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1. INTRODUCTION

The purpose of the present paper is to discuss some mathematical prob-
lems of dual series equations with general kernels of the form

= AT () = (o) (x €, k=1,N)
o n=0 '
oo N , (1.1)
S Auta(@ =0 @ciN U L
n=0 k=1
‘where
' I =@ b CR mesl<ee -

T Li=@.byCl Tnfi=¢ (&,
F(x), @u(x) and 7(n) are given functions, the coefficients A, are to be deter-
_mihned. we assume that ’liJ'n (x)y € L) and that {u:ﬁ (.:c)]ﬁzo is a complete
orthonormal set in L*I) )
The dual equations (1.1) are generalization of some equations which are

usually encountered in mixed boundary value problems of mathematical
physics and in cotact problems of elasticity.

Based on generalized integral tranformations [l}, we shall show thal ~
the dual equations (1.1) ean be reduced to an equivalent system of integral
equations, Then a solution of the latter system for.some classes of @ —Lkernels
[cf.2] will be obtained by the method of successive approximations,

2. FUNCTIONAL CLASSES AND PRELIMINARY CONSIDERATIONS

We first recall some definitions and résulls from the theory of ortho-
normal series expansions for generalifed functions [1].

~ Denote by A = A, ¥, vy) the set of all test functions ¢(x) and by A"(1)
the set of all distributions on SA(I). (cf.[1]. In [1] it was shown that, the
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eigenfunetions Pa(x) of the differential operator e/ (A Pa = Aatpn, | Aa] — o=,
n -» ) belong to SA4(I) foralln =0, 1, 2,...
Throughoul this paper we shall assume that I = (a, b) C R, mes 1< e

and that the functions are real-valued, Let us aenote by (f, ¢ ) the values of
the distributions f &€ ~£'(I) on a test function ¢ € (1) and by (u, v)-a scalar
product in L¥I) with norm §ull = [(u, wl'e. 7

Let g(x) be a non-negative funection on I such that Vo(x) = L(I) (r > 2).
Wet denote by Lz(l) the class A

b
L?p (M= {u@) ) Huaf 2,15 J. o(x) u?(x) dw < es},
2

) . a

by L%y, p2 (I X I) the class of functions f(xz, y) such thal
b

et = J- pi{®) pa¥) fix, y) do dy < o

2
P1s P2

a

and by Mi (I) the class : N
M (D = | (@) u(@) | uz) € LY ]
It is easy to prove that -if glxy & M; {Dilieng(x) € LP(I) (p=2r/r4+2)CL'(D).
We make the following assumptions goncerning Po() and An:
| Palx) € Lg I, N ll , < const (vn),

An = O(H?L)(k ~0, n -—a-( oo},
Under these conditions instead of (1) and +’(I) we shall write 949(1) and

[

' 94;)(1) respectively.
The following facts are obvious:

LEMMA 2.1. ‘ : 049 M C LE(E).

COROLLARY 2.1, For every f(x) gLi(D, (%) « Mi(l) the sealar products (f, ¢)p
(g ) where o(x) < Ap(l), define continuous linear forms on <Ap(l). Therefore,,
LX), L‘;(I) and M; are subsets of o#,(D). ’
Now consider the series
R[An](x) = 2 An Wn(x)- (2°1)
n=0

From Theorem 9.6.1 of [2] and the above Cofolléu‘y 2.1, we obtain:
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LEMMA 2.2. Suppose that A, = 0(n?)(n ~ o). Then the series (2.1). is conver-
gent in o4 (I) and Its sum g belongs to M? (I) if and only if the coefficients
A, can be represented by the formulae

Aq :J'g(::) on(x) dx (=0, 1, 2,..) (2.2)
HE
Let us cnireduce the class

IS IS I 1= vy anir < oo b

n=0 -

where _
T(n) >0 (y n), ¥(n) = 0n~M > 1, n— oo).

It is easy to prove the following lemmas,

LEMMA 2.3. For every g(x) < M" (D, {(g, lbn)] =0 € i

LEMMA 2.4 If ,A“l:;o I then the series = 7(n)A, ¥,(x}is absolulely conver-
: ' n=0
gent in LiDand in Ls(l). Let us define
H(x, y) = 2 T(1) Palx) Puly)- (2.3)

n=0
Obviously. H(x, y) € fﬁ([ % I). We sball assume that

H(x, ) € L‘;, od X 1) N Li o XD (2.4)

THEOREM 2.1. If f(z) € L: (), then

= Yoy (f, wn)é Palx) = (H(x, 3), f3))g, S (2.9)
n=40

2 T(n) | (£, llJn)p 2= (B[T(n)(f Pn) g 1), f(‘i)) ‘ (2.6)
n=0 .

Proof. Observe that, under the assumption (2.4),
x - (Hx, y), f{on e LD n L’(I)
for every f(~<) < L’(I) Using Lemmas 2.3 and 2.4, we have
zT(n)(f 'qJ) Pa(X)E L’([)’\L’“ (3

n=n
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According]y, for cvery 9(x) € ofp (1), we get
<o 7

= T, 'll-’n)é Pa(x), 0(x)) = = T(n)d, Pnlg (€, ¥n) =

n=0 =0

= (f: 2 T(ﬂ)((Ps W) wn(_y))p = (f: (2 T{u) ’LEH(X) 'tpn(Y)! (-P(X)))p

n=0 n=4{
= {{(y), H(x, ), 2N
Applying Fubini’s theorem yiclds
F(y), H(x, ¥, 0, = (H(x, ), 1), - 9.
The equality (2.5) then follows in the sense of aﬁ’p(l). According to Du

Bois Reymond’s theorem (cf. [3]), the equalily (2.5) is also true in the sense

of LX) and Li(x).

In order to prove the equalily (2.6), we have to use Lemmas 2.3—24 and -

the following proposition.
PROPOSITION 2.1. If %n(x)eLpz(I) and the series _> “Uy(x) is convergent in
. b n=>0
Li(I), then for every funciion [(%) € Lg(l), we have
‘o @
(2 Un(@) L)) =\ Z (U D)y
n=0 n=(
Multiplying the series in (2.5) by f(x), integrating the obtained equalily
with respect to x, on I and using Proposition 2.1, we obtain the dcsired equa-
lity (2.6). Q.E.D.

3. DUAL SERIES EOUATIONS WITH GENERAL KERNELS
Let Iy = (ag by) be subintervals of I = (a,b). where k =1, N and Iy AT}..—_-
=¢ (k & j). Let p(x) be non-negalive functions defined in Iy such that
Vou®) € LTl (rx > 2).
We shall make the following assumplions
2 -
b) For ay <<,y <Ibr(k = 1, N) the funetion H(z,¥) (éf. (2.2)) has the form
Hx,y) = Mu@,y) + Dul@y) (3.1)
where SD(x,¥) < C(I; x 1), the functions [ (x,y) are 7t —kernels in the follo-
wing sence (ef. [2] :
hk
_f (e, ) pu(y) Tin(¥) dY = Hrn Fxa(T), (3.2)
ak

tin 5= 0, z Fkn i:;D € la,
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wherc [mm(a') }:;0 is a c'»ompiete orthonormal s;yslem in Lgk(lk). Putting'

N
o(x) = = Ylz) p@) (€D (3.3)
k=1 -
r = min {r:},
1S kN

where % (x) is the characteristic function of Iy, we see that all the results
obtained in the previous section remeain valid for this p(x).

Using the notation (2.1), we can write the equations (1.1) in the f01m

R[T@m) A (@) = filz) (x €l k= .N) . (3.4)
. N
RAJ (@) =0 @eINU (3.5)
' k=1 :

where thé functions T(n) and w,(x) have the same properties as in the pre-
vious section.

Assuming fux) & LAL) N Lik (1), we shall determine the set {A, {::0

in the classe 9{ {pl |s where
N{pk}zg l[B] const(Vn).}Bn] Oél

R[A.] () € Mpk(Ik), k =1,N ].

The convergence of series R [A,J(x) and R [Y(n)A,}(x) has been diseus-
sed the previous section (Lemmas 2.2, 2.4). -

Let‘g &« 04'9(1) (p(x) is defined_bjr (3.3)) be the sum of R{A [(x), where
P AL ];o:o < %}"N fok | and satisfies (3.5) According to Lemma 2.2, we get

b'

Aw = (g wa) = [ g®pat0dx. 3.6)
a
N o
Since supp g <.|J In for x & Iy we put gk(x) = g{x). Then we have
k=1
gu(x) = R[A 1x) € M2 5L (3.7)

Hence g(x) € M2 (I) where o(x) is defined by the formula (3.3) and we
obtain from (3.6) (cf), (‘) 2y)

N bk
An=A(g ¥} = 3, [ () a(x)dx. By
=1 ak ) '
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THEOREM 3.1. The dual equalions (3.4) — (4.5) huve al mosl one solulion in
R /
g{l’;N fou]-

Proof. To prove this theorem, we consider the homogeneous dual equati ons of
(3.4—-(3.95)
RET(n) Api(x) = t(x€el; = 1,N)

N (3.9)
B[Anﬂ (x) = 0(x & IN U L)
k=1

Now we multiply (3.9) by gi(x), and integrate with respect to x on I
Summing the obtained equalities over k from !to N and using (2.6), (3.8) we
conclude .

Y r(m)|Aa2 = 0.
n=0

Since ¥(n) >0 (¥ n), this implies Ap==0(y 1) and the proof is complele.

THEOREM 3.2. The dual equations (3.4) —-'(3.5) are eq&ivalem‘ fo the syslem of
“integral equations

N I . _

Y [ H@, gy dy = fu@) @ €k =18 310

i=1 4

where gi(x) € i.(Iij and gre retated to A, by the formula (3.8).

Proof. If {An} 22, € ‘KIN{pq and satisfies (3.4) — (3.5) then the formula (3.8)

holds. Let us rewrite the latter in the form

Aa=(gr ol 3.11)
- where

-~ N L
T = S Tl pp (9 ).
k=1
Subtitasting A, from (3.11y in (3.4) and using the equality (2.5), we
obtain the system (1.10) )

Conversely, assume that gi(x) (= {,N) belong to Mgi(li) and satisly the
system (3.10). Then rom (3.10) we obtain (3.4), wherethe coefficients A, are
give by the formula (3.8) Berus supp gi CIi the lalter formula can be writlen
in the form (3.6), where

N
(g 0 = (g ©) ive € Ap(D, supp © C Iy supp g < Y I

i=1
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Using a known result ([1Y, theorem 9.6. i) we obtain frorn (3.6)
RlA3(0) = g0 (x € ),

. N
R[AJ®) =0 (xe€ I\ k.
. k=1

Finally, using Lemma 2.3 and the formula (3.7) it is easy to check that
A2, € %T N {ox]. The therem is proved.

4. EXISTENCE OF SOLUTIONS TO THE SYSTEM (3.10)
In (3.10) we now replace gi(x) by pl(x) ¢i(x) (pi(x) L {L). 1—_ 1,N) and
for xGIk(k_ 1, N) we put
1
X = Ek(t) = m [ﬂ(bl\ — ak)t - Bak‘—— mbk],

o) = (), D) = prEalD)),

Tt = FE®)) Tan(t) = Vi qpaEill)),
Hk(t,'r') = OkM(Bx(l), Ex(1)),
Disttir) = 6. DuCEult), Eu(n),
Dult,n) = GHECD, &®) (k+ i),

Bk = (bk"" ak)l(B_“)l (”n B) C R-
If we introduce the veetor notation

where

— — N b —~ N — ~ N
-  ~ N — N
= [“kn]k=1 y P = [ukn]k=1’_
~ ~ N =~ N -
= Enkﬂk=1 R D = ['%ki]k,i:l
and the multiplieation of vectors

u[:}v_[ukvk]k 1

then the system (3.10) (under the assumption (3.1)) and the formula (3 2) can
be written .respectively. in the forms:

B B
[T o Tem Oew de + [ 120 .Gl Tode =T, @b
74 [r4 .

B o o
: f i, 7) O o(e) O wa(e) Az =lpw O 9t (1 = 0, 1, 2, ...). 4.2)
7.2
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Let us iniroduce the space

...J.

L-* @B = [uh | ut) € L"I‘ (@p), k = LN}
Clearly this is Banach space with the norm
N
-— —
Pl = (S w0
p k=1
Deénote

DU v dt,

=)
J,
Ql__.-m

i N ' —
: Tl = (S 8 (E€RY,
k=1

—>-1

—1.,N
= \Ip'k ]k=1 (|J,k+0,k:1, )-
Then the following lemmas can easily be verified.
‘LEMMA 4.1, Let M(t) be a functlonal matrix, whose elements are M:u(t €
& L‘"“ (o) (k,i= ,N). F'm every E, 'n & RY and u (t) = L-+ (m g) we have
T < < (Tl [Tlx
4 '
| J’ M@ . () O D] dt |y < uuu*( Z i M il~) :

,i=1

' 2N . o,
LEMMA 4.2, For every -I;?t) & L? (a,p) we have the expansion

T = T E O, (4.3)
- n=0

(gn = (11, “n)P s 1‘1': 0a1:2:---),

~where the series (4.3) is convergent in L*N(a, §). Moreover we have

= 3% (44)

n=0

ﬂ:
_.ﬁw
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Before studying the system (4.1), letus introduce the following notations

S = 3 : ‘0= =
— n L] n)p'_>' D :mn(t) 3
B - (4.5)

Rki(z) = f%m(tﬁ),;k(t)n“;kn(t) dt,
. [

=21

=)

ki

' N
Baty = [Rn (t)]k,i:1 .
The i'ollov?ing théorem holds,
THEOREM 4.1. Suppose that oy <1 and

{F:;—‘ £3 (—F' E)n)?lN :;0 €l

Then the system (4.1) has a unique solution in L-%LN(O:,B) which can be oblainéd
‘ P

by the melhod of successive aﬁpromimaﬁons from the system

e B

— —_ w1 ' — — ~

S0 =W — = H® O O [ [Ru®. (o) Do de. (16)
n=>0 ) o

Proof. Using (4.2), (4 3) and the method of [2] (for N = 1), after some lrans-
formations, we obtain the system (4.6), where (S"’) (t) and the matrix

R.(t) are given by (4.5).
Denotmg by T"“’ the expression en the rlght —hand side ef. (4 8), we see

T

that T maps I’:.-;' {«,p) into L;a- {et,B).

Now we show that T is a contraction operator. Indeed, using the equa- '
lity (4.4) from (4.6) we obtain

. w 4 B
“T;; - Tq—;\\%; Eﬂ\“ﬁn 113 J'Ean(z).ﬁz’(t) O (e(e) — $())]dz 2N (4.7)

Applymg the mequalltles in Lemma (4.1), we get from (4.7)

i
1Ty = T3 17 <onle—vl7
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Since under the conditions of this theorem oy<-1,it follows that Tis a
contraction operator. Therefore the system (4.1) has a unique solution in

Lgiy(a,ﬂ) which can be obtained from (4.6) by the method of successive ap-
p

proximations. The theorem is proved.
Il follows from all the above that

THEOREM 4.2. Under the conditions of the Theorem 4.1, the dual series
equations (3.9)—(3.5) in %T'N { pk} have a unique solution.
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