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1. INTRODUCTION

A well known result of Browder (see e.g. [2]) states that if Cis a nonempty
rompact and convex subset.in R and f: C x [0,1]— C is acontinuous mapping,
hen there is a closed and connectéd subset Tof C X [0;1] which meets both
2x {0} and C x {1} such that x € f (x, t) for every (&, t) in T.

In the last decade there have been several httempts to generalize this
important theorem. Saigal [8] extended ii io multivalued mappings from R " to
R® with compact convex values and Mas—Colell [5] proved that Saigal’ stheorem -
remains {rue even for mappings with compact and contractible values,

One important application of Browder’s theorem is in nonlinear com-
plementarity problems. In[2], Eaves used it to prove the basic theorem of
romplementarity. Saigal [8] used Mas — Colell’ s extension- of Browder s
theorem to extend Eaves' result fo multi—valued mappings with compact and
sonirac tible values, o

In the first seclion of the present paper we shall exiend Saigal'sfixed
point theorem to an arbitrary locally convex space. In the second section this
result is used to extend Eaves’ basic theorem of complementarity to barrel
spaces. Finally, as an application we shall give an existence theorem for the
generalized complementarily problem. ' :

The author should like to thank prof. Hoang Tuy for useful advices
which essentially shortened the original proofs.

2. A FIXED POINT THEQREM

THEOREM 1. Lef X be a sepraled locally convex space and K be a compact
conver subset of X. Assume that f: KX [0,1] — 28 is an ws.c. multi — valued
mapping with f(z,t) nonemply compact and convex for every (x.t) in KX[0,1].
Let : ' o '
Ci={(zt) €K X [01]: x &€ f(xt)]
Then there is a closed connecled subset T ot C; such that
TARNEKx{0]+¢and TNEX |1} +¢
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Preof. Put _ '
Ch={@tLn) €KX 0] xXK:zET (x, t)]

L:= ‘(a;, {, y)EXX[O,l}]xX:x:y}

Clearly C:“: G(f) n L where G(f) is the graph of f. To prove the

theorem, it suffices to show that C; has a component meeting both Kx{0} x K
and K x {1} x K. '

Suppose the contrary that there is no such component. Then there exisl
iwo compact subsets €: and C; of C; such that CyuCs = C‘;" and CiNnGCy = ¢

GNE X [0} x K¢ but CGAnKEX{1}xK=¢
ConKX 1] xK+¢ but CanKX{0]XK=4¢
So we éam find an open convex (and symetric) neighborhood W of the origin
in X and a positive number ¢ such that '
Ci+ WX (—e )X W) N (Cok WX (—e, ) X W) = ¢
(C+FWX (6 )X W)nKx{1] xK=9¢
G+ WX{—6 )XW NK X [0} XK =¢

On the other hand, since Cf = G(f) N L, the compact set G(f) is disjoint
from L\ (C? + W X (—¢, &) X W). Therefore, there exists an open and convex
neighborhood W' of the origin and a positive number ¢ such that :

GO+ WX (=, )X WY AL CP+ W X (— 0 X W] =9
or equivalently : ' ~

G + WX(~¢, )X W)ALCCE + WX (—e, ) X W

Now since K is compact, there exists a finite number of points zy,.., ®, in K
- ‘ m

such that K ¢ U (xj+W’), Let S be the convex hull of zy,.... &, and define
. i=1

a multivalued mapping F : S x [0,1] — 2° by selting F(z, ) : = (I(x, H+WHINS, -

By an easy argument one can verify that F is u.s.c. and F(z, 1) s a nonempty

compact convex subset of S for every (, 1) in 8§ X [0,1]. Therefore by Saigal’s

theorem ([8}, the set C;; p = G(F) n L has a component meeting both

Kx{{}}xKande{I}xK.

On the other hand elearly G(F) ¢ G(f)+ W' x (—¢, ¢’) X W’ hence
Cp=GE) AL C (G + W X (—¢, )X W) AL C C; + WX (—e, ) X W

But by the choice of W and e, Cr+ W X (—e, 8) X W has no componenl
meeting both K x {0} X K and K x [1} x K. This contradiction completes the
proof. '
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3. THE GENERALIZED COMPLEMENTARITY PROBLEM

Let X be a separated locally convex space whose dual X* is provided
with the weak —s# topology. Let M be a closed convex cone in X and M’
the polar of M:
M ={y&€X:{r,y)>»0 Yz &M
Letf: M~ 2}‘ be a multi - valued mapping with i(m) nonempty
compact and convex for every x in M.

DEFINITION 1: A point r & M is ealled a solution of the generalized
complementarity problem (GCP) with respect to the mapping f and the cone
M if there is a point y & f(z) such that y € M" and (x, y) = 0.

DEFINITION 2: Let C be a closed and convex subsel of M. A point x in C
is called a stationary poinf of the pair (f, C) if there is a poinl y in f(x) such
that (v—x, y)>» 0 for every v in C.

The following propositions concerning_ the relatioship between the
notions ol stationary and solutions of GCP are simple and well — known.

PROPOSITION 1: A point « is a solution to GCP if and only il x is a
stationary point of the pair (f, M).

PROPOSINION 2: Let C be a closed coavex subset of M containing O. If =
is a stationary po’int of (£, C) such that z€inty C (the interior of C relative to M),
then x is a solution to GCP.

"For our purpose we shall also need the following lemma:

LEMMA : Let X be a barrel space and { be u.s.c and C be a closed subset of M
containg O, Assume that D: C—2¥ is a continuous multi — valued mapping
such that D(0) = {0} and D(x) is compact and conlains x for every x in C.
Then the set X = {.:t:eC ® is a stationary point of {(f, D (x))} is nonempty
and closed.

Proof. Clearly O € Z so X is nonempty.
- Let (x,) be any generalized sequence in Z wh1011 converges to 2. We
have to show that x < 2.

By definition, for every n there exists y, € f(x,) such that (v—z,, y.)>»0
for every v&D(x;). The set wi(x,) v f(x) being compact, [1. Ch.V], Theorem 1.3]

one can assume by taking subsequence if necessary—that (y,) convergesto a
point y. Since f is u.s.c. we have y &€ f(x) and it remains to prove that (v—x,
y) > 0 for every v &€ D(x).

- Let us consider anfarbitrary v in D(z). By the continuity of D thereis a
sequence v,— v such that v, € D(x,) for every n, Then (v, — @, yu) > 0 for
every n. But y, is relatively compaci, hence weakly bounded. Sine X is a barrel
space, vy} is equicontinuous {7, Ch. IV, Proposition 1] Therefore:

(Vo= J) —> (V— %, ¥
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and hence (x—x,y) > 0, which completes the proof
We can now state our mam result:

THEOREM 2: Let X be a separated barrel space whose dual X’ is provided with
the weak — = lopology. Let M be a closed convex cone in X and’D : R — 2" be «
conlinuous multivalued mapping with compact convex values which satisfies Lhe
following conditions :

(a) D(0) = {0} and D(t) C D(s) for | <s

(b) lhe set C = D(R,) is closed.

Assume furthermore that ; M — 2% is an u.s.c. multivalued mapping with

f(x) nonempty compact and convex for every x in M. Then there is a closed
and connected subset T of M such that:

(i) ¥V« €T 31 € R, : x is a slationary point of (f, D(1))
(ii)V, €T 3. €T : xis a slationary point of (f. D(s)).

Proof. Consider the funetion h: C — R defined by
’ h(x)=|inf t€ R : x € D)}

By [1, Ch. VI, Theorems 3.1., and 3.2], h is continuous. Furthermore
h(Oy =0 and x & D(t) if and only if { > h(x).

Put 3= fx<C : x is a stationary peint of (f, D(h(x)))} and Z’—{XEC X is
a stationary point of (f, D)) fro some t in R,j.

,I'rom the assumtions (a) and (b) and the definition of h, it follows that
0&€2=2" Applying Lemma with D being Doh we obtain that % is closed. Let
T be the component of X containing O. Then clearly T is closed connected and
salisfies (i). It remains to prove that T also satisfies (ii).

For s = 0, (ii) is obvious, so let s<=0. Since D(s) is compact, f(D(s)) is
compact. But X being a barrel space, the closed convex hull E(s) of f(D(s))
is compact and convex in X' [7, Ch. VI, Proposition 17. Let us define a
mapping F: D(s) X E¢s) X [0, s] — 2D® XE® by taking F(x,y,t) = arg
minveD(t) (v, ¥ ) X f(x). - )

Clearly F(x,y,t).is nonempty compact and convex for every (x,y,t). To
see F is u.s,c. (or equivalently, F is a closed mapping), it suffices to verify
the closedness of the first component of F. that is of the mapping (y.t) 1— arg
mln v & DD {V,¥ }.

For this purpose let (L), (¥.) and (u,) be arbitrary generalized sequences
such that

U & arg min_ ¢ 5 (Vs Vo) and ty—1t, Yo =y, and U, — u.

We have to show that u € arg minveD(t) (V¥ )

Using the continuity of D.one can find for every v &€ (i) a generalized se-
quence (v} such that v, ->v and v, € D(l,) for every n. Then ( v4,¥x ) > { U5, ¥ ).
Again since X is a barrel space (y,) is equicentinuous so

' . (VmYn>'_><V-Y)

and . (uann)_)(usy)
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Hence (v,y) > (u, y ), which means that u € arg min_ ., (V. ) proving the
upper semicontinuity of F. '

Now applying Theorem 1 to the mapping F, there exlsts a closed com-
ponent A of the set

CCr={(x,y,) € D(s) X B(s) X [0,s]: (z,7) € Fa,y.0) |
such that , AN D) X Bsy X {0]==¢ , (O
and - AnDs) XE@E) X1} +¢ (2

For every (z,y,t) € A we have (x,y) € F(zx, v, t) whichmeans that x € arg

minveD(t) {vy) and v € f{x).

Consequently x is a stationary point of (f,D(t)), ie. x € 2 = Z. ance
the set B=fx € C: (x,y,1) € A for some y and t] is contained in 2 and
is connected. But (i)} implies O & B, therefore B ¢ T. Furthermore (2) implies
that there is a stationary point x of (f, D(s)). Hence T satisfies (ii) as was to
be proved.

In the case where X = R® this theorem reduces to Theorem 2.1. in 4]
which is a generalization of the so cfllled basic theorem of complementery of
Eaves [2].

A corollary of this theorem is the following ‘existence wesult for GCP,
generalizing coresponding results of Eaves [2] and Saigal {8].

COROLLARY. Let X, M, D, { as in Theorem 2 with the further assumption that
D maps R, onto M. Moreover suppose there is a bounded set U in M\ |0}
which separates 0 from « such that

, Yz € Udw € int yD(h(zx)) Yy € f(a’) (w—2x,y) <0}
Then GCP has a solution. :

(We say that U separates O from e if any conuecled and unbounded
set in M containing O meets U). -

 Proof. Consider the connected set T whose cxistence has been proved in
Theorem 2. We can distinguish two case : (a) T is bounded (b) T is unbounded.

In the case (a) we claim that T is compact. Indeed h-'[0,1] is open in M
and contains O. Sinee T is bounded and contained in the cone M, there is a
natural number n such that T ¢ n.h=! [0.1] ¢ n.h '[0,1] = n.D¢l). D(t) being
9ompact T is compac. On the other hand TCM = v {inty D():t€R;.} Hence
there is t>> O such that T C intyD(t) and Proposition 2 then nnphes that GCP
has a solution.

In the case (b), since T is connected and contains O, there is a point =
fn T A U. But x € T implies that -

dy € f(x) Vv € D(h(x)): (v—z,¥y) >0 )
while € U implies that
Jw E inty D(h(ﬁ)) Yz = f(x) {W-x, Z) < (4)

Therefore (w—z,y) =0.
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Since w ginty D(h(x)), there exists for every u € M an >0 such thal-
w4+ eu € D(h(z)). By 3), 0 {(w+eu —x,y) = ¢ (u, v) Hence{uy)>0
ie., y€ M. ) .

Finally O € D(h(x)) implies 0 (00—, y) and consequently (x,v)=10
since x € M and y € M". Thus z is a solution to GCP.

Recetved Oclober 106, 1930
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