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1. INTRODUCTION

Let the symmetric group 2., of degree m act on the configuration space
_ F(RY, m)'= {(X1s0ey Xm :x‘(_:Rq xp=x;if i) 1<, j<m]
‘ by permutdtlons of the factors. The direct limit F(RrR™, m)/Zm = llm F(Rq m)/Zm

q
becomes a classifying space of T So we have the commutalive diagram

o TOHeE) B, HYSn)
1.1 . | icr, LR, ’
HAF(RY, 00)/S_) 2, HYF(RY, m)/En)

where H¥Z_) = 1‘1111 H%Z,) and HYF(RY, oe)/Z_ ) = lim H*FRY, m)/Z,) are
m m

the cohomology Hopfl algebras introduced essentially by Nakaoka [6]. Here

and in what follows, the ring of cocfficients is always assumed to be Z,=Z/2Z,

According to the classical Steenrod’s decomposition theorem, one knows that -

the homomorphisms Res;, Res, are surjective, and according to Huynh Mui

[3; 10.8] so are the homomorphisms i(F, q). '

In [8] we have determined the (Hopf) algebra structure of H*(Z_) and
given what we called the Dickson generator system for this algebrd. Asa con-
sequence, the algebra ‘H*(Zm) is computed by means of the epimorphism Res;.
The purpose of this paper is to determine the Hopf algebra struecture of
H*(F(RY, oo)/Z_)..and further, the algebra structure of H*(F(R% m}/Zy) by use
of Ress. As it is already observed in 1.1, we need 1o focus our study on the
epimorphisms i(F, q), more concretely, on the images of the Diekson generators
of H*(Z_) under i(F, q). Here we remind the reader Lhat the modules (bul not
the algebras)y H¥F(RY, m)/Z.), 1 < m < os, are computed previously by a geo-
 metrical approach in [4], [3], and from [3], the epimorphisms i(I', q) can be
concretely expressed by means of the Nakamura's cellular decomposition of
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F;(Rq,'m). ’I"cchnically, the study of the epimorphisms i(F, ¢) based on the study
of the following commulative diagram '
2 H¢(22“) Hes - H‘(Z‘é“, 2)
. : |

(1.2)

] {
H#(F(RY, 2"/ Zpn ———H*M(q, n))

where M(g. n) is the, n—ilerated wreath product of the projective spaces,
which is émbedded canonically in F(RY, 2“)/2211 , and when ¢ — o= which
beeomes the classilying of 22:1, g the Sylow 2—subgroup of Zyn.
~ The main tools to study this diagram will be the Nakamura’s cellular
decomposition, the Steenrod theory on cohomology of the wreath products and
the Dickson and Huynh Mui modular invariant theory (see [2]. '
From our study on the algebra H*(F(RY, m)/Zn) we obtain the results of
M. Nakaoka 7] when q = «, m = 4, of D.B. Fuks [1] when q = 2 and of the
anthor [8] when q = e, )
- The details and further developments of this paper.will appear elsewhere.

2. THE CONFIGTURATION SPACES AND THE ITERATED WREATH
PRODUCGTS OF PROJECTIVE SIPACES

Motivaled by the Steenrod theory on cohomology of the wreath products
of finite groups, we define the n-iterated wreath products M(q, n) of projective
~“spaces by induction en n as follows. )

2.1) M(q, 0) = {»}, the space consisting of exaclly one-point,
L]

M(q, 1) = M{g, n—1) | P11 = M¢q, n—1)* X871,

Where the group E==Z, operates on M(q, n — 1)> by permulations of the fac-
tors-and on $1-1 by the antipodal map. .
We are going lo define the conlinuous embedding

(2-2) l(q, Il) M M(q, ny — F(Rq, :2.“)/2211 .

To this end, we fix a positive number 's<—;— and ﬂwayg consider S%-! as the
unitﬂ sphere of the Euclidean space RS "I‘he map i(q, 0) : M(q, 0) = [*] —
— F(RY, 2“)[220 = RY is given by i(q, 0)(x) = 0. Suppose that i(q, n—Iy has been
defined, further for x € M(g, n—1) we have-
iqy n—1)(x) = [i(q, n—1)(x)-... (g n=1yn-1(x)]

( where the right side denotes ‘the non-ordered collection of the distinct poinls
i(q, n— Du(x)perry 3L 1 — 1)211#1(}{) in RY. Now we define i(q,n) = [i(q, nhy.-.,
i(q, n);n} by the formula _ | 4

’ ei(q, n-——l)ju(x) +z s jsgant

N , \ t ‘=
l(q n)]( )‘) ‘Ei(q, n_1)1—2n _1(5,-) —Z 1f j>2“-l,
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or { = [x, ¥, z} € M(g, @), where x ¥ ¢ M{qg n — 1), zg8 1
As easily seen,this map is well defined. When g=2, the subspace i(2,
(2, n) of F(R?, 2“)/2 » has been used in Fuks [1] by a different lanﬁuage

.3 THEOREM. ﬁ’(q, n): H*F(RY, 2"),/ Zon — HE(M(q, n)is a monomorphnsm
or q>» 1, nx»0.

dea of the proof. Let us consider the restrictions H¥(Zqn )— H(E"), H*(Zyn o)—
> H*(E™) from the groups Zgn and g2 , to their special maximal elementary
belian 2-subgroup E" (sc¢e[2], [8]). Using Diagram 1.2, we have proved the
heorem'by means of invariants in H*(E®) of the Weyl groups of E" in
Zon and Zgn 5. These Weyl groups are respectively GL, = GL(n, Z>) and GLx,2
he subgroup consisting of all upper triangular matrices in GL, with 1 in the
liagonals (cf. [2]).

3. THE HOPF ALSEBRA H.{F(8Y, <) Z_)

Note that F(/RY, o) Z_ = lim F(RY, m),~ Zn is not an H-space, However
e
m
ts homology admits a slructure of Hopf algebras. Besides this, the algebra
JL(F(RT, o),/2 )is equipped with multiplicity sueh that
aHA(FRY, 00) 72 ) = HF(RY, m) 2 ; FRI, m—1), Zy_1)-

The reader, who is not familiar with the notion of algebra with multiplicity,

san refer to Nakamura [5]. Farther, if A = @ ,A is such an algcbra, then we
. ' . 020

put A(m) = & ,A. Particularty, we have

n<m

H¥F®Y, m)Zy) = HHFRY, =) Z,) (m).

Let Wns 0<s <Tn, denote the Stiefel — Whitney characteristic class of
dimension 2"-—2° of the veclor fibre bundle
R x F(RY, ") = F(RY, 2)/Zg.
Zyr
where the group Zsn operates on r? by permutations of the coordinates.
Obviously, the canonical homomorphism i(F, q) H""(F(R“’ 2“)/220) —
H*(FF(RY, 27) 7% ) brings Wy, 1o Wy, for 0 s < n, > 2

According fo Huynh Mai [273, (seé also [8 ; §21, we have
H*(F(R™, 2"),/Zgn } = H*(Zgn ) = Ker Res (B, Tyn ) @ Zg [Wiogpes Waonaal-
By means of Theorem 2.3 we get

. v Zz[“vno""’ an n—1]
3.bH H*F®RY, 2™, 2on) = X : d
. n—i
{ﬂwhs h>02h3_q)
s=() 8

where X = i(F, q) (Ker Res (E", 2gn ) EB_ZZ[‘WI,,],..., Woa1))-
‘ This allows us to define (compare with [8; 2.4 and 2.57.
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3.2 DEFINITION. (i) For each K = (kg Kp1) € IH(@) = {(hoseers hupg) 5 m >0,
h, >0, h;> 0, Zh < q} we define the Dickson element Dy = D, <

Kgasees kn 1

. 1
& H,(F(RY, 2") /Zqn by the conditions

( Dkos---s kn-—lg X ) = O :
n—1
rh 1 (k Sersy knfi) = (h reeny hn—l)
D ) W = ° ¢
{ Tlgreres knoa I;I n, s ’ . 3] otherwise,

where {(.,.) denotes the dual pairing. The image of Dg under. the cant.nical
monomorphism H*F®RT, 2"), Zgn ) — Hy(FRY, o), ) will be denoted sim-
p}_} bV DK B

(i) We define Dx for K & J(q) = [(hgne hmr) =03 m>0, hiz0, Z hi<lq}
by putting i

(,S
D Kopororknot = -
Oseeer sk gaeraskin~1 Koseroskn_1
ko

s
Using Theorem 2.5 in Nguyén Hiru Vigt H;mg 78] we obtain

3.3 THEOREM. The structures of H (F(RY, o), % ) considered as a Hopf alge-
bra and as an algebra with mulliplicity are described as follows.

(1) Hy(B(RY, o) /2) = Zs[Dgs K € IH(w)]

as algebras with mulliplicily, where the multiplicity of Dkosws ka1 IS given 1o
be 2". So we have lhe isomorphism of Zs—modules for arbitrary m

H(F(RY, m) Zn) = Z[Dxs K € (@) ](m).

T he busis of this module consisting of all monomials in Z,[Dx: k € JHD) df
multiplicily < m will be called the Dickson basis.

(ii) The comulﬁpliéafion A of H(F(RY, =), Z_) satisfies Lhe formula

ADko,..., kn—l = Z Dlos'-', In_t 2y Dmo""' my 4*.
{i +_ mi = kj

for  (kpeokain €J4(@, L, m;>0, 0<Li<<n

4. THE ALGEBRAS H¥*®(RY, m). Zn)
4

We determine these algebras here by theé argument similar to that used
in[8; §3] for the algebras H#*(Zy).

Fer each (76, T) = (Hiyes He) X (traeess 1} € J(@F X N7, We set

GG

y _ Hiseons Hr
(4.1) .\VT = Vth

= (D} ... D )* € HYF(RS, o),/ Z),
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where the dual is taken via the Dickson basis. For (96, T) = (H,, .... Hoyxd,...,1)

. . r
we  write  symply WC’%_: WHL - He ipgiead of W?é. Nolice that, if

H = (h,,... by} € ¥{g) we have
’ ) n—1 4
(4.2) WHF(RT, 2") /Zon = || W'
‘ 5=0 ' M )
As easily seen, H*(I'(RY, «)/Z_) admits the additive basis consisting of
lLhe elements

(4.3) c W (6, T) = (e, FL) X (O e, 1) E FHQF XN,

with Hy <Z... << H,, r>> o. Here <Cis the order in J(q) defined by length and by
lexicographic order for elements of the samée length, where by a length of
H = (b,, ..., hy;) we mean the number i(H) = n. :

Again, the above basis is called the Dickson basis of H® (F(R1, =} %)

We state the main result of this note. ‘
1.4 THEOREM. We have the isomorphism of algebras

7H, -
He (F(RY, o0)/%,) = —— i1 € Jonal )]

| - WHERRE T H € Toga(q))
Here I,qa(q) = {(hyyees huo) € J(@): 1 >0, Phere ewists i such thal h; are odd)
and h(q, H) = min {h'€ N:2%h,+ ...+ ho1) > q] * for H = (b, .., hay). .

The comultiplication A of the Hopf algebra H*(F(RI, o), 3 _) can he
deseribed via the Dickson basis hy the formula

1-11| ev He Hl, nny H:
@ WV]. ey vr

ui, ..., Ur

Hiy .oy Hr _ 7
Awtl, e,y tr - 2 \\
E‘ll‘l‘\" =t

for Hy .., H. €J+(q@ and H;<<..< H.
Remember that, in [8; 3.5] we have _defined for (46, T) € J(oo)" X N¥
(K, U) € J(o0)® xN® the subset Y6, T) v (K, Uy ]| T(e)' X N'. Now we put
t =0
(4.5) (F6, DY (K, Uy = (96, DV, U)) n (1@ X NY).
t2=20
From Theorem 3.5 we obtain (compare with [8; 3.6])

4.6 LEMMA, For (96, T), (%, U) & L1 Hg)t X N' we have in
H#(F(RY, =),/3_) 12> 0

G 9'{
Wi . zw\Y,

X
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where the summaftion runs over the represenfalives of Zy — orbis of
(Z6, T (L, U). Here S = 1= acts on U @) X N* by
: r==10 =20
U(Hl,-.--er)X(th---, tr) = (Hd—l(1)!" o (I')) X (1— "*1(1)5 U—[(x‘))’ o e z1"

To determirie the algebras H¥F®RY, m),Zn) we: need

7 DEFINITION. (i) The depth 6 (z) of an element z in the Dickson bas:s of
H“(F(Rq "o0)fX..) 18 defmed by the formulas

n Hb'--s Hr — 5 I(Hl)'
8(1) = 0; e(W P =D |
. [ i=1 f

“(il) Supposé Z = (%%:T) W;?é , the linear decomposition of zEH*(F(RY, o /Z.)
via the Dickson basis, then we put 6(z) = min B(Wf?@).

: “ .
Notice that, by means of Lemma 4.6, we can compute the depth of arbitrary
z € HHERY, 00)  Zoo).

4.8. THEOREM. Lel Jo(q, m)= [HEJ,w(q): 2" < m], then we have ihe
isomorphism of algebras for arbitrary natural number m

CH*(F®RY, m), Za) 2= Zo[Wis H € Jaaq, m1 g, m),
where 1{q, m) denoles lhe ideal genneraled by J(WH) olhlq.H); | ¢ Joaalq, m)}
and {z € Z{Wi; H € Joaa(q, m)}; 8(z) > m}. ) |
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