simple if and only if for $k = 1, 2, \dots$ in the following conditions hold:

(i) the factorization (3, 1) are regular,

(ii) the vectors $P_k f_{\zeta e}$, $P_k g_{\zeta e}$ ($e \in E$, $|\zeta| < 1$) are dense in H_p

Proof. Sufficiency. By means of its characteristic function the functional mode $\widehat{\alpha}$ of the simple part of the knot α is built according to the scheme of 2. From the regularity of the factorization (3.1) and Lemma 4 we have

$$(\widehat{P}_{1} \widehat{F} \xi_{e}, \widehat{F} \mu_{d}) = \frac{1}{1 - \overline{\mu} \xi} [R^{*}(k, \mu) R (k, \xi) - \theta(\overline{\mu}) \theta(\overline{\rho})] e, a),$$

$$(\widehat{P}_{1} \widehat{g}_{\xi_{e}}, \widehat{F}_{\mu_{a}} \frac{1}{1 - \overline{\mu} \xi} [I - \varphi^{*}(k+1, \mu) \varphi(k+1, \xi)] e, a)$$

$$(\widehat{P}_{1} \widehat{g}_{\xi_{e}}, \widehat{g}_{\mu_{a}}) = \frac{1}{\xi - \overline{\mu}} ([\theta(\overline{\mu}) - R^{*}(k, \mu) \varphi(k+1, \xi)] e, a)$$

Comparing these relations with the (1.6), (1.7), (1.8) we have

$$(\widehat{P}_{1} \ \widehat{g}_{\xi_{e}}, \ \widehat{F}_{\mu_{a}}B_{k} F_{\xi_{e}}, F_{\mu_{a}}),$$

$$(\widehat{P}_{1} \ \widehat{g}_{\xi_{e}}, \ \widehat{g}_{\mu_{a}}) = (B_{k} g_{\xi_{e}}, g_{\mu_{a}}),$$

$$(\widehat{P}_{1} \ \widehat{g}_{\xi_{e}}, \ \widehat{F}_{\mu_{a}}) = (B_{k} g_{\xi_{e}}, F_{\mu_{a}}).$$

Taking account of Relations (2. 1) (2. 2) and the fact that the elements $\widehat{F}_{\zeta e}$, $\widehat{g}_{\zeta e}(e \in E, |\zeta| < 1)$ are dense in \widehat{H} we get

$$\widehat{P}_1 = UB_kU^*$$
.

As \widehat{P}_l , B_k are orthoprojectors and U is unitary, the subspace $U^*\widehat{H}=H_o$ is invariant under B_k . On the other hand, since $f_{\zeta e}=U^*\widehat{f}_{\zeta e}$, $g_{\zeta e}=U^*\widehat{g}_{\zeta e}$ it follows that $B_k f_{\zeta e} \in U^*\widehat{H}$, $B_k g_{\zeta e} \in U^*\widehat{H}$ (k=1,2,...,n). Therefore,

$$P_{k} f_{\zeta_{e}} = (B_{k} - B_{k-1}) f_{\zeta_{e}} \in U \widehat{H} = H_{o}$$
(3.2),

$$P_{k} g_{\zeta_{e}} = (B_{k} - B_{k-1}) g_{\zeta_{e}} \in U \cdot \widehat{H} = H_{o}$$
(3.3)

We shall now show that the knot α is simple. For this, it suffices to prove that $U^*\widehat{H} = H$. Let $U^*\widehat{H} \neq H$ i.e. $\exists h \neq 0, h \perp U^*\widehat{H}$ $(h = h_1 \oplus h_2 \oplus ... \oplus h_n \in H)$.

Then from (3.2) (3.3) it follows that $h \perp P_k f_{\xi_e}$, $h \perp P_k g_{\xi_e}$. The last equation means that $h_k \perp P_k f_{\xi_e}$, $\perp P_k g_{\xi_e}$ ($e \in E$, $|\xi| < 1$), which under the conditions of the theorem implies that $h_k = 0$ (k = 1, 2, ..., n), and consequently h = 0.

Necessity. Let a be a simple knot. We can write

$$\alpha = \alpha' \alpha''$$

where

$$\alpha' = \alpha_n \dots \alpha_{k+2} \alpha_{k+1}, \alpha'' = \alpha_k \dots \alpha_2 \alpha_1,$$

with characteristic functions

$$\theta'(\zeta) = R^{\bullet}(k, \overline{\zeta}), \theta''(\zeta) \Phi(k+1, \zeta)$$
 respectively.

Then by Theorem 2 [5] the factorization (3.1) is regular. Suppose that the condition (ii) of the theorem does not hold, i.e.

 $\exists h_k \in H_k \text{ , } h_k \neq 0 \text{ ; } h_k \perp P_{\xi e} \text{ ; } h_k \perp P_k f_{\xi e} \text{ ($e \in E$, $|\zeta| < 1$). This means that } h = (0, ..., 0, h_k, 0, ..., 0) \perp f_{\xi e}, g_{\xi e}. \text{ Thus } f_{\xi e}, g_{\xi e}(e \in E, |\zeta| < 1) \text{ are not dense in H, which contradicts the simplicity of the knot α. The proof is complete.}$

Incidentally we have proved the following

THEOREM 6. If the factorizations (3.1) are regular for k = 1, 2,..., n then the main subspace H_o of the knot $\alpha = \alpha_n ... \alpha_n \alpha_k$ is invariant with respect to orthoprojectors P_k (k = 1, 2,...n).

4 THE COMPLETELY NONUNITARY CONTRACTION

We consider an application of the above results to the concrete triangular model (cf. [7]). Let E be a Hilbert space, P(t) an operator function in E such that

$$\int_{t_1}^{t_2} \|P(t)\|_E^2 dt < \infty$$

and T—the operator in $L_E^2(t_1, t_2)$ of the form

$$(Tf)(x) = e^{i\varphi(x)} f(x) - 2e^{i\varphi(x)} P(x) \Pi^{-1}(x) \int_{x}^{ig} \Pi(t)P(t)f(t)dt$$
 (4.1),

$$\Pi(x) = \int_{t_1}^{x} exp \left\{ P(t) P'(t) \right\} dt \tag{4.2}.$$

We shall find a criterion for the complete nonunitariness of T. Accordingly, let us introduce the operators $F: E \to L_E^2(t_1, t_2)$, $G: E \to L_{E_1}^2(t_1, t_2)$, $S: E \to E$ of the forms

$$Fe = \sqrt{2} e^{i\phi}(x) P^*(x) \Pi^{-1}(x) \Pi(t_2) e$$
 (4.3),

$$Ge = \sqrt{2} P^*(x) II^*(x) e$$
(4.4),

$$Se = \Pi^*(l_2) e$$
 (4.5).

It is not difficult to prove the following

THEOREM 7. The totality

$$\alpha(t_1, t_2) := \left(\begin{array}{ccc} L_E^2(t_1, t_2) & T & L_E^2(t_1, t_2) \\ F & G \\ E & S & E \end{array} \right)$$

of the forms (4.1) - (4.5) is a knot. Moreover the biparametric family of the knots $\alpha(l_1, l_2)$ it multiplicative, i. e.

$$\alpha(t_1, t_2) = \alpha(t, t_2) \ \alpha(t_1, t) \ (t_1 < t < t_2) \tag{4.6}.$$

$$f_{se} \equiv (I - ST)^{-1} Fe = \frac{\sqrt{2} e^{i\varphi(x)}}{1 - \varepsilon e^{i\varphi(x)}} P^*(x) \left[\theta^*(t_1, x_i; \bar{\xi})\right]^{-1} \theta^*(t_1, t_2; \bar{\xi} e) \quad (4.7),$$

$$g_{se} = (I - ST)^{-1} Ge = \frac{\sqrt{2}}{1 - \xi e^{i\varphi(x)}} \theta(t_1, x; \xi)e$$
 (4.8),

where

and the characteristic function of the knot α (t_1, t_2) is θ $(t_1, t_2; \xi)$.

THEOREM 8 [4]. The operator T is completely nonunitary if and only if the following conditions hold:

(i) the factorization

$$\theta(t_1, t_2; \xi) = \theta(t, t_2; \xi) \theta(t_1, t; \xi)$$
(4.10)

is regular for $\forall t \in (t_1, t_2)$,

(ii) the equation P(x) f(x) = 0 has a unique solution f(x) = 0 for a. e. $x \in (t_1, t_2)$.

Proof. Necessity. The complete nonunitariness of T is equivalent to the simplicity of the knot $\alpha(l_1, l_2) = \alpha(l_2, l_2) \ \alpha(l_1, l)$.

Then by Theorem 5 the factorization (4.10) is regular, the necessity of the condition(ii) follows from Lemma 1 and the relations (4.7) - (4.8).

Sufficiency. For $t_1 < t < t' < t_2$ we have

$$\alpha(t_1, t_2) = \alpha(t^*, t_2) \alpha(t^*, t^*) \alpha(t_1, t^*)$$
 (4.11),

and from the condition (i) and Theorem 6 it follows that

$$P(t^*, t^*) f_{s\rho} \in U^* \widehat{H}, \ P_{s\rho}(t^* t^*) g_{s\rho} \in U^* \widehat{H}$$

$$\tag{4.12}.$$

Let $h \in H = L_E^2$ (t_1, t_2) and $h \perp U^*H$. From (4.12), it follows that

$$\int_{t}^{t''} \left(\frac{P^{*}(x) + (l_{I}, x; \xi)}{1 - \xi e^{-i\phi(x)}} e, h(x) \right)_{E} dx = 0.$$

Received May 27, 1981

REFERENCES

- 1. Đỗ Công Khanh, On completely nonunitary contractions, Theory of functions, and functional analysis and Applications, 31, 49-55, 1979 (in Russian).
- 2. Brodsky V.M. and Schwarman J., On invariant spaces of contractions, Dokl. A.N USSR, 201, 3, 519 522, 1972 (in Russian).
- 3. B. Sz. Nagy and S. Fojash, Harmonic Analysis of Operators in Hilbert Space, New York, 1970.