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1. PCOLLEM STATEMENT

The aim of this paper is to give a numerical aﬁalytlc solution to a free

boundary problem for a space homogenecoas dam, by using the method of
right lines.

Denote by D the parallepiped :
f(x, y, 2 €R: 0<x<Ta, 0<<y<b, 0<Z<H}

where a, b and H are given posntlve constants. DD is considered as a homogene-
ous dam while H is the water level of its right reservoir. Let h, B, T be the -

water level of the leff reservoir, the base and the top of D, respectively, such
that

B[y, 9 € Di0<x<a, 0<y<b 750

T={xy2€D:0<x<a 0<y<b, Z=H]
where D is the.closure of D in RS.

Denote by @ the wet’ part of the damm and by u the interface (so—called
«free boundary ») between the wet region and the dry region of the dam The
equation of the free boundary is given by

f z=¥xy), (& 3)EB,
where ¥ (x. y) is a eontinuous funetion, such that
YO, =H ¥ay>h 0<y<b. W
The domain Q is determined by \
=iy, eD: 0<<y<¥(xy -
We adopt the followmg notalions for the portions of the dam
G =f{(xy.9€ Dix=0, 0<<y<h 0<z<H],
G; = |(x y,z)eD :a,0<}’<b,0<z<h},
Gy =[xy, n€Dix=2a 0<y<<b h<Tz<¥(b, )
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_AG:T;:t(x,y, e Dix=2a 0<<y<h, h <<z < Hj,

= {(x, ¥ neD:0<x<a y=0,0<z<¥(x 0)f,
S- =&y e D:0<<x<<a y=Db 0CzT¥(x, b)j.

Assume that the parts of the dam B, St and S— are impervious.
The problem weare concerned with can be stated as follows (ef. [5], [2].

PROBLEM A: Find a function ¢ (x, ¥), (X, Y) € B, satisfying the condition (1)
and a function @ defined in Q such that. -
Ay =20 " in Q,
p=H on G, p=h on Gy,

2% _p on BUSUS-

=2 On G;‘,
) 1|

-E-(-R-=0 on _F.
m -

o =z, and
Using the Baiocchi’s transformation
I
ux, y» z) = _f [o(x, ¥, 1) — t]dt
- > N Z \ -
we can reduce the above problem to the following [3]
" PROBLEM B: Find a function u € CY(D) n H¥D) salifsying

Au = %, in the sense of D" (D), (2)

F

is the characleristic function of Q and

where %q
. _ 1 2 1 2 -
‘U:E—(H—Z) on Gy, u:?(h—z) on G,
=0 . on G;”'UT.u).:Oaty:Oandy:b,l .
~u=_l_(h2_ﬂz)x+~1—H2 on B. |
2a 2

The exlstence and uniqueness of solutions for Problems A and B have
bcen considered in [3] where one has shown lhat if uis a solutlon to Problem

- B, lhen the pair [o, ¥}, with

(p(x’ y’ L) = .Z - uz(ﬁy }', Z)g ) # (3)
P(x y) = in_f fz:u y, ) =0 (x,. 1) € B}
z € [0, Hi

is a solution to Problem A. .
By the method of right lines we can find an approximate solution to

problem B, hence to problem A.
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2, E‘«'UMERIC{‘LL ANALYTIC SOLUTION

Let us introduce two familics of parallel lines

a9

xi=dhy, b= —5  §=0, 1, m-1,
. m—+1 “
) b, ,
}i—lhg, h2*n+1?1_0,1,...n—-{—1,

where m and n are posilive integers.
Set - 7
Wii(2) = uxi, ¥ 2), zij == Y(xi, ¥
Consider the m—dimensipnal vectors
y(z) = fulj(z)s Uzi(2), vory Umj(2)}
and the solution mXxn matrix
u(t) = [ui(z), uz(z),..., Un(z)]

Discreting the equation (2) with respect only to x and y we obtain the
following system of difference — differential equations

d?u; (2 1 1
dz;( ) -+ E(UH—I,} - 211ij o _g5) - E‘E (uij-'rl —_ 2uij 4 ui;’—l)
where = y(z;;), '
1 if < '
O = N )
il z>E

. Now, using the technique of summary representations (ef. [6], [2]), we
can reduce the system (4) to a system of differential equations.

Set

h
Ruij(z) = wijui(z) — 2(1 4+ %) uji(z) + uijoiz), 7 = *ﬁ?

Then, fori=1, 2,..., n in (4) we have

2 - ” )
dTul;(i) + '1—9 RUIj(Z)+ 'l‘)‘ tzj (Z) ] = X‘(ZE]) - -E Uoi(Z), .
z by ¢ hj o by
dPuy; 1 1 ‘
Sy Ruzj(z) -+~ (uijtz) + usy(2) = Nzay),
d22 h2 h2
2 1
e e 6))
(M + —1— Ruw_1(z) + i (Un-2j(Z) + unj(z)) - = K(Zm-13}
dz? 2 2
h h
2 1
' {
M + ir) Rum;(z) ~]~i‘) Umj(Z) ' ] = (Zaj) — ~ Umj(Z)-
dz? h? h: - | by

2 1
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where

U,jz) = é—— (H — 2)%, U (2) = —;—- (h —_-z)zx. (h), 3 =12..,n
Consider the m—dimensional vectors
C i) = U@, Rz MZa))

— ‘
wj (t) = '{Uoj(Z), 0, [N | SRS T (Z)‘,
and the mxm matrix _ - g

-0 10 - ‘
1010
Te | e '
10 1
| I o 10 |
By {6] v
' T=PAP - (6)

where
ikx

v ! m ' .
P = [ai]y, 2k = Vm+1“°’”‘m+1’

A = diag [Ap Aevee Anls Ai = 2008 -2 .-
: diag [A1, Ag _] “m+1

Note that P* = E where E is the identily matrix,

With the above notation we can write the system (5) in the vector form :

d;(z) +—R T+ 0o =T (z)——l—wﬂz) Q)
Z' h2 hl . hl B

For any m — dimensional vector E let us set

‘ ‘é’ = P—g. ) . - .(8)
Mnltiplyiﬁg both sides of the equation (7) by the matrix P, and usingf(’ﬁ),and &)
we have .

! A'
. +

d u; | 15 ~
“J+—Bu1(z)+—AuJ(z)—f(z)—~——wm ' )
(122 h h h .
, 2 1 , 1 :
We now write the equation (9) in the scalar form
I : dz'\l i -~ 1 — . 1 -~ .
"—% - —U;-_uu + — (u11+1 — uip) = fi5 — — wih (10)
h2 hl , o h] '

Where o; = (1—{—72 T2 cos — ) )
m+-1
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For j =1,2,...,nin (10}, using boundary conditionsat v = 0 and y = b we obtain

d? uy g ™~ 1 o~ e~ 1 =
W B Ui ‘r'—z'“(“il 4 Op) =1y — —; win
b, h, I
dz'ﬁl PR 1~ - —~ -
dl;z — —5 Uiz -+ — (U - wg) = fiy — —1—; @ign
12 h2 h'l‘
",: g ~ 1 -~ - - 1 ~
ii-iln—n — 0'0 Uiy + - (Wino1 + Ujp) = iy — — Wip-
¢ hy 7 by b,
Set
L — ~ ~ —~
v = (uilv Ui2yeey uin)u
Fi = (fin fizgper finhs
— —~ ~ S~
Wi = Wi, 2. Win),
_ . 0 _
T, = 1 0 1 0 of order n).
* 10 1" )
N 0 i 1
Then by [6]
T. = P: A, Py,
where

Py = [bjl]li with
: J
bl - Vo
= 9 ] — —_ i = : ™ s
V_Z.COS[(ZJ 1 d I)r i=238,..1n
n

21] l = 1: 290--s m,

I} is the transpose of Ps and
Ay = diag [Il, 7_\.;,...,' 5\.—,11 with

Fi=2c0s DT 5 g 2.0

n
Note that . P, = PP, = E.
So we can write the system (11) in the following form
TR P R A W
az hg 2 h

Set
V (z) = [v1{(2), V2(2);..0r Via (2)]

- - -~

" T @) =Pud) = [0 (2), U3 (2), s 1p (2]

3—-ACTA

(11)

(13)

(14)
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Then we have )
Ut = V@), (15)
where V’(z) is the transpose of V({z).

Now let us introduce the transformation

T=Pt, (16)
where t is a n—dimensional vector. '
Multiplying both sides of the equation (13) by P} and using (12) we have

o~

Vi) o - 1 s 3 13 |
— i)+ —Mvi(v)=F, — Wi (17)
d+? 12 h?‘ hz
) 2 1
" Writing (17) in scalar form we obtain the following differential equation
ST 2~ ~ .
%(11—;— - Vij vij (1) = By;(2), (18)
where
-vf_i sin? (j—D= + 7% sin® ld
J hg 2n 2(m+1)

m

1 n
(Dl_l (I') = 2 E aij bul X.(Lh) 2 E it Ugs ~+ aimum+ls]-
s=11=1 1 =

To solve the equation (18) we need the following
LEMMA (4): The differential equafion
A2y
dy*

—a?v(y) =g(y), D <y <h, (20}

where
g(y) = ay? 4+ fiy + 7i, yu <y <yn i =1 2., m+1 (21)

Yo = 0, Yo+t = b
has the following solulion in the class C' (0,b) H? (0, b)

viy) = Ae* - B — L R(y), T (22)
2a®

where A and B are arbitr‘ary constants and R(y)is delermined by the following
formula:

4

l 2 i 2
Rey) = 2o4y® +231Y+ % o 2Tt 2 ? a(y yi [(“i_o'-j-!-i) (yl—% Z +§)+

_ i=1
2v; 2
+ (Bj — Bj+1) ()’i ! ) +T5—="Tl+e (y‘ ys) [(a — %j41) (Yj : +?) +

+ (8 — B0 (y, - —) 15— Twl]f (23)
for Y e Eyi—l! .VEE'» i= 19 2!-"! m + 1.
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Applying the above lemma to (i8) vieids

Vij () = Aij evlJ(T) + Bij € Vi’ - Rij(f: Ttls, T12s 2anse Tmn). (24)

'

i

where A;;, By are constants, Ri; have the form 23 and 71; ar parameters to
be determined later.

Now let us find the constants Aj; and B, Set

A (Z) = (A e\’ilz’ Aiz e'\?’izZ vy Aup evinz)

_—

" Bi(Z) = By eTV12 BpeTVE, | Biye”Vin%)
— Ri Bi Rin )
Qi1(Z) (-——é,—-_;,....,____z.),

2'\7i1 2Vi2 ‘ZViIl

Then we have

—~—

- ";i(z) = Ki(z) +—§i(z) 4 Qi(2)
which together with (12) yields
Vi(z) = Py(Ai(z) + Buz) + Q)
From this it follows that

V(z) = Py(A%(z) 4 B(2) + Q'(2)) (25)

where
= (A2, A, Ba(@]. B = [Biz), Bat).... Ba2)].
By (15) and (25) we obtain
Q = (G, Q). Cu(@],
() = (A@) + B() + Q)0

hence ‘ ‘
U(z) = P(A(z) + B(z) + Q(.Z)P’4 (26)
where : ‘
A(z)=[Ak1e“’kIZJm’“ ; B(z):[ Bke-”kIZJm’“ QM) = [-— Hi ]m’“
kl=1 : i k, 2vil k1=t
Now we can write C
PU)Ps = A(z) + Bz} + Q(z). ' (27)

["lkmg z=0H in (27)and nsing the boundary condition at z=0,H we get
A1j + BIJ = &Ajj— QJI(0)=

Aievl"H + B e—IJH _QIJ(H)h
where
1 = 1 X
oy = ) E ag [z- (hB—Hz)Xl + HZ] E bgi.
i - 1=t s=1



¥rom this it follows that

1
'\ij = - ‘_‘;l—’l‘— g.Ql](H) + € \IJH{VIJ QH{OJ
Jl

Bj; = [Qis(H) - Vit (ay—Qii(0) ]

9shv”H
which together with (26) yleld the folioning

THEOREM : The numerical analytic solution of Problem B has Lhe forn

i) = — 2 a2 e | — [ () + & (o — Qur (O]
1} = 1g = is Sh\?egH es es es e
: Vool .
+ ¢ [Qea (H) + e xESH (G’es - Qes(o))] CS(T) T (28
. shv, H 32
€5

3. DETERMINATION OF THE FREE BOUNDARY

The representation formula of solution (28) conlains the unknown pe
rameters zy{i=1,2,...m, J=12,..,1m) which delermine the free boundary

‘Let us find these parameters. .
Set ‘ Ui (2) = [ (% Zus 2125 eoer Zmnks o (29
where fj; is the right hand side of formula (28). Taking z = z; in (29) we have
Uij (zi5) = @ij (Zi1s 212, veer 2 mn .
with : ®i; = £i5(2sj 211 Za2, wo0s Zmn)
Since U;; =0 on the free frontier we get
@5 (Z11, Zi2, i Zma) =0, |
(i=1 2 .,m, j= 1,2, ..., n)
which is a complete system of non—linear algebraic equations for the determi
nalion of the parameters z;;. In order to find z; we use the following ilerative

method of {1]. First, we choose the initial values z;; of this iterative proces.
by the formula :

f;” H+ih—Hhfori=12, .,m j=12.,1

(z;(;) may be also determined by the solution of the corresponding fwo—dimen
tional problem, cf. [5]). Suppose that the values z(ilj{_l)of the (k — 1)'™® step ar

known, then the values z%‘) of the k' step are determined by the fellowin

formula
&) (k—1)
A = Z

k ,V —_—
i i + oy q)ij' k=1,2..,



where w;, is a parameter Iying between O and 1. Not: thai e, improves the
ronvergeice of this iterative process. The stopping criterion ol this iteraie
proecess is

max | A8 k=D | <&
.. i] 1]
13

where ¢ is a small enough positive numler.

Substitating the value z;; found by theiferale process inlo (29) we can
letermine Uj,(z), lience by (3) we obtain the solution of the fposed filtration
problemn.
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