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§I INTRODUCTION

Let X, U be real Banach spaces. L.(U, X) denotes the Banach space of
all bounded linear operators from U in X. Throughout the paper we assume
thal U is separable.

An evolution operator on X is a funchon (t, s)[—E(t, s) from [(l, s):
t>s>t, > —ee} into L(X, X) with the following propertics :

(1) Eit, t) =1 for all t > t, (I is the identity operalor on X);

(ihy (t, s)|—E(, s) is strohgly continuous ;

(i) E(t, s) E(s, 7} = E(t, vy for all t > s> 7 > ¢,

Suppose that B(s): [t,, es)]——L(U, X) is a given locally integrable
function. Here, and in whal follows, the integral is undcrstood in the sense
of Bochner. We consider the equation

I

: t
a(ts t, z,, u) = Et, &) v + f LE(t, s) B(s) u(s) ds 1)
{0
L<tgD
where T is a given number, x, is a point of X and u¢s) is a control, i.e. u(s)
is a U — valued function, stronﬂly Lebesgue measurable and essentially
bounded on [t, TI.

A control u(.) is said to be admissible .on a subinterval [s. z] C [t,, T}
if it satisfies the constraint

ut) € Qt) (2)
a.e. on [s, 7§, where Q(.) i a given measurable mulli-function on [t,, T]
taking nonempty closed values in some ball S(0) of the Banach space U.

We recall that the multifunction Q(): [t,, T][|-——2V is said to be
measurable if the set ft € [t,, T]: Q(t) N A 5= ¢} is Lebesgue measurable for
every open set A C X.

If x(.) satisfies (1) for an admissible control u(.) on [t,, T] we say th‘lt
x(.) is a trajectory of the system (1)——(2) and x(.) is generated by u(.).
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It is well known thal for every admissible control u(.), the funection z(.)
defined by (1) is strongly continuous and can be considered as a mild solution
of the system -

dx
. — = Az B(tw,
T Oz + B

Tty = x,, ut) € M), t& [l T,

where Aqt) for all t € [t,, T] are closed operators whose domain D(AW) =
= D(A(,)) is dense in X (sec [4])

The qualitative study for infinite — dimensional control systems
developed firstly by Fattorini H.O. has attracted a great deal of attention
from many authors during the last decade [l — 6]. Note, however, that
investigations are devoted mainly to systems without any conirol and slate
constraints. The controllability of linear systems in Banach spaces with contrel
constraints has been recéntly studied in [7—8].

In the present paper we shall be concerned with linear -systems with
consiraints on both state and control variables. Namely, we consider the
infinite - dimensional system described by the equation (1) with the confrol
constraint (2) on [t,, T} and with the ‘state constraints of the form.

x(t) € N(t) for all { € [t T1, (3)

where N(t) is a given lower semi — continuous multifunction from [t,, T] tp
closed convex subsets with nonempty interior in the Banach space X. i

If x(.) is a trajectory of the system (1) —(2) satisfying the state
counstraint (3), we shall briefly say that it is a trajectory of (1) — (3), or ©-
(1)~ (2)—(3) whenever the control constraint needs to be emphasized. We call
x(,) interior if, in addition, x(t) belongs to the interior of N(f) for each
t € [t T)- ,

In section 2 we show that the set G(x,) of all trajectories of (1) — ()
has a conves closure and, obtain thereby a generalized version of the « bang —
bang » principle Jor trajectories. -

In section 3 we use the results obtained in §2 to derive some properties
of the set L{x,) of all trajectories of (1) —(3). As a consequcnce, it follows,
in particnlar, that the closure of the reachable set of the system (1) (3) is
convex and continuous multifunction of initial points x, il the system posscsses
at least one interior trajectory from every X..

In section 4 the results of §3 are applied to several optimizaiion and
controllabllity problems jor the systems (1) — ().

NOTATIONS : Let X be a Banach space and X® be the dual of X. Besides the
notations introduced above we shall denote by

i

X_, Xi: the spaces X and X® endowd with the topologies o (X, X%

W
and o (X*, X), respectively;
(f, xy: the value of a functional [ € X* at a point x € X

1
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5, (T S, (x%): the open balls of rodius & around & € X and a¥ € 3%
respeetively :

S, : the ball S0

coA, ‘intA, A, 8A: the convex hull of a set A T X, iix interior, elosire
and topological boundary, respeciively ;

oz, A): the distance ol a point » € X from a set A X

C[te, TT. X, C([to T, XW) : the vector spaces of all continuous functions
x(,) from [t, T] to X and KW, respectively, endowed with the topologies o-
uniform convergence ;

L=(ft,, T], X): the Banach space of all (equivalent classes of) strongly
moeasurable functions from [te. T7 to X such that I =D 1] is essentially bounded
on [y, T1. The norni in Lo([te T} X) is defined by

Ha() ) = esssup { oI, t, < T];
L'([t,, T} X): the Banach space of alt (cquit alent classes of) Bochner integrable
functions from {t,, T} to. X with the norm
T :
he@ = jllx(l) [dt;
to

L2 ([tes T ;\“) the Banach space of all (eguivalent elasses of) scalarly
measurable funetions from [t,, T] to X* which take values atmost everywhere
in equicontinuous subsets of X* It is well known that (L([t,, T X)y* = L. T}
Xl'v) (see, [or example [14]);

%p(t) : the characteristic function ol ascl P,

[1Xa: the cartesian product of the family of topological spaces {Keia € 1)
el
endowed with the product topology ([18)).

Finally, we reeall that a multifunciion on a Banach space X taking
nonempty valuesina topological vector space Y is called upper semicontinuous
(lower semicontinuous) at T, € X if for every opeéen O-neighborhood §in Y
there exists & > 0 such thal F(x) C F(z,) + S (F(z,) < Fix) + 5, respeetively)
whenever | © — a, || << 6. The multifunction F is said to be continuous af x, il
it is simultaneously upper and lower semicontinuous at @

§2. DENSE CONVEXITY AND GENERALIZED « BANG — BANG FRINCIPLE »
EOR TRAJECTORIES

__ DEFINITION 1. A subsot 4 of a Banach cpace si said to be densely convex
if A is convex.
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For many purposes in conirel and optimization theory the dense conve-
xity is a quite convenient property, particularly in cases, where the separation
technique for convex sets plays a crucial role. In fact, as will be shown later,
in §4, even if the convexity is not guaranteed one can obtain useful resultq
by proving and using the dense convexily of sets. .

£l

We first derivé some properties of densely convex sets which will be
frequently used in the paper,

’

PROPOSITION 1. Let A be a subset of a Banach space X and N be 'a convex set
with nonempty interior in X. Then

(i) A is demsely convex if ‘and only if coA C A

(i) If A is densely convex, then A N intN is densely convex;

(iiiy If A is densely convex and, in addition, A A intN == ¢, then A A N
is also densely convex. Furthermore, in this case, AN N = A ~ intN.

Proof. The assertion (i) is obvious. To prove (ii) assume A N intN <= ¢ no-
ting that the assertion is} trivial in the converse case. Let ¢>>0 be given and
z be an arbitrary elemen of coA N intN, Since z € intN there exists 6 > 0
such. that Sg(z) C intN. On the other hand, since z & coA and, in view of (i),

coA ¢ A, one can find an element a & A such that |z — a || < min {6, ¢].
Thus, given € >>0, for every z € coA N intN there exists a € A N intN such that
Il z— all <<e. This means that A N intN is dense in coA A intN and, hece, in co
(A N intN) since co (A N intN) € coA N co (intN) = coA A intN, The assertion
follows now from (i). :

In order to prove (iii), it clearly suffices to show thal A "N ¢ A A intN.
Let z, € A N intN be given. Then, for each z € A A N and A € [0, 1], selting
y(A) =z + (I — A)z,. we observe that y(A} € coA and y(A)—>z as A~ 1.
Besides, by convexity of N. y (&) € intN for all A & [0,1). Hence, for every
g>>0, there exists A, >0 such that 1y (A,) — z 11 < 8/2 and y(A,) € coA N intN.
Then, as has been shown in the proof of (ii), there exists a € A A intN such
that 11y (Ao} — a Il <l¢/2 and, consequently, || z —a |j <& This implies the requi-
ered inclusion.

Remark that in the assertion (iii) the condition A M intN = ¢ is essential.
To see this Iet consider in the space X = R, subsets A, N defined as

A=fx HeR:l<ae<l, 0y <<I}u {(LL, (1,0)].
N={@myeR:I<ae<2 0y,

Clearly, A is densely convex and N is convex with nonempty interior,
Nethertheless, A NN = {(1,1), (1,0)] and so is not densely convex. Here
A nintN = ¢.

Now, consider the system (1) — (2) and assume that all hypotheses stated
above with respect to the system are satisfied. Parallelly with the controf
constraint (2) we also consider the constraint of the form.

u(t) € co Q (t) a.e. on [t T] ' 2y
and in lhis conngctlon we shall speak of the sy stem (1) — (2y.
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Given an inilial slate 2, € X, let G(z,) and a(:x:) denote Lhe sets of all
trajectories of the systems (1) —(Z) and (1) — (2y’, respectively, It is clear

that @(mc) is a convex subset of the Banach Space C(Etu, T, X]. With respeect
to G(x,) we have the following

THEOREM 1. G(x,) is a densely convex sel in the Banach space C({l,, T1, X)

and, moreover, G(x,) =E(mo).

We first derive some auxiliary lemmas which will be used in the proof
of Theorem I.

For every t', 17, t, LU <<t T, let us denote
U, ) = u() € L= ([t 171, Uy ru(t) € Q) on[t', 1”7}
Tt = fu) € L= (It, £, Uy:ui)€ eo Q) onft', t'1};
t"
V', t7) = {[ E(t", s) Bs) u(s)ds:u() € U, t7)};
-
c . 3
Y, ) = [[EQ, 5) Bs) uds:u) € T X, (-
t :
LEMMA 1. Under the stated hypotheses, V(1’, 1) is a densely convex set in the

Banach space'X and, moreover, V(I 1"} = V(t', £,

Proof. This is an immediate consequence of Theorem 3 of [9].

Some more general resull of this kind can be found in [12].

LEMMA 2. Suppose F() s a trajectoryl of svstem (1) — (2)'. Then, for every
finite colection of points I; € [ta, T, i =1, k, there exists a trajeclory x, of
the system (1) - (2) such that

hx, (b) — =yl <<s  for i=0 1,.. k ' 4)

Proof. We can assume without loss of -gemerality that to <ty<l..<ty =T.
Consider the resiriction of :F{V(.) io subinterval [t,, t;]. From the definition we
get x(h) = BEt,. L) xo + ¥ with :.: eﬂ\?(tu. t;). By Lemma I, fc;r every 6 >0
there exists u? (). € Uto, 1) such that

o
1% = JE, 9) B vy ) ds 1< 6.
to :

Then, for the corresponding lrajeclory xf(.) = x(3 L, Xg u'is) we oblain
5 ~ |
by () = x (<8, | _ )
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Now consider;(.) on the subinterval [t;, t,]. Using property (iii) of the evo-
lution operator E(, s) we can write '

X(t2) = E(te, ) X (1) ++ V2 where vy & (ls Lg).
As above, it follows from Lemma 1that there exists

2
ug (.) € Utty, tg) such thatq ;2 — J‘E(tg, sj B(s) ug (s)ds | <7 6 162}
' t1

Let x,_? () =x(;t xf (t), ug) be the correspohding'tl‘ajcctory. Then, setting
M:max[]]E(t,s)l[,togsgth] (7)
we get, on account of (5), (6), that 7
6 A~
X, ()~ x (L) N M+ 1) 6.

In general, an an'alogous ar§ument shows that for every Sunbinveatrl

“ltiint] G =1, k) there exists a control ufs(.) < U(ti.t, t;) such thatthe corresp-
1 C

onding trajectory

C %) = X5 b, xia(ie), u))
. satisfies | xf ) - X M - L+ M4 1)6

Setting ul (tj = uf (Oforti, <t<Th; - 1, k)
we thus obtain aﬂ admissible control on l[[to,-’l“]]. Let x, (.) = X{.; 1, X, u® ) be
the trajectory of (1) —(2) generated by ué (.) with

ﬂ 6 = e/(M*! . 4+ M + 1),
Then, obviously. x, (.) satisfies (4), as was to be proved. ‘
Proof of Theorem 1. Clearly, it suffices to show: that G{x,) is dense in
&mo), that is, given £> 0 and ;:'(.) e.axo)rthere exists x, (.) € G(x,) such that
ol ;UU(-) — Ze () || <<&. To this end we choose 6 <~ 0 so that |

JuBvra<eauny - ®
E ' .
for any measurable subset E ¢ [t,, T] satisfying wE <C 6. Taking a [finiie co-

leetion of points t; € [t,,-T}. i = 1, k with max [T—tiql,i= ﬂ] < 6 we
find, in view of Lemma 2, a trajectory ¢ (.) € G(z,) such that

12 (4) = @ (1) I << min [ £/2. o/ (2M) | 9
for i = 0, 1. .. k.
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Denote by ug(.) and :{.) the control generaling trajectories x. (.) and ;(,),
respectively, Let t be an arbirary point of {t,, T] and let (t,_1. 4] be a subin-
terval containing t.-Then from (8), (9) it implies

e ()~ o) 1 <N EM b @ (iog) — & () ] 4

t t
f LE s} 1B [ 1 ue(s) — u(s) i ds < ¢/2 + 2Mr f FB(s)flds <e
ti—t : . ti-1
which completes the proof of Theorem.
Remark 1: If the control space U is reflexive, then as will be seen from
the proof of Theorem 3 below, the set GE:;:O) of all irajeclories of the sys-
tem (1) — (2)' is actually closed. Hence. in this case, Theorem 1 asserts that
G(z,) = G,).

Consider the evaluation operator Hy : C‘([to. T}, X) — X defined by
Hrx(.) = @(T). Clearly, Hr is linear and continuous. We call R(zx,) = H:G (x,)

the reachable set from x, of the system (1)—(2). Analogously. Hﬁ(a:.,):I-ITE(xO)
is called the reachable set of the system (1)—(2).

, By the continuity of Hr, Theorem 1 implies the following well —known
resull (see, for exemple, {7], [10]). -

COROLLARY 1. The reachable set R(x,) of the sytem (1) — (2) is-a densely

eonvex set in the Banach spare X and, moreover, R(z,) = E‘f(mﬂ)

Remark 2: If the control space U is reflexive, then, in the preceding corol«

lary, R(z,) = B.).

Let, besides the stated hypotheses, the restraint control set Q(t) be com-
pact, convex for everery t € [t,, T]. Denote by & (1) the set of extreme points
of €(t). Since, by the Krein—Milman lheorem, co Dt = Q(t), from Theorem 1
we immediately obtain the following.

-COROLLARY 2. Assume that (t) is compact and convex for every t € [i,, T}
The set of all trajectories of the system (lj generated by extreme conlrols
u(t) € Q(t) is dense in G(x,) for the norm of uniform convergence.

Theorem 1, therefore, can be considered as a generalized version of the
well—known « bang—bang principle » applicd to trajcctories.

§3. THE SET OF TRAJECTORIES OF A LINEAR SYSTEM WITH 'BOTH
STATE AND- CONTROL CONSTRAINTS

Consider now the systém (1) with-the control contraint (2): u(t) € (1)
a. ¢. on [t,. T], and the slate coniraint (3): x(t) € Nit) for every i € [t,. T]
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Reeall that N(t) is assiimed to be a lower semi continuous multifunction from
{t,, T] lo closed convex subgets with nonempty interior in X. Let us define

L(z,) = {x() € Gz, : at) € Nt (Yt € [l T (10)
(the set of all trajectories of system (1) — (3)); and
Lo(®o) = {#() € G(&,) : a(h) € int N(1) (Vi € [t,, T])] (11)

(the set of all interior trajectories of system (1) — (3)).
In a similar way, but reprlacing G(x,) by E(wu) we defineﬂf,(aso) and

Tu(@o. : ~

THEOREM 2. L (x,)is a densely convex sef in C([t,, T'1, X). If, in addilion, L (x,)

is nonemply, then L(x,) is alson densely convex and, moreover, L(z,)=L(%,).
To prove Theorem 2 we need the following

LEMMA 3, Let there be given a lower semicontinuous multifunction N(i) {rom
[t,» T7 to closed convex subsets with nonempty interior in a Banach space X,
Let e/, be the set of all conlinuous interior sections of N(t) (i.e. o, = fz():
zZ(l) € intN(t) for all t &€ [t,, T3}) and let <4 be the set of all continuous
sections of N(t). If </, is nonempty then </, = int /4.

Proof. The inclusion int c# ¢ </, is obvious. To prove the inverse inclusion,
let z(.) be an arbitrary element of c#,. Setting s(t) = p(z(t), IN(t)) sve observe
that 8(t) >0 and Sé(t) (z(t)) C N(t) for every t & [t,, T]. Moreover, as will be

seen below, &(t) is a lower semicontinuons function on.[1,, T]. Therefore, by

the compactness of [t, T] there exists t &€ [t,, T} such that 0 < 8(t) = min
fo(t): t € [t,, T} It implies that Sé(T)(z(.)) ¢ </f and hence z({.) € int 4.

It remains to prove the lower semicontinuity of &(t) oﬁ [tsy T} Let e >0 '
and t; & {t,, T] be given. Since N(t) is lower semicontinuous on [t,, T], there:
exists Ty > 0 such that

N(t) € N + S, whenever |{—{1< ¥ (12)
Sinee z(t) is continuous, there exists 7y > 0 such that
I z(t) — z(t;) || < min [e, 8(t;)] whenever
=t <Tn Ay

Taking ¥ = min {Y;, Y5}, for every t &€ [t,, T} satisfying j t —t; | <7 and every
y € aN(ty) we have &(t) = p(z(tr), aN(t)) lhz(t) — vy | << 2t —~ z®) || 4+
+ hz(y—y n< e+ l z(t)—y Il . Consequently,

8(tr) <C ¢+ p(z(t), oN(1y)) whenever | t—t; | < 7. (14)
On the other hand, from the definition of &(t) and (12) (13) we oblain
z(l) € Sg,(tf) (z(tp)) < N(tp) < N(H4-S,, ?
which implies, in connection with (14) ; '
6(t) < 8 + p(z(t), a(N(t) + S, ) (15)
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of edch t satisfying 1t — t¢ | <7 7. Now, set

8, (1) = pla(), a(N(t) + 5, )).
1f 6. () <8 then obviously, by (13) &(tf) <C 2¢ 4 p(z(1), aN(t)). Let suppose
8,.(1) > e Then we obtain =z(t) + Sé;_(t) C N(t) + S, or, equivalenily’
2t + Sg y_e + S < N(b + 5, . Since N(b) is convex and closed it follows

from the abov-‘el inclusion that z(t) 4 S < N(ty and so p(z(1), aN{) ==

be(1)—e
> b (1) — &, OT, 8¢ (L) < e + p(z(t), aN(f)). Therefore, in all cases, from (15)
we obtain '

8(tp) < 2 - 6(1) whenever |t - t; | < 7.

This proves thc lower semicontinuity of &(t) and completes the proof of
Lemma.

Proof of Theorem 2. Clearly, by 10y, (11)

L(xo) = G(x,) N o/ and-Ly(x,) = G(x,) n c/f, where o and </, as above
denote the sets of all continuous sections and continuous interior sections of
N(t) (to <t 'T), respeciively. Observe that G(x,) is a densely convex set in
C([t,, T}, X) by Theorem 1, and </, = inte#, by Lemma 3. Moreover, by
virtue of lhe convexity of N(t), o/ is a convex subset of C([ty, T1, X). Theo-
rem 2 now readily-follows from Proposition 1.

As previously, by using the evaluation operator Hr we obtain.

Corollary 3. If the system (1)—(2)—(3) possesses an interior trajectory
from x, € X then its reachable set R (x,) is densely convex in X and, morco-

ver, R.(x,) = Re(x;) where Rux,) denotes the reachable set of the system
(1 —2)y— 3). .

This result has been obtained in [{1] for a finite-dimensional systcm
w1th state constraints of a less genmal type.

THEOREM 3. Assume that all stated hypolheses hold for the system (1)—(2)—(3)
Lel, in addition, the spaces X and U be reflexive and X be sparable. The mapping
L :x,~ L(x,) defined by (10) and regarded as a multifunetion from X inlo .
C([te, T} X) is conlinuous al any point x, € X whenever the syslem possesses
an interior trajectory from Lhis point, Moreover, L is lower semiconiinuous when
reégarded as a mullifunction from X inlo C([t,, T], X).

To prove Theorem 3 we need the following

. LEMMA 4. Let Q(t) be a measurable multifunction from {te, T} with no-
nempty closed convex values in a separable reflexive Banach space U such

that for every t, a(t) is contained in some given ball S, of U. Then.the set
ﬁ(ta,‘T) of all measurable sections of ﬁ(t) on [t,, T] is compact and melrisable
. for theeweak topology 6, = 6(L>=(ft,. T, U), LX[t,, T1, U*).
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{Proof. Denole E = U* then, since U is separable and reflexive. i follows
ha! E is separable and E*=U. It. is well known tha{ in this.case L™([t.. T],
E2 ) = L=(t,. T} E*) = (L'([t,. T]. E)* (see e.g. [12]). Further, for every t,
9(t) being closed convex bounded subsét of U (= E¥) is compact for the weak
opology 6(E® E). Now, according lo Theorem V—1 of [15] we conclude that
Gzto. T) is convex and compact for the weak topology 6(L™[1,, T]. E#),
LY[t,, T1. E)), which, clearly, is equal to §,. Furthermore, since LY([t,, T, E)
is separable due to the separabilily of E, it [ollows thal U(t,. T) is metrisable
for the weak lopology 6,. The proof is complete. '

Proof of Theorem 3. Assuming L(¥,) == we shall prove that L is simul-
taneously upper and lower semicontinuous -al X, Note first Lhat L(x,) ig
not empty for all x, in some neighbourhood of X,. Indeed, lel X(.) be an
interior trajectory of (1) — (3) satisfying X (t,) = X, (le. X() € LX) and ()
bhe an admissible conlrol generating X(.). Since X (1) €inl N(t) for every
t <[t T], it follows from Lemma 3 thal therce exists § >0 such that S, (x(.)< .

Then for each x, in the ball S;.(%5) wilh 3" = s, M (M is defined by (7)) the

trajectory
t

x(t) = B(t, to) %o + fr (t, ) Bs) u(s)ds, Lo <t < T,
‘ 5
" as easily seen, is an elemgnt of L{x,). We nﬁie addi‘tionally that for each such
x(.) we have || x(.) — x(.) llc < 8. .
' To show the upper semicontinuity of L, we note that L(x,) C C([t,, T3, K)

for all x, in a néighborhood of X, where K is a fixed ball in X. As X is sepa-

rable and reflexive, K is a compact meirisable setin X _. Hence, C([t,, T], K),
regarded as a.subspace of C([t,, T], X ), is metrisable, Suppose that Li s not

upper semicontinuous at Xo. Then, by definition, there exist a abalanced open

O —neighbourhood S in C({t., T], X and sequences {x,,} C Xand [(,,(.}} < Lixon)

such that x.() e L(xo) + S and | Xon — X, 1l =0 as — . Let [u,()] be a

sequence of admissible conlrols generating the trajectories {xa()}, i.c.

. t
xa(l) = E(L, to)Xon + J'E(t, $) B(s) ua(s)ds, to <t < T.

to

Then it is easily seen that the sequence {xa()} is equicontinuous and, in addi-
tion, x.(t) € K for all t € [t,, T] and all n =1, 2,.... By virtue of the Ascolhi
theorem and the metrisability of C{[t,, T]: K) there exists a subsequence

[xn, (-}} converging fo x () in C(ft,, T, K).
It follows that

x_() & Lixo) + ‘I)—S. ' (16)
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Also, since ®all) GN‘(t) for La(,h L &< [to, T] and N() is cIosed and convex
we have

L EN) (Vi [t TD. . (17)
On lhe other hand, by Lemma 4 we can suppose that the corresponding
sequence of admissible controls u, n, () converges in the weak topology

§(L™([to. T7. Uy, L'([ts, T, U)) to an admissible control u () e Ut,, T). Thus,
for every f € U* and t &€ [t,, T] we have

-
<Lxmxn>:m<ﬁEmJ)%%:>+fxmﬂ@y<BﬂQEﬁLwfuM0Q>ds
tO
_ T
= <L (0> =<, E¢to, )X > + fx{O 1] < B¥s) E*(Ls) TLu(s) >ds =
] Y b
. 4]

t
= < £, Ett, s) x, 4+ fE(t, s) B(s) u_(s)ds >>.
Q
This with (17) shows that x_(.) is a trajectory of (1) — k2) —%3) salisfving
X (L) = X i, e. x_() QT_‘);O). Now, since f:a(?c-) 4 ¢ we conclude, in view of
Theorem 2 that there exisls a trajectory ;c;(.) [ fo‘(;u) such that ;c:o(;) €x _()+

+ %‘S- Farther. since 6(;0) = G(}?o) by Theorem 1, one can find a Irajectory

, ()€ L'(_xo) such tl_lat X () sz(-.)"l‘ %-S. Consequently x_ (.} € L(x;) 4+ S

which contradicts (16). "I‘hus L is semiconlinuous at x,.

To prove the lower semicontinuity of L at Xq, letx(.) be an arbitrary
element of L{x,). By Theorem 2, for every € > 0 there exists X, (.)€ Lo(x,) such

that | x(.)— x. ()Hc <Z¢/2. Then, in view of the remarks preceding the proof
of the upper semicontinuity of L, one can find & > 0 such that for every

X, €55 (xo) there exists a trajeclory x(.)'€ L(x,) satisfying I x(.) — Xe () llc<Te/2-
Therefore {| X(.) — %()llc < ¢ and so x (.) € L(x,) + S¢. So we have shown that
for every >0 there exists 6§ << 0 such that L( xo) C 'L(xho) + S, wheney er
%o — %o It << 6. Thus L is lower semicontinuous al x, when recfarded as a mul.
ttl"umctlon from X into C([te, T], X). The .proof of Theorem is ¢omplete.

COROLLARY 4. Under the hypolheses of Theorem 3, the mapping R.: x,—R.(x,)
(Be(x0), 1s the reachable set of the system (I)—(%)) regarded as a multifune-

tion from X to Xy is continuous at point any x, whenever the svstem (1) — (3)
possesses an interior trajectory from this point. Moreover R, is [ower semi--
continuous when regarded as a multifunction from X into X.

CORROALRY 5. The reachable set R, (x,) of the system (1) — (3) with X = R*

and U= R" determines a mutifunction which is continuous at any proint x,
whenever the system possesses an in interior trajetory from this poiat.

*
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4, APPLLICATIONS

in this concluding paragraph we use the results oblained in the previous
‘sections to study several oplimization and controllability problems [lor the
systems (1) — (3). “
Assume that all hypotheses stated in Section 1 for the svstem (1) — (3)
are satisfied. _
Given an initial state x, € X, let us consider the optimziation problem
H ; Minimize g (z,, 3(.)) e 18)
subject lo x(.) € L(x),
where L(x,), as previously, denotes the set of all trajectories of (1)—(3) satis-

fying x(t,) = X,, and the cost functional ¢ is assumed io,be continuous and
convex on X X C([t,, TIX). .

Let us denote by ap(x(.)) the subgradient of the function () — ¢(%,, X(.)).

THEOREM 4. Lef the system (1) — (3) prossess an intérior Irajectory wilh agien
iniftal point T, € X(i. e. Lo(ZTo) + @).

(i) The neceésary and sufficient condition fo airajectory x”(.):m“(.; o, U°)
fo be a-solution of the problem (18) is thal there'exists a functional f € ap(x°(.))
such that, (Fs 2%y = min | (f, () )1 () € LTo)}

(ii) Under the usumplions-of Theorem 3, the Belman function of the prod-
lem (18) which is defined by
J(®,) = inf |@(@e, ®()):x():2() €) La,)]
is continuous af .. e

Proof. To proj\'e (i) we first note that a trajectory x°(.) is a solution of he
problem (18) if and only if it is a solution of the following problem

Minimize ¢{x,, x(.))
subject to x(.) € L(X,)

Since L(x,) is convex (by Theorem 2), the last prope‘rty\is equivalent to the

existénce of a functional f < ag(x°(.)) satislying"

' . (£, x°(.)) = min{(f, x(.)): x € L(Xo)

(see, for example, {16]). : : i
~ Thus " (F, x°()) = min {(f, X()) 1x € L(E)]

" For the assertion (ii) we shall prove that I(.) is simultancously upper and

lower semicontinuous at x,. The upper semicontinuity follows from Theorem
2 of §2.5 ([17], Chapter 2) and lhe fact that the multifunction L: C([t,, T],X) —
_» X is lower semiconlinuous at x, by virtue of Theorem 3 above. For the lower
semicontinuitywe first prove that the function ¢ islower semicontinuous when
regarded as a function from X X C([tot T], X ) into X. The main points of
the proof is due to [13]. ' ‘
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Choose & > 0 so that L(x,) is not empty for every x°® in Sé(x) and ‘define
) L= U! LNEa?o)‘; T, € Sp (Eo) }
and ” L= Scr (E;) X I__‘.
where the closure of L is with respect to the topology of uniform conver-
gence of C([t,, T], Xy). Note that Z is closed and equicontinuous when regarded
as a subset of Xy X C([te, T, Xy) as well as a subset of X X C([t,, T], X).

Since Z is closed in X X C([te T]. Xy is suffices to show that ¢ is lower
semicontinuous on Z, or, cquivalently, that the set :

Sp. M) =fz€Z:p@m <]

is closed for everv A. By hypotheses, it is clear thal S(p, &) is convex and
closed in X x X! where X! denotes the space of all functions from I = [t,, T]
in to X. endowed with the topology of uniform convergence. Since S(p, A) is
equicontinuous. Corollary 0.4.10 of [14] shows that it is also closed in the
topology of simple convergence of X x X' and hence closed in the produel

topology of V=X X ‘I1 Xt. 1t follows by the convexily of S(g,A) that it is

tel
closed in the topology o(V, V). In view of the identily

U(V, V“,) = Q(X, X“r X I; O'(Xt, X’\L\_w)
tel

(by Theorem 4.3, Chapter IV, [18]) we conclude that S(p, A) is, closed when
regarded as a subset of the space Xw X ] va (endowed with the product to-
te€l :

pology). Again, the equiconiinuity of S(p, A) implies that it is closed in X X
. % C(toy T} X,y), Wwhich is obviously equivalent to ¢ being lower semiconti-

nuous on Z. ‘ . _ - !
Further, according to Theorem 3, the multifunction L : X xC,Th X '

is upper semicontinuous at x, and L(x,) is nonempty compact with respect 1o
the topology of uniform convergence of C({t,, T, Xy)- The lower semiconti-
nuity of J(.) is now a direct consequence of Theorem 1 of §2.5 ({17}, Chap-

ter 2), This concludes the proof.
COROLLARY 6. Assume the "hypothese of theorem 4; in addition assume
that the control set Q(1) is convex for every [t €t, T]. Then the solulion set
of the problem (18) is not empty.
COROLLARY 7. Let h(x) be a conxex and continuous functional on X and
suppose that the system (1)—(3) possesses an interior ' trajectory satislying
@(t,) = %,. A trajectory x°(.)is a solution of the terminal control problem

Minimize h(z(T)) |

Subject to x(} € Liz,)
if and only if there exists a functional g € ah(x°(T)) such that

(g, 2%(T)) = min{{g 2):2 € R®) |
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(wherc Re(z,) denotes the reachable set from =, cf the system (1)~ (3) and
ah(x) denotes the subdifferential of h at z, € X.

Proof. Selling pu(x.)} = h@(T)) = h(Hrx()), we observe, by the calculus of
subdifferentials, that @u(x(.)) = 4 h(Hra()) = H al(x(T)). Thus, such funec-
tionat € agu(x(.)) can be written as f = H% g with some g € ah(z(T)). Now

applying the above theorem lo the cost functional ¢,(z(T)) and taking into ac-
count that

(H% g 2()) = (g Hrz()) = (g (1))
we’ oblain the assertion.

As an another application of the preceding results we consider the fol-
lowing controllability problem for the system (1)—(3). . -

Let M,, M; be compacl convex sets in X such that M, C N(t.
DEFINITION 2. The system (H)—(3) is said to be approximately M,M;—con

trollable on the time interval [t , T]if for ever3 g > 0 there exists an initial-

state xo € M, amd an admissible control, () < U(to, T) such that x(T) =

(T, a:z, ug) < M, 4 SE.

THEOREM 5. Assume that the system (1) — (3) possesses an inlerior trajectory
from avery poinl x, € M,. The the system is appr oxmzafelJ M M1 — controllable
if and only if

sup miynt | sup {(fix)- max (f,—y)]|>0 (19)
2, EMo [€5] x€Relay) T3 E My

(where R.(xs) denoles the reachable set of the sysiem (1) — (3) from =x).

Proof. Necessity: It follows from the appr_oximate.'MOMlu—controllability of the
system (1}—(3) that there exists a sequence (%,,) € M, such that

Re(@ox) ~ My + Syyu) = ¢

forn=1,2.. T'herefore, for every t € S} we have

Y
‘sup (f,x) > min {(f,y) + min (f,c),

2 & Relzon) yEM ¢ &Sy "
or : : )

sup (f,x) + max(f,—y)+ln>0
i 2 € Relon) ' yE My

By the compactuess 6f M, we can assume Zo, — %, € M,. Then. letting n— e
we oltain from the above inequality, and the continuity of the mullifunction
B.(x,) (by Corollary 4),

- . sup (f,a) + ma';kf, ~y) >0
= ) & Relwo) vEM;

»

This now really implies (19).

8¢



Sufficiency : Suppose (19) is satisfied, but the system is not approxima-
tely M M, — controllable. This means that

UR. (xe) "M =
Xo 6 :\*10 ) ~
Sinee U Ro(x)is convex’, by Corollary 3, aud M, is c’ompact and convex, by
X, €M,
hypotheses, the Hahn —Banach sepaxauon theorem shows thal there exist § >0

and a non—zero [, &€ ST such that
sup (for X)<G— %+ min (f, y). |

. X € RelX,) . yeMm o
Thus, for every x, & M,, ’
min | sup (f,x) + max (f, —y)} <6,
f& ST x &€ Relxy) ¥ E My

and so we reach a contradiction. . » _
COROLLARY 8. Let Lg(x,) = ¢. Then the system (1)—(3) is approximately
M; — controlable from x, if and only if

min { sup ([x) + max (f,—y)}|>=0

FES] x€ Rulxy) yEMm
The system (1) — (3) is approximalety null conlrollable from x, is and only if
min sup (f, x3 = 0.

E —
f e Sl X G Rc(x)
The author wishes to thank Dr. Phan Van Chwong whose remarks subs-
tantially improved the lirst version of this paper. :
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