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INTRODUCTION. .

Vector-valued asymptotic marlingales (amarls) and multifunciions have
been extentively studied in recent year by Ronnov [26], Chatterji [5], Uhl [26],
Rao [22], Bellow [2], Tuu [15), Aumann |1}, Debreu’ [8], Rockafellar [23],
Himmelberg [13], Castaing and Valadier [4], among others. The main purpose
of this paper is to extend some results in [2] and [22] to multi-valued yuasi-
martingales and uniform amarts. For the terminology and fundamental proper-
ties of mullivalued conditiona' expectalions, the reader is referred to {11]. In
Section | a briel summary of the notions of measurability, integrability and
conditional expectations of multifunctions is given. In Section 2 we consider
the class of multivalued quasi-marlingales and prove some representation
‘theorems for this class. It is, worth noting that from these results one could
derive the main theorems in [16]. In Section 3 we give ‘some characterizations -
of the class of multivalued uniform amarts. Finally, in Section 4 we discuss
some applications of the previous results to-the study ol Lhe Radon-Nikodym
property (RNP) in Banach spaces. '

1. MEASURABILITY, INTEGRALS AND CONDITIONAL EXPECTATIONS OF
MULFIFUNCTIONS.

Throughout this paper B will denote a real separable Banach space,
(Q, A, P) a probability space and L (&, o4, P, B)= L; (B, ~4) the Banach.
space of all {equivalence classes of} Bochner integrable [unctions f+ O — B
with the norm '

pF0=E i) = \1fe) nap.
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We shall consider the class [ of all 'closled bounded non-emply subsets of
13, For X e ¥, ciX) denotes the colsure of X and | X} == h(X, {o}), where
h is the Hausdor{l metric in K. '

A multifunction X: Q@ — K is called weakly measurable (hriefiy,' measur-
able), if for every open subset V ol B the set {w; X (@) NV + ¢} is measur-
able. If this occurs, we write X e M (K, -4) and

S By = {f e L(K, B);f (w) e X(w), a.2.},
where 3 is a sub-6-field of 4. The following result is due to Castaing /3/:

LEMMA 1.1 X ¢ W (K, B) iff there is a sequence <<f_ > C S(B)such that
B L X

E(u)*—cl {f (w);n=1}, a e..‘

If this occurs X we write

- = o
}Lc———><f (\V.l‘.t%)
11=1 s

. A multilunetion X : Q — K is called integrably bounded if the real-valued
function o — | X (w) | is integrable. If this occurs then we write X e L1 (Ki=4).
It is known that in this case Sx(gq'l) ié closed in LI (B, 4} and the integral of
X is defined by . ‘
[ XdP={ffdP; feS(A4)}
[9) ' L X

where [ f d P is the usual Bochner integral of f . This concept was introduced
by Aumann |1] asa natural generahmhon of the Bochner integration of

vector-valued functions. For A € o4, [ X dP is the inlegral ¢f the restriction of
A

X to A.
In connection with Lemma 1.1, il there is a sequence <C f > of SX(%)

such that S .(®) = ¢l {f,; n > 1} then we say that X admils a representation

[+ -]
<f,=in Ll—fwrm and we write X 7? < fn>[ . (w.r.t.®)
- =
It is easy to see that X <7 < fn> implies Y DI f = ."The con-
1 - n=7 n=1



vorse sialement. (0 general, is not frue. For X, Ve L! (K, =) It detig.

HOXN, ¥y i B (N(w) ¥(0)) d P
Q -

Then, as is known, < L, (i, o£), I > is a complete melric space.
T 3 ’a v R n T
Now for Xe L, (&, -4), defive M = cl {E(); fe S - (oM}, where E5 (f)
denotes the conditional expectation of vector-valued fe L. (B, &)

It is éasy io check lhat M hecomes a closed bounded decomposable and

non-empty subset of L, (3, 2). Thus there is a'unique‘ multifunclion E (¥, 3)
of L, {I&, B) such that

S @)Y= M
E(X,B)

Such a function K (¥, ) will be called a conditional expectation of X (given B).
This concepl was introduced by Hiai an Umegaki in [11]is a natural genera-
-lizalion of the conditional expectations for vector-valued lunctions,

Define
K, = {XeiK; X is convex},
S S N .
K,,= 1Xe K, ; X is compact},
K, {Ye K_; YV isa closed ball}.

Then the following result has been established in [il, 18]
L_EMM‘A .2 (1) L (B, 4, L (K. ) ad L (K,, o) are closed
“subspaces of = L (i, +A4) H >

@ If Xe L, (1, , &) Yel (K, A, and Ze L/ (K. A) then

ce
E(X, Bje L, (K> B): E (7, B Ly (K, ,» B and B (Z, e Ly (K, B)
Furthermore, Hiai has obsecrved in [10] that there is a (separable) seal
Banach space B such that one can embed LI (K., » s4) as a closed convex
cone in L, (ﬁ, ~4) in such a way thal '
(i) the embedding is isomeiric
(i) addition in L, (ﬁ, =) induces a co 2 responding operation in

| LK, g
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(iii) multiplication by nonnegative real L, -functions in L, (ﬁ, ‘oA)

induces a cor:responding operationin L, (K_ » o4)

" Using this embédding, Hiai and Umegaki [11] extended some resulls in [3]
and /27/, to martingales in L, (K., =#). Ln the recent paper {18} we have proved

that one can also embed L (K, , ) as a closed convex cone in the Bana'ch
space L, (B, +4) @ L, (R, A ‘Therefore centain results in [5],[27] and [15] can
be extended to the corresponding sequences 'in Li (Kb » A). Buat neither our

embedding nor the embedding of Hiai and Umegaki can be applied to

L1 (K. » 04); if B is infinitely-dimeasional. We propose thus the following
problems: in L, (K, o#) has (15) then there exists a measurable P-selection
(f,) of (X,)'with the property (P). Such a sequence (f,» will be denoted by
(F.yeP—5 (X,

- PROBLEM TI. éuppos_e that (P) is a properiy such that if <X:;> in LI (K- A)
has propér (P) then > — S ((Xn )) is nonempty. Give general representations of

(Xn yinterms of P — h) ((XH N

Example L 3. Let.('d’ln) be an increasing sequence of sub o-fields 4.

A sequence ( Xn) in L (K, » oA)is said to'have the property (AD) (itis adapted

to(An)) if Xn is 0411 -me,aé.urable for all n. From [14] and [3] we know -
that és (P) one can take the property (AD) (see Lemma 1. 1} '

_ Example l. . 'A sequence X; inL, (K_» A) is said to have property (M)

(it is ;1 martingale w. r. t. { A, ) it it has property (AD) and the condﬁion

X =X n (m) holds for all m > nr 2> 1, Wheré

n /

X (my=EX,, A4,) (m>n>1)

Similarly, a sequence X, in L (K, , Ay is said to have properly (RM) (it is a
regular martingale), if it has property (AD) w. It (4, » and the condition
X, = E(X, A, ) holds for all n and some X L, K,, 4. Thus our results
in [16] show that as (P) one can also take (M) or (RM). .
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2. MULTI~VALUED QUASI-MARTINGALES.

Throughout this and the next sections we shall s[lppose that we are given

-an increasing sequence {4, ) ol sub 6-fields of with A, 1A All our sequen-

-ces are assumed to be taken from L, (K, , -4) and adapted lo (A4 ). The

following notion of multivalued quasi-martingales is a natural extenvion of that
of real-valued quasi-martingales given by Rao [22/.
DEFINITION 2. 1. A sequence (X )Iissaidtobea quasi-martingale (i has

property (QM)), il the following condition holds

zZH (Xn’,Xn(H+i’))<oo : 2. 1)
n>1

It is easy to see that if (X )isa martingale then it is a guasi-martingale. But

the converse statement is not true. The main purpose of this section is lo con-
sider Problems 1--II for the property (QM) defined above,

PROPOSITION 2. 2, Lel ¥ ¢ B be fwo sub c-ffelrfs of A. Suppose that
Xell (K, ), Yelt (K, ®) and ¢ & L R. ®) with ow) > o for all weQ,
Then Vf &5, (Eé’) Ay e Se(®) || F)—9g (w) | < h(X(w) Y(w) + cp(w), a. e.
Thus, in particalar, if X and Y are inlegrably bounded then

Ve sy @) Yoo gesy @ E(If -y <HE T e @. 2)

Proof. Let &, ®, X, Y, and ¢ be as in the assumpuons of Proposition. 2. 2,
Fix f € S; (7). Since Y € U (K, ®), view of Lemma L 1. there is a sequence

(9, ) of Sy (B) such that ¥V « i, (9, n ;- Define

T: Q — N (the’ set ot all positive integers) by
tw) = inf {n; | f(w) — g, (@) 1< d (f), Y(@) + o)}
.

since ¥ «dls(n 3 7 and gw) > 0 for all & Q, the function T is

 well-defined. Fix n ¢ N. We have

{r=n}="7\1{ 1 f—g; 1 >df. D +e}n {1f—g, 1 <4+ o)
C o j=1 '
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Since all functions f, g » gn,qS and @ — d (f(»), Y(w)) are mecasurable, it

{ollows that {T = n} € ®. So the function T is itself D-measurable. This

implies that the {function g: Q — B defined by g(w) = I(w) (w) is a %-mea-L

i

- surable selection of Y. Moreover

() — glw) | < d (f(vﬂ- Y(w)) + o(w) < A(X (), ¥(w)) + ¢(), a. e,
Thus in particular, if X and Y are integrably bounded then
VfeSp#) Ve >09geSy MEF—g<HEEY)+e

The proof is completed. )

The following proposition solves Problem ! for the property (Q )

PROPOSITION 2. 3 Lel ( Xa ) be a quasi-martingale. T hen

Wk 1, e@(aqzj\_) ¥e > 03(f, )& QM — S((X,)) such that
< k .

¥omy B =, G DISHE, Ye D+ g @9

Proof.  Let (X ) be a quasi-martingale in L, (K, 4

FixkeN f, €Sy (-#,) and € >0, Sin X and X, (k + 1) are both 4, mea-

+

surable then by Proposition 2.2 (2. 2) there is some

g, € SXJ,C(k-I-i) (#,) such that

ECIf, — g, 1) < HX 2 X (k + D)+ 21:44

Further, since g,

s SXk(k+1) (A =cl | Ea#k(f)_" f €Sy (M}, by Theo-

rem 5. 3 3 (2) in /II/ there is some fegr€ S (”41+1)

€

gk-H

such that E( g, — f (k + H1) <

&

ey



It follows Lhil for a given f, € SX (+4,.), one can chooss
k a3

Frvr€ Sxk+1 (A )

. Such that EQIf,—F e+ DI < H(Y,,

Thus, by induction, we can contruct a sequence < f >
. n=k

suchthat f € Sy (4,) and
It

BOIE —f, (- D) SH(,, ¥ (1) +
foralln >k
Again, since X, _, and Xk—-f (f{) are both c,‘;lk_‘,—rne:asur.zd:yle in view of

Proposition 2.2 (2.2). there is some f,_ &5y (c#.._,) such that
- “h—1

E( H frog = Frmq GO SHE, _pp Xy (K

Henceby a finite number of steps we can construct f]\ I’f gy v f1 such

that f_e&Sy (-4) and
m

Lmlhk—1)

EQf, — fmED) < HEX,, X (m + 1)
-which proves (2.3). This completes the proof.

The following results give us several representalions of multi-valued quasi-
martingales in terms of their guasi-martingale seleclions. )
THEOREM 2. 4. Let < Xn> be a sequence in L1 (Kc, A).

Then <X > is a quasi-mariingale if theré is a sequence o of nonnegative real

numbers wilth ¥ S e, <

n =1



d such that

ke NSX, (4,) = {f 5 <F,> €OMS (<X, >), - (2.4)
F— Famt DI <% ¥y s )

roof. (=) Let <X > bea qu'asi-martingale and ¢ > 0 any but fixed posi-

ve real number.
Pul o = (X, X, (n+ 1)+ “‘qu'n_ In view of (2.1) and Proposilion

3 (2.3) we get (2.4) for this sequence <« >.
(«<) Converscly, suppose: that (2 4) holds for some sequence <X >. Then,

2 H(Y, }x (n—}—f)) < Z_an-(oo
n=>1. ) n>1

‘hus, <X > is a quasi-martingale.
'EEOREM 2.5, lat <X >bea quasi-martingale in 1. (K _, o)

fhen there is a sequence <o, > of nonnegative real numbels \Vith Z e < o0

nz>1

ind a_sequence {-<ff,I >}, of QMS (<X =) such that
v i 1 |
M) n, 1eN E(1f, — f (e D) <e, and

| o -
(2)\7:6]_\'[ X <—-—--—>- <f > it (W.r.tAk)-

Proof. Tt follows from Theorem 2.4 and Lemma 1.1.

TAEQOREM 2.6. Let < X > be a sequence in L (K,» A). Suppose furiher-
more thal A is 6-generaled. Then the sequence < X > isa quasz—marftngale

if therP is a sequence < & > of nonnegalive numbers with e < oo and a se-

n»1
qirence | ":‘qu =} i:1 of QM-S (< X, =) such fjt;:f{
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() ¥, ieN E (/L —fh 4+ D)< o and

it

' 1l i o
) YkeN Xf: (z_) - f; > iy (w r. o).
1

Proof. (=) This follows from Theoreﬁl 2.4 and ‘the assumption that o4 i
6-generated.
(<) This follows from the same arguments as those given in the proof of

(=) of Theorem 2.4, by noling that if both conditions (1) and (2) in Theorem

2.6 hold then

a“Lke\IH(‘xl,, AR IR

DEFINITION 2, 7. .1 sequence < X =in L, (K , A) is said lo be regular
if tiere sian N e L, (&, -4) such that :

lin H(X, , E(X, A, N)=0 (2.5)

n—>ea

1t is casy to see that if < f > is a sequence in L (B, A) then < f = i
peuqular if it-is convergent in L . But in general, this slatement taxls to be
valid for a sequence < X > in L (K, oA). Indeed, there is a regular mar-
tingale in L.I C Kc(lz)’ ‘35[0, 1)) which [ails to be convergent ([11], Ezxample
(3.3) )

COROLLARY 2. 8. Lel Bbe a separable Banach space with the (RNP) (scc the
definition in Section 4). Suppose that a sequence <X, > in L (K. , ) Is a
regular quasi-martingale (it has Property R(QM) then there is a sequence
-  p o] B A . -
{\f; <} o of RQMS (< X, =) such that
|
¥ - - ]cf ~ =

"M



Proof. el Xn > be a regular quasi-marlingalein LI (KC , ) Le. there is

an X e L, (K,, =#) such thal (2.5) bolds. Thus in view ol |10], the regular
marlingale < £ (X,r A, ) > is uniformly integrable and L, — bounded, hence
by (2.5) the sequence < X >> is itself uniformly integrable and L, — boun
ded. It follows t'hat if ¢ fn )€ QMS ((X_)) then (f ) is uniformly integfable
and L, — bounded. Now, if we suppose thata Banacﬁ space B has the (BNF)
then in view of /15/,(f ) isa regular quasi-martingale. Thismeans that, QM.S

(X ))= ROM-S ({ X)) Therefore Theorem 2.5 implies Corollary 2. 8.

Note that in the case where B does not have the (RNP), problems (I —II

remain open for Property (RQM )/ The author should like to know that the
representation theorem for multivalueed martingales given in [16] can be estab -

lished from Theorem 2.4, noting that ( X n y is a martingale iff

EH(X X (n+1))=0.
n_>=1

3. MULTI-VALUED UNIFORM AMARTS

The ndtion of vector-valued uniform amarts has bheen recently introduced
by Bellow/51 as-a special one of vector-valued amarts /9/, for which the strong

almost sure convergence obtains. This idea is clear but the Beliow’ s definition’

is very complicaled. In fact, it is very hard to check whether a sequence ( fn )

-in Li (B, -4) is a uniform amart. However, the Below's delinition is equiva-

H

lent to the following:
A sequence (.fn ) in L; (B, A) is a uniform amart iff
Vesodk YeeT (6 >k it;‘tplies I Mo =t g Y i<e GOy
where He (4) = ff ar (Ae A, ) |
l.lr(A) =lim§f dP (AeV 4) and T is the set of ;ll

12



bounded stepping limes (w. r. & (o4 ) wilh (he usual order. It iz pol hard

to check that (3. 1) is equivalent (o the following condilion ;

® £

¥ enV 5o eT) ]
€ =0 .AQN N> 6>k (noeDEUT; ~foepn<: @ 0o

@

This remark suggests the followiug definition of multivalued uniform

amaris:

DEFINITION 3. 1. - A sequence <Xn> in L, (K, oA is a uniform amarl if

the following condilion holds

- I ¢ - , -y ‘.
e>0~" kelN ﬂ>c>k(n,seF)H(}xc,Xs(n))\{e‘_ 3. 1)

where E (Xn , Ay )= X;(m) (W=oeT)

Example 3. 2. Asequence (Xn) in LJ K, -4) is a uniform amari.
Indeed, if ( X, ) isa marlingale in L, ¥,. A, then in view of [16], the se-
quence (X, T € T) is also a martingale in L1 (KC » oAy (W. r. t. (A,.)) Thus

the condition (3. 1) is automatically satisfied.
Example 3. 3. A sequence (Xn yin LI (K, » Ay is called a. uniform poten-
tial il the sequence | Xn | yis a uniform potential, i. e,

iimfl}i |dP=o0 - 3.9
teT Q T ¢ )

It follows that if (Xﬂ ) is a uniform potential iﬁ LI' (K, ) then it is a
uniform amart. Indeed since H (X, X, () <H(&,, X,) (13> o & T) then
(3. 2) implies (3. 1) '

These examples lead to the lollowing theorem whic};generalizes Theorem 3
of Bellow [2}.

&

THEbREM 3.4. A sequence (X_ ) in L; (K. , Ay is a u niform amart iff
there is a(unique) martingale (M, Yin L; K, , -4 such that the sequence {Px (n))

defined by Py (n)="h(X,, M, )is a nonnegalive unif orm polential,i.e.

lim E(Py (7)) = U (3.3)
Ter .

13



f
roof. (=) Let (Xp) be a uniform amart in LI K, Ay Thus by (3.1,
HEPN DY }'ﬂ ~qis a generalized Cauchy sequence in L, & , ;) for every cel.

Hence, by Lemma 1.2, there is a generalizéd sequence (L;)in LI (Kl.,d{l}

such- that

lim H(X j(n), L(s)) = 0 (ocT). "

' ner
it is not hard to check that in this case, (L) is a martingale (w.r.t. (o )). In
particular, there is a martingale M )in L, (K .4 such that
lim AX (), M )=0 (naN).
ner

Hence in view of/16/ the sequence (M) is also a martingale in L, (K., 4.

Bat for each neN, LH = Mn. a.e. tinerelore L’c: Mt, ‘a.e. lor each teT._

Finally, if ¢ Y0 is any but fixed positive real number then by (3.1) there is some

keN suci that \

(g, M) =T1(Xg, Lg)

SHE,, X, ) + HE, @ Ly)

< e 4 X, () L) o M>c> k)

Theretfore, '
(X, M_ )< e+ lim I(Ng (D Ly)=¢ (s > k).

ner .

It followsthat if we put Py (m)y=h(X_, M ) then L, (n)) is a nonnegalive \

uniform potential.
(=) Let (X ) be a sequence in L, (K., -4). Suppose that there is a martingale

(Mn) in L, (K, C,,tﬂ)‘ such that (3.3) holds, Thus,

w : e
¥e >0 TkeN Yrar, 1>k & M) <o

1

14
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Therefore, if 1 >> ¢ >> k, then we get
X, X)) < B(Xq, Mg @) + HOL () X5 ()

< HQY, , Mg @)+ HO . Xy)

<H(Eg s Mg (D) + 5

Butas (M ) isa martingale, by/16/ So is (M) Consequently,

H(X, , X, () < H(Xgs M) +—

<5+ =

This proves (3. 1). In other words, (X, )isa uniform amarts The proof
is completed.

The following proposition shows that every quasi-martingale is a unilorm
amart.

PROPOSITION 3.5, ‘“Let (X )be a quasi-martingale in L (K ., 4). Then

there is a (unique) martingale (M ) in L (K s o) sich that
). ‘
¥ eN H (X, M, <58 &, Xk+0) 3.4y

Hence "D H (X, M) =0.

n—>eo

Proof. Let (X ) bé a martingale in L (K> <A). Thus for (m> E>o>1)
we have
m—1 . _I . .
HE, ), X, (0)< = H X X, G+ D)< SH & X7+ D).
: =k : J=k ' ‘
| : .
Therefore, by (2. 1), (X, (m)) is a Cauchy gequence inL (K., ##4,) [oreach

m.#n
n > 1. Consequently, by Lemma 1. 2, therc is a sequence (.’sIH) in L (K, =)
auch that ' '

fim H (%, (m), M )=0 (ne 1) (3. 5).

m—»o0

15



it is easy to check that in this case (M )‘is even a martingale, Finally, if

. n > 1 then,

H(X,, M,)<HE, X, @) +1 &, @@, M)

his with (3. 5) yields

HX, M) < THX;,X;G+1)+1im A (X_(m), M)

f=n m—>rco

= 2 H (X;, X; G+ D

J=n
vhich proves (3. 4). Therefore in view ol (2. 1) we get

fim 1 (X, M_)=0.

n—>ee
[he proof is completed.

~OROLLARY 3.6. Every quasi-martingale in L (K, A isa unif orm

amart (see [2]). '
Proof. Let (X ) be a quasi-martingale in L (K, ). Then by Proprosition
3. 2 there is a martingale (M ) in L, K> 4) such that (?;L 1) and (3. 5) bold.
Now fix ke N, re T with >t >k, a. e. Thus by (3. 5), thefe is a positive

integer m > [ such that

1
[.2k

H (X, (m), M;) <

Moreover, we gef the following estimation

1 .
H (X, i-mfr):j__z_k S{Fj}h (X;, My)dP

| , |
; _=z-§ [ (X, X;(m) 4+ h (X ;(m), M ,;)ldP
SURR ot o= o

1. 1 :
<3 S{ R (X0 X; () dP + 2 H (X;m), M)
> ,

re==J

1
B (X, X (m) dP -

r=J

16




Bui as for each j =k, ..., [ we can write

h(X;, X (m)dP < &{r=jf (X X gl dp

Ne=n

< me h(&,l(p—}-I)dP
{ J} p=k

4

—1
= 3 R(X ,X (p+1)dP
p=k {1‘='.f} P p

we gel so

l m 1
HX, M) <2 5‘5{ _}h(Xp,Xp(erz))dp_+_2AT

L ‘ 1
= I H( ,X (p+rD+—
p=k p P 21("

, oe : . 1
< PN 0+ Do

Funther, by (2. 2) we get the following relation

lnnH( , M )—hrn E (P () =0
rel

This with Theovem 3. 4 implies Corollary 3. 6.

COROLLARY 3. 7. (See [2], Theorem 38.)
A sequence (f » in L, (B, A) is a uniform amart iff (fn) admifs a Riesz

decomposition ) : Ey ‘*—f‘Eﬁ
‘ wwm*‘

LA

fo=gm+p(m)  @>1D |

where (gf (n)) isa martmga[e and {|| Py (n) [y is a uniform potential. I

COROLLARY 3. 8 Let (X ) be a uniform amart in L (K, o) aﬁ'i}{

Property (6. 4) in [10], i. e. - . : e S
X, > X, (n+) a. e (ne N)

2—808 17



Then, there is a (unique) martingale (M, )in L, (i, o) such thal

n

M Xﬂ » 8. e, (ng N) and

lim H (X, M,) =0,
el t t

Hence, by [16] we have

M.S((X))>M. S((M )) =8,

Proof. This follows from Theorem 3. 1, noting that under the assumption -

X, > X, (@4 D),ac (meN) wehave M, > X ,a e (neN), where( M, )is

the martingale . ‘
constructed in the proof of Theorem 3.4, for the uniform amarf ( Xn >

Now if (X ) is a uniform amart (it has Property[(UA) ), then the following

' Proposition 3. 9 solves Problem I for Proﬁerty (UA):

PROPOSITION 3. 9. Lef (Xn) be a nniform amnarl in L1 (Kc, ) lhen [here
is a (unique) martingale ( M ) in L (K _, -4) such tha for any bul fiwed

positive real numbe r ¢ > 0 we have
D) M e N Sy () =0 eUAS (N D)l (i <Py ¢
. e V‘ne N } and

(2) ¥, s N Sy () = {9, R[> UAS (X, )it py @t P
‘. e¥ & N} where P, =Py (n) + ——, a.e. (n & N).
n ‘ i on

Prﬁof, Let ( Xn)be a uniform amart in LJ (K,, =0. By Theorem 3, 4.

here is a (unique) martingale ( M ) in L, (K, o) such that ( P (n) ) is a

€

uniforxﬁ potential, Now fix ¢ = 0. Define P, =Pyt (n € N). It is clear

21’1

that the sequence ( p, ) is a uniform potential we show first that (1) holds,

1
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{ndeed, {ix (le k N and fk € S.\_ r\Ak) Since { M s a martingale in L1 (K, o)
- A

by [16] there 1is a sequence { ( gil) }irl of MS ((M,_ ) ) such that
LN . . . P
m(——-—)’( gm))i=1(w. r.l. A yme N).1 Deline (0) = inf { €3

. z 1 .

i 4 ! . -z L _

i f (“_,’) — g @y < d (fy (@) M, () 5k_} and g, (»), [ € Nk{ t=i}g,(n)=
g:(w) (w) then by, the same arguments a in the proof of i’roposition 2.2, the

function T is of, — measurble and g, € SMk LAy e
Moreover || f, (@) —g, (u)) | <P (o), a e

Now, put g = 2 1{1: ) g (n > k) and
. eN

g~ ET" (@) (<m<h).
It is éasy to check that <Tg > < MS (<M, >).

Again, given a martingale <g,> Wwe can construct a sequence ~<f > asin

Proposilion 2.2, such that fn g S (,4211) and || fﬂ(m) — g ()< P (w), a. e,
X ) L

n

(n € N). Finally, since < P”‘;'> is a uniform polential, <g = is a martingale,
i .
then in view of Corollary 3.7 <f, >« UAS (= X >). Moreover, g, (R)=g,;

P.(my~=f, — 4,
and
f P (n) bt <P, a.e. (neN),
Thus the first assertion ot the proposition is proved. Note that the above argu-
ment simultinepusly proves (2). Therefore the proof is complete.
The following result gives a solation of Problem II for Progerty (UA).
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THEOREM 3.10. Lel <"Xn> be a sequence in Ll (B, A). Then < XH = {8

a uniform amarf iff there is a (unique) mariingale < Mn> in L, 415 » o) und.

anonnegaiibe uniform polential <Pn> such that both conditions (1), () in

Proposiiion 3.9 hold.

THEOREM 3.11. Lef =X = be a uniform amart in L1 (Kc, oAy, then

: , )
there is sequence ?«: i >f_ ] of AS (=< Xn =) such that
I i 1
¥ A o
ke N XI‘ ey < f > i=1 (W‘.l'.t. g4k)
THEOREM 3.12. Lef (X, be a regular uniform amarl in L, (K, ,oA) it has

properiy (RUAY. Suppose furtherthal B has the (RNPY. Then there is a sequence

{(f13} o of RUAS ((X)) such that
i=1 ‘

YieNY, L (i )oe (wort. A, )

i=1

4. RELATIONS BETWEEN THE REGULARITY OF MULTI-VALUZD UNIFORY AMARTS AND THE
RN PROPERTY IN BANACH SPAGES

A Banach space B is said. to have the (RNP) w. r. t. the probability space
(Q, A, P), if for every B -valued measure I defined on 4 of bounded variation

and absolutely continuous w.r.t. P there is a function f e L, (B, -4) such that

W(A) = 1dP  (deA).

In [21], A. Phillips showed that every reflexive Banach space' has |

the (BRNP). Other geometric characterizations of the (HBNP) in Banach
spaces are given in ([24], [7], [20], [19], [12], [17]. Especially, in ([26], [5],
[2], {15]) a martingale approach to (RNP) in B-space is® presemted In
particular in [5] Chatterji proved that a Banach spacé B has the RNP w . r. L
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Toui

(Q, A P\ irf every uuiformly integrable and L, -bounded martingale in .
L (B. ~A) is regular. The idea of extending this result to multivalued martin-

gales is due to Hiai and Umegaki in | 11 | . They bave proved that if a sepa-
rable Banach space B has the (RNP) and- its topolomcal dual B* is separable,

then every uniformly integrable and Lj-bounded martingale in L (K, » A)

is regular. Recently, usiny the limit p1ojcctive methods Costé [6] (see also, [16])

has obtained this result without the extra assumption that B° is separable.

But note that the limit projective method by Costé cannot be applied to lalgel
classes of maliivalued amarts such as the class of multivalued gnasi-mar tin-
gales. Ifence, for the last class, the approximation method developed in the

proof of Proposition 2 . 3 is more eilective,

In this section we shall prove that the (RNP) of Banch spaces is equivalent
to the coudition that every uniformly integrable and L, -bounded uniiorm
amart in LI (KC, ) is regular. For this purpose, we recall that if Xe KC
then the support function 8°(X,.): B* — R of X is given by

8*X, e*)=sup { <&, " >, veX} @€ BY).
THEOREM 4 .1. Lel B be a separable (real) Banach space then the follo-
wing condilions are equivalent :

(1) B has the (RNP), W.r. 1. (2 oA P).

(2) every uniformly integrable and Li_-buunded uniform amart in LI (K, ot)

is regular.

(3) For every uniformly integrable and L -bounded uniform amart < X ,.>
in Lj( K,» A) there is a (unique) funci;’op Yel (X, H) such that for any

but fized x°* & B* the sequence <C 6*(1:”, x”) = is a real-valued regular uniform

amurt which converges alinost every where and in L, to 8(X, x*).

(4) For every woiforin amart < X, >in L. (K. A with values contained

=5
al:nost evergwhere in 8 U for some 0 >0 there is a (unique) mullifunction

Y
4
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Ye L&( K, A suchlhal for any but fixed x* ¢ B® the sequence <C 8* (Xn,x") >
is a real valued uniform amar! which converges almost surely and in Ly to
a* (X, z*).

~ Proof. (1 =2) Let (X )beauniformly integrable and L, — bounded uni-
form amart in L (K, 4). Hence in view of Theorem 3.4. there is a (unique)

martingale <.Un > in L, (K, o4) such that

/
Jdim H(N,, J!_E)Iu
/ 1eT -

In particular, <A > is a uniformly integrable and L, —bounded martingale in
L, (K, ). Thus, il a Bunach space B has (RNP) th'en by [6] (see also [16])
<.M > is a regular maringale, i.e. there is an X ¢ L, (K, o4) such that

M =KX, A4) (neN)
‘and M. =EX, A )z eT).

Hence, lim H(X,, M) = lim H(N,, E(X, ob,)) = 0.
tel el .

Consequently, <{X > is.a regular uniform amart,
(2 =+3) Let <X > be a uniformly integrable and L, - bounded uniform

. amart. By (2) theve isan Xe L, (K, -4) such that

lim H(X_, E(X, 4,))=0.

n—>ce
Now fix Y*e& B*. It is not hard to check that the sequence < 6*('XH,X')>
is a real-valued uniformly integrable and L = bounded uniform amart. Thus
by (9), it is convergent almost surely and in L1 to &* (X,X*} which proves (3).

The implication (3=4) can be deduced [rom the fact that every sequence
in LI ([{C ,o4) with values contained almost surely i 6 U f'or some & > 0 where

U is the closed uaite ball of B is uniformly integrable and L; — bounded.

Finally (4 = 1) is a special case of Theorem 6 in [6]. Thus the proof is

complete

22
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A

DEFINITION 4.2 .} sequence <XH:> in Ll (‘K{;C =1y is said lo saiigfy the Uhl's
condition, if r

Femp 4 aconver compact subset C of B such that

V‘S>1 3:10 3;10604]1013(‘4)}1,—6 Vn:)nOVAea#n

i AcA_ then )X dPC P(4)C + 8U.
RO A n 5 .

For .4 general Banach space | il was shown by Uhl 27/ that a martingaled
<f > in L; (B, o) is regular iff it is uniformly integrable, L, —bounded and

satislies the Uhl’s condition. Using the embedding mentioned in Section 1, it
has been showa in [18] and [14] that the Uhl’s result can be extended to marti-
gales with close dball on convex compact values. For general martingales with
closed convez values, the problem is still open. However, we get the f[ollowing
resuit

THEOREN 4. 3. Epery uniform amart in L, (K, o) which is uniformly
integrable, LI — bounded und satisfics the Uhl’s condition Is reqular.
" Proof. Let < Xp> be a uniform amart in L, (K_ ~A) which is uniformly

integrzble L, — bounded and satisties condition of (Uhl). Then by Theorem
3. 4 there is a martingale <M > in L, (K o) such that '

Hm H(X, M)=0 -
tel ’ .

1t is not hard to check that in this r.:ase- <Mn > is also uniformly integra-
ble L1 — bounded and satisi'iés the Uhl® s condition, Thus by /16/ it is regular,

i.e. there is an X € LJ'- (K,, A) such that M = E (X, ,;J;ln) (n€ N)

Thus, in particular, 7
lim H(Y,, ) = lim H (X, BX, A4, = 0.
n—roo n—ree
* It means that the uniform amart ~=:Xn > is regular.
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