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MULTIDIMENSIONAL QUANTIZATION. 11
THE COVARIANT DERIVATION
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In somec previous works the author has proposed a construciion of uni-
tary representations by K—orbits. In the present paper we give a physical
illustration of this construction. The main vesult is the following fact: The
. partially invariant holomorphieally induced represention, of a connected and
simply connected . Lie group coincides with the representation arising in the
procedure of multidimesional quantization of this group.

1. NQTATIONS AND STATEMENT COF THE MAIN RESULT

In this section we [irst recall, some notations which have been inlro-
duced in the provious articles ([1], [2]), then we give the slatement of the
main result. ’ -

v

1.1. Partially invariant holomerphicaliy induced represeniations by K — orbits

Let G be a connected Lie group, @ its Lie algebra and &* Lhe dual space
of &, 1t is clear that the coadjoint representation (shortly, K——re]gresenlalio}z) of
the group’ G in G* divides @* into K--orbits. We denole by ©(G) the space of
all K ~orbits of the group G.

_ From now on we fix a K —orbit @ € 0(G) and a point F in it. Assume
that G is the stabilizer of the point F, Gp is the Lie algebra of Gg. Tt is well
known that in the category of homogeneous G—spaces we have Q = Gr N\ G.
It is not hard to verify that 2uiF is a representation of Gy The K—orbil -is
called integral iff there exists a unitary representation (character) % of Grg,
the differential of which is 2xiF. Suppose that {Gr), is the connecfed com-

ponent of the identity of Gp and (Gp)o = S. R is its E. Cartan — Levi — Maleev’s
decomposition, ¢ is an irreducible unilary representation of Gg such that:; =1,

and ;: dg is lhe corresponding represeniation of the Lic algchra @ and
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hence also of its complexification (Gr)c = Gr ® C. Thus % . o is an irreducible

" unitary representation of Gr such that its restriclion to R (the solvable part of
the connected component of ‘the identity of the stabilizer Gy of the point F)
is a multiple of ¥r, and ils diflfer enual is .

Al . 9) = 250iF - p.

8

If the representation 2wil’ —|— p can be extended in suitable sense [9 Def.

1.1} to a representation p of a complex Lie subalgehra P in G¢ and Yp. g to
an irreducible unitary representation o, of the subgroup H, which is the con-
nected closed subgroupof G, the Lie algebre of which is Y6 = GNP, then the

triple (%, p, &) is called a (o' F) — polarization of the K—orbit Q. We also
denote by M, the connected closed subgroup of G the Lie algebra of whichis’

M=P+PG and H=Gp . H,, M = Gr . M, ,
" In the works [I. 2] it is proved that:
1y There exists a slructure of mixed manifold of type (k, I, m) on the
G — space Q = Gp \ G, where k =dim G —dim M, 1= (dlm M —dim H)/ 2,
mt = dim H — dim Gg, % v

2) On the (associated with the represeniation o‘l(} y smooth G ~— bundle

éd = G X V thefe exlsts a structure of a par tially invariant par tnlly holomor-
Gr Gr

phic G—bundle ¢4 o such that the representation of the group G arlslnrf in the

space ol partially invariant partially holomorphic sections of 6,3,9 is equiva-

lent to the representation of this group by right translations in the space C=(G;
@ F,p, @,) of smooth funetions f on G with values in V and satisfying the <
following system of equations:

f(he) = o(h)ftx) ; heH , z&€QG,
fo—f-p(X)f:O, XE@ -

where Ly is the Lie derivation along the right invariant vector field"Zx on G,
corresponding to X. ‘

To obiain an unitary representalion we apply the usual consi:uctton of
unilary G—bundle [1] (see also 1.2 of this paper). We denole the obtamed uni-
tary represenlation by Ind (G: @, E, o, @,) and we call it the partially invari-
anl fiolomorphically induced lcplesentalmn of G.

1.2. Quantizalion operator

3

In general, quantization means a plocedm‘e of ctonstraction of quantum
systems [rom given classical systems. A majority of the existing methods of
quantization are subsumed under the following scheme [3, §15]. Consider
the physical quaniifies assomafed with the svstem. Among these we single 6ut
a cerfglin set of primary quanhlws forming a Lie algebra under the Poisson
brackels. We suppose that when we go over to quantum mmechanics, the com-
mutation relations among primary qu’m’llt‘teq are preserved in the followmg

-
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sense, Let: i be the Planck’s constant, jy = h/2x and f the quanium mechanical
operator corresponding 16 the primary quantily f. Then the following relation
musl be satisfied ' k

PO TR A
ff, [} ™= _hglfr’ f2]
This meaps that the correspondence f [——-—,;]— { is an operator representation
ol the Lie algebfa of primary quantities. Ordinarily, constants are included
among the primary quantities, and one requires that the relation
| 1= I(identity operator)
holds. .

 Now we consider a fixed Hamiltonian system (Q. B,) where Q@ € O(G) and B,
is the Kirillov’s form on . Suppose that G if the stabilizer of F and the K—

‘orbil @ is integral, Xp.o is the irreducible representation of G, which is des-
cribed above, (4 p, ;0) is a (o, F) —polarization of the K—orbit .

Suppose that Ag (resp., Ay) is the modular function of the group G (resp.,
H), 62(hy = An(h)/As(h), h < Gp C H, is the non — unitary character of Gr. We
consider the G —bundle 4 = G X C, associated with the non—unitary charac-
ter 62 of the group Gr.

'We denote by M'? the bundle associated with the character & | Gr =
(Bu/BeY'? | . Thus the bundle éﬂ;,p = éo,,p ® M2 is an unitary G — bundle

over Q@ =G\ G If s is a section of E;'d 0 then |l s u.?\‘, is a section of the bundle

", and we can take integral of it.f s il %_(x)dp.“\G(x)..
H\G

To oblain a model of quantum system we choose the Hilbert space
which is the completion of the space of all partially invariant partially holo-

morphic square— integrable sections of the unitary G bundle go.’p.

Let T be a connection on the principal bundle H—-G->H\G, « is the ~
1—form of the assqciated affine connection on the induced Hilbert bundle

A _ME;“G , —> & associated with the representation 6 .o of I and the natural
morphism of the prineipal bundles

Gp — G- and H - G
!

|
Ge\G H\G
Now to each smmooth function f &€ C=(Q) let us cofrespond the operator [ ac-
ting by: ’ ,
[ = L&+ xE)+ T
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It was shown in {1, 2] that the corrcspondence f—F defines a procedure of
quantization iff the differential 1-form o satisfies the relation

(v ® Bo) (& M = Za(m) — ma® — « (& ) + —%— [a®), &),

I X € G then X can be considered as a function on &% and in particular,
on Q. It is easy to see that the function X on Q is the generating function of
the field Ex which corresponds to X € &. '

The represenlation of the group G is defined by the formula

_ T (exp X) = cxp (i/h.X) .-
The relation :

o o~ e~ 7
) ff, f2} = i/h [fy fo] /
and self-adijointness of operator X guarantee that the condition T (g;.8:2) =
T (g1 . T(g,) holds and that the operators T(g) are unitary in certain neighbor-
hood of the identity. This «local » representation admits an unique extension
of a many valued representation of G, which will be single-valued on the simply

connected covering G of the group G.

1.3. THEOREM. The partially invariant holomorphically induced represen-
tation Ind (G: P. . F, 0,) of a connected and simply connected Lie group G
coinsides wilh the represenlation T of Lhis group, arising in the procedure of
mullidimensional quantizalion wilh Lhe corresponding affine conneclion.

An equivalent statement of this theorem is the following: The covariant
derivation of the represenlation Ind (G,: P p, F, g,) is the quantization ope-
rators in 1.2, multiplied by constant 2wi/h. To do this, firstly we must justify
the notion of covariant derivation for our case of bundles with Hilbert fibres.
Then we must show that this is a connection and ecompute. it. We shall do

this in the following section.
. I

2. PROOF OF THEOREM
! The probf of our theorem is long and requires a defailed analysis of
the notion of affine connection. Thus we divide. it into several steps,

2.1. Justification of the infinite dimensional bundle,

Firstly we recall the construction of the “associated bundle ¢ _ . We

know that Fé‘fd o =G % V =G X V/~, where ~ is the following equivalent

. -0y Gr
relation: (g, v) ~ (&, v") iff there exists k. Gr such that g = kg and
v’ = o(k( o(k) v. We remark that V is a Hilbert space, ak) = (Au(k)/ Mgty

and 6(k) is an unitary operator. :I‘hus_g; is a vector bundle with (in)finite
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dimensional fibres which are Hilbért spaces, The structural group of & K

: is
a subgroup ol the « projective » unitary group € 3 U(V) of V. But our sitlffi?ion

is also good, because the structural group really is a finite-dimensional Lie
subgroup of € X U(V), as u complete image ol the Lie group Gy in the repre-
sentation & . o: Thus we can apply for this structural group the theorem of Stone
and we can speak about the finite dimensional Lie algebra of the structural
group of C';r.r,p' ' ' |

2.2. Covariant derivation of homomerphisms.

Now we modify the results concerning covariant derivation of homo-
morphisms of vector fibre bundles for the case of infinite dimensonal Hilbert

bundle of ty;ﬂe 60, o The case of finie dimensional bundles is well-known, see
for example the work of Kesmann — Schwarzbach [4].

Let us denote by E and E' two bundles of this kind over 2 homogeneous
space G;\ G, which are associated with the unitary representations ¢ and ¢’
of the subgroup G; of G. Thus G acts on E and E’ by the natural actions. We
define the action of G on Hom (E, E) as follows, Assume that u < Hom (E.
E’) and u is projected onto a morphism uy of the base M = G\ G. Then we
define g.u = g.u.g", for g<G. Thus g. u € Hom (E;F). '

Assume that X is an elemet of the Lie algebra @ of G and that gi=exp(tX).

For any small value t, g .u =g U g;‘l is well defined and are morphisms

from E to E' over the morphisms g uy gt"1 of the base M =G, G. The ‘set

Hom (E, E’) can be considered as the subset of veclor space of linear mappings
from ['(E) in the into I'(E’). And thus we.can define X, u= % (gi.u) =0 As in
the finite dimensional case (cf. [4]), in the infinite one the following results hold :

1) X1 is a linear differential operator of first ordre from E into uj E’

and X.u=Xg.u —u . Xg,, where Xg and X’ are considered as linear differen-
tial operators of first order of sections of E-and E’ respectively (sée [4, Prop,1D).

~ 2) If u is projected onto identity and the actions of G on E and E’ are
projected onto the identity of M, then X.u is a homomorphism from E into
Er. This is the Lie-derivation oju respective to X, considered as the sections ol
E*® E, where E* is the dual fiber bundle of the bundle E (see [4, Prop.2]).

3) If now E=M.a morphism u is a section of the bundle E’. And we
obtain the results on conneclion, '

ILis not hard to verify thatin our sitution the commmutative diagram takes

-

place .
AUt(E)""'——"_-—"AI’ltsemi—iinear(r (E)

-

1
scal

-~
— Bndp(E) ——— Diff L (B).

l ‘ .
AE) ———
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In our infinte — dimensional case it is also easy to prove thal: The diffe-
rential of a C* —homomhrphism of a Lie oroup on Aut (H)isa homommphlsm'

of the Lie aldebra into the Lie algebra D1ff o1 (8€€ [+, Prop. 5]

It also \1elds Ihe follo“mg corollary: The Infinite — dimensional generator
of a one parameler group class C™ of automorphisms of the linear bundle
E is a differential linear operalor with scalar symbol,

2.3. Connection

In general a connection is a fashion of identification of fibres of the
bundle, This is given by a differential [--form « with, values jn the Lie alge-
bra of the structural group (see 2.1) of the GAbundle. Then with this form o-
connection we can write the explicit for mula for the covariant derivation

Vix =& + + 2ai/h . e(Ex)

This is comparable to the results from 2.2.
2.4. Identificaiion and computation of the form of connection

"We recall thatg. is identified with the sct of pairs (g, v) e G XV,
factorized by the Equnalence relation (g, v) ~ (g, V) if[ there exists k € Gp
such that g’ = kg, v' = 8(k) e(k) v

The sections of the burdle é-‘o. o are identificd with functions on G
‘which are Gr—equivariant, i.e. |

[(kx) = (k) ao(k) f(x) (see [-3}). .
The action of g < G ona section s is identified withthe action by right transla-
tions of the function f = f;, see|3].

With this identification itfollows the exact formula for the covariant
derivation (see also {3, §15.4])

VE\: = EY ‘I"‘ Zd‘t l/h PI(X) = Ex + P(X) "[" dé(h)
where Ex is the Lie derivation, p is the known 1epresentatxon ds is the diffe-

rential of non—unitary character 6= {AH/Ag) . Thus the form of connection
a1 is associaled with the representallon p1 in the above “ormula.

2.5. The differential form [3

We recall that each point F in the K—orbit Q is at the same time a linear
function onthe Lie algebra €. Thus we can consider the expression (P,X), for X €@
in two ways. On the one haud, the function fx (.. X)-on Q is the generating
function for the Hamiltonian iicld &y (see [3]). On the other hand, we can
consuler (F,.y as a d1fferentm1 1—form B on G by the lollowing formula

(B 3 (F) = (F, &e))
where § is an arbitrary vector field on G, f(¢) is its walue at the identity of
the group G. As F is linear functional in € = T.G, pis a real 1 — form.
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As a corollary Irom this we have
foFy = (F, X) = (§ & )
where X € G, &y is the correspc}nd‘ing left —invarianl vector (icld, @'+ is the
generating funclion.ol Ex. ' '
2.6. End of ithe proof of Lhe theorem

We have from the above consideration

Vex = Ex LI
= Ex + E:J-fx + 2Tl (o1(Ex) — P(Ex))
We denote by o the differential [—form ot1—|3. Thus we have
vix = Ex 23} (Ix + o(Ex)) = _T"lnt ( 9];{1 Ex Ik + U’-(Ex))- %}/i\ .
< H

and the theorem is proved.

3. SOME REMARKS
1. From the prool of the theorem follows the explicit formula for valuecs
of the form o.-occuring in the formula for the quantization operator

-~

= & + o (B} o= o—f
where o, is the differential lﬁ»form associated with the represenlation
h ' : ‘
91:9.(9Td5)-_ -
i

2. The partially invariant partially holomorphic sections of Ca" .0 form a
subsct of H--equivariant sections which satisly also a syslem ol equations
for the complex subalgebra . ,

3. The theorem was not proved in the case of 1 —dimen-sional quantlzatlon
(Kirillov s quantization) [2, § 15}, Thus our proof is the fir st one.
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