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INTRODUCTION

The purpose of the present paper is to determine the cohomology algu-
bras of the groups

n-1I -
M@p™=(a b; al"  =DP =1, bl ab =al¥P "y n>3

with coefficients in Z, (the prime field of'p elements), As is well know x;,
M(p™) is (he unique non--abelian p—group of order p" having a maximal sub.
group ‘which is eyclic if p>> 2 and n=3. The case p = 9 has been considered in
[2; §3] by the second author. In thls paper, we shall study the remaining
case by use'of a similar ar;,ument so0 [rom now on, we shall assume p>2
and H¥G) = H*(G, Z) unless olherwise specified.

Long ago, G. Lewis [4] has computed the integral cohomology ring
H*(M(p%).-Z) by means of the Hochschild —Serrc speetral sequ-enewa—&S spec-
tral sequence for shorl) of the group extension Ty VRN

PR

{>(ayMp)—(by—>1 - I

and by use of the additive stfucture of H“‘(M(p ), %) obtained by C.T.C \\’all [G]
to estimate the spectral sequence. 7—1_ A5

Here we shall use the H-S SDLctlal sequence of the cenlIa] ggroup
extension, - 3

(M) : 1> Z>Mp = Cae X C—>1 - e
where Z = <&apn-2> =1Z, Cpn—g X Cp = (a, 1_3_)’\\'ith a = aZ, lg__—_ bZ, and C,
a cyclic group of ordern i ‘ '

The paper contains 3 sections, In §1, we shall recall the H—S spectral
sequence with some modificalions in such a way that it is compalible with
respect to the sign conyention. In particular, we shall compute the terms E. Ey
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of the spectral for a central extension of a cyclic group of order p, In §2,
we compule lhe term E, for (M), and show that Ey = E__ in this case. Finally,
we determine the algebra H*(M(p™)) in §3.

§1. THE H—S SPECTRAL SEQUENCES.

Suppose that we are given a group extension
| 1 >N—=G-—GN~1,

and a G—module A. Lel B(G) denocte the (normalized) bar resolulion of the
trivial G—module Z, and B%G, A) = Homg(B(G) A) the complex of the norma-
lized cochains for G in the G—module A, Then, we recall that an n--cochain
{: Bu(G)— A maj; be identified with a function f of n arguments g; in G, with

valued in A, which satisfies the conditions
i
V 3
[(g1ees 150, 8n) = 0, I =i="n.

The coboundary homomorphism 6 : B" — B! is defined by~
(]1) (6f) (bn gn+l) = .

= (D™ (@i (garrrs Gnr1) + z(—I) (g1 e GiGitnens Butt) + (=1 LGy g0))-

i=1

For each neérmal subgroup N of G, B¥(G, A) is filtered by Hochschild -~
SE‘I‘[E as Tollows, We write B* = B*G, A) for a momenl. We define F'B® = B*
for i s 0, and

oo .
Fip* = = FB® A B® for i > 0.
; n=1
where FIB* " B" = 0 for i>n; and for 0 <<i<Cn, F'B* n B" is the group
of all n — cochains f for which f(g,.... g,) = 0 whenever n —iJ-1 of the -
argumenis belong to the subgroup N. This filtration is compatible with the cup
ptoducts, if A ls a (3 — rmﬁ '

On lhe other hand, for each i > 0, we have the homomorphism
(1.2) Shi: Bi+i(G, R) — BYG, BY(N, 4))
defired by : :

(SHT) (Girtns Gi41) @ty T = (= DY £ &poey TY) #(Gjoryenrs G-

Here # : B(N) ® B((G) — B(G) is the shuffle product of B(N) and B(G) into B(G)
given expllmtulv as follows :

(Ttreees T1) * (Gir1eems Gjri) = = sgn(s) (Co(s7 (DM (8™ - )

where the summation 2> runs. over the set of all (j. i) — shuffles ie.
permutations s of degree j-+1i such that '

S(1) < e SR
s+ 1) <. <Ts(j+1)5
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and, for each (j; 1) —~ shuffie s,
. Skt gsli) -
e (k) = { xy 1<k<]

g ISk
with #8 = g~'wg. (Note that if G is abelian and N = G, the above product is
the usual shuffle product). - '
As it Is easily scen, for each i, the map Sh' induces the homdmorphism
FIBH(G, Ay — BIG/N, BI(N, Aj)
such that we have the commutative diagram
BM(G, Ay - BYG, Bi(N, A))

’

FB”FJ(E Ay — B‘(G/\’T BI(N, A)).

Now, let A be a G—ring, and let E,, r > 2 denote-the spectral sequence
associated with the Hoehschild — Serrc filtration of B*(G, 4) with respeet lo
the, normal /subgroup \N. Then each E, is a blgraded ring, each d; satisfics
the product rule, and E,., s the cohomology ring of E. Further, E_ is
isomorphic to E (H*(G, A)) as a ring.

Since H*(N, A) is a graded G/N — ring, H*(G/N, H*N, A))is a blgraded
ring. From [1] and (1 1), (1.2), we have the follo“mg

THEOREM 1.3. (Hochschild—Serre). The homomorplusms Sh' in (1.2) induces
the isomorphism of bigraded rings E, =~ H*(G/N, II*(N, A)).
We are interested in the case where A is the trivial G —ring Z, and in_
the central extension

(E) 1—-Z2—-G—-GZ->1, P

where Z is a cychc group of order p. In this case, the -8 spectra} sequence
is of the form
E, = H*(G/Z) @ H*(Z) = H¥G).
We.shall compute the terms E; and E; of this spectral sequence.
As it is well known, we have
: H¥Z) = Z,[u, v]/(u?).
‘Where u: Z~%Z, is a non zero element of HYZ) = Hom(Z,- Z,) and v = pu &
H¥Z). Here and in what foilows, B denotes the Bockstein operalor.
u is Lransgressive. hence so is v=gu. If we denote by Tt H*(?)—a—H“*](G//)
the transgression as usual, we have (1.4)
T =z & HY(G/Z),
W= —ftu = —f7g.
(see [1:Chap.1l1,3]. Here, zz is the cohomology class corresponding Lo the exten-
smn(u) via the isomorphismu,: H¥G/Z, ZJNIIQ(G/Z,ZP) Further we have vP =
k-1

k
= PP . PPPlv, so vP is also transgressive, and we have

k ! k-1 1
P = —PP . PrPlay,

As in the case p =2 (see Huynh Mui [2; 2, 1]), we have the following
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PROPOSITION 1.5, In the H--S speclral sequence for 1he ceniral exiension (E),
we have
= H"“(G//)/(&n) ® Zp[%X] B Annu(zp) @ Z,[viu,

E4 = H/(ZE: Pz} ® Z,[vP]
@ Annpjzp)(Bze) @ zp[vp%p 1

p—2
D Annnj(zg)(Bze)/Bzr) ® ( = Zy[vP]v! )
i=1

5] ;\nnH((zE)/(BzE)) ® Zp{vPlu
@ AHI]H(ZE, BZE} ® ZPEVPJVP_IU

fJ
B Anny(zg, pze)/((B2e)) @ ( = Zy[vr v '-1)
i=1

Here H == H¥G/Z) and ((Pzg)) = (Bzg)Annu(zy).

Proof. Identify E: =H® Z,[u; v]j(u®). Let x®v" cE, and x @ v'u. We have
then x@vP=Ex@ NI®@v)" und x@vu = (x® v*)(1 @u) in E;.v is transgres-
sive and[ v | =dim v>1, s0 do(l @ v)= 0. Hence

da(x @ v") = (=¥ n(x @ DI @ v)™! dy(1 ® v) = 0.
Moreover, do(1® W=z ® 1 by 1.4, so ’
do(x ® v™u) = (— ) (x @ V")(zg 1% 1) = (—1)PI(x2 ® V7).
From this, compute ker dy/im dy, we obtain easily E;.
Let x ®V“ € E; and y®v'u &€ E;. Then x & H/(zg) and y € Anng(zp).
Clearly, in E;, 'we have '
@V =DIEv) and y@ vilu = () Quil® v)".
Since dy(1® v) = —BZE ® 1, we have
dy(x @ v*) = (—+1)*(x @ Dn(lv)*~ (Bzp % 1)
= (—1)**n(xpzz @ v" -, _
da(y @ viu) = ("I iy @ win(1 @ V) (—pze @ 1)
N = (=¥ n(ypze ® v"~'u).
Obviously, . : :
. dyx@v")=0+<n=kporx < AnnH/(ZE)(BzE),
~day @ viu)=0< n =Lkp or y € Anngy(fzg)

[}
Compute ker dyim dj, we obtain the formula for E,. The proposition follows

§ 2- COMPUTATION OF E,(H*(M(p")).

In this séction we compute the H — S spectral sequence for Lhe central
extension (M) given in the introduction.

Let u,, u, denote the elements of HYC, , >< Cp) = I-Iornr(Cl;\"-2 % Gy Zp)
with uu(a)=un(h) = 1, uy(b) = up(a) =0, :
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Let u’ € H'(Cpn2 % Cp, Zp"% be the element with u () = 1, u; (b) = 0. Let
Bn: HE s( Zpt) — He+l Zp) denofe the Bockstein operator assocmted to the exact

sequence of the coefficients.
c — &L, > 7 nyl —> Zn— 0,
v P P

Let v, = én_gu;, vy = Bup. Then, as it is well known. we have
@y HY(C noz X Cp) = Zp [0+ Uy, Ve, Vi)~ (. up:
In particular, I--I‘J(Cpn_z X G = Zuu, @ Zpva D Z,v,.

LEMMA 2.2, Lel z = [[] € H? (Cpn—2 X Cp) be represenied by a 2 — cocycle f. Then
we have ' ,

z = q(a)va 4 q(b)vy + (f(a, b) — f(a. b)) m ug,

. ord(x)
where q(x) =- 2> f(x,z") forx Cpn,_qup, In parii cular, we have zy = v-3-u,uy
i=1
. up to a non zero conslant mulliple), ) .

Proof. By definition of the Bockstein operator, v, can be repr esented by the
2—cocycle given as follows.
va(a'b¥, albly = 0 if 0 <i,j, i+ j<ord(a)
=1 it 0<ij<Tord()<Ci+ ).
Similarly, we have a 2—cocyele for v,. Write [ = m,v, - myvy 4 mapu,u, L &g
“ord(x)
A dlrect computation shows (8g) (x.y) — (6g) (v.x) =0, 2 (6g)'L z') = 0. From
this we obtain easily the first part of (hc lemma. :
For the later part, we observe that the projection M¢p® )= Cpm=2 X Gy
has an obvious inverse map
t: Cp™=% 3¢ C, — M(p") given by t(albh) = a'bl for 0 Ci<Cp™2, 0 j<<p,
By defmltlon the cohomology class corrospom{lng to the extensmn (E) is the
class, [f & HX(M(p™) / Z, Z) with P bemg the 2-—cocycle given by f(a: y)
= t(x)t(y)t(asy)—l for @,y 6 M(p™) ) Z = Cyn-z % C,- Remind that Z = (aP ).

We have f(a a’h) = abP’~ f(b bh = f(ab a~lh-1) =1,

Now, Tet uEH‘(Z) be a non zero element. Then, we have u: Z=7, and
the 1s0m01phism u, = HF(M(p™) / Z, Z) = H (M(p")/Z, Z,). We have 1mmedlately
u, [f] =u (11’ }(VT + u,up). The lemma follows. ’

We note that the first-part of the lemma can be gencralized easily for
an arbitrary finile abelian p—group (refer to Huynh Mui [2; 1,5]).

Now we compute the H—S spectral sequence g

I-I“(Cpn—" x Cg) @ H¥(Z) = H*M(p™))
for the extension (\1) hy means of Pr0posxt10n 1.5, In svhat is to follow, we
let u: Z =~ z, with u(ap ) =1, and v = Bu. We have from 1.4 and the proof
" Lemma 2.2: .
(2.2 - Zy = Va - Ualip,
and we have H%Z) = Z,[uv, v]/ (u?).
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LEMMA 2.3. We have
. 2 2
E; = Zp fus. up, va, vl /(ug 0y, Zn) @ Zp V],

2 2 ) s

E'1 = Zp [ua » Up, Vg, vb] /(ua; U Za, BZM) ® Zp [\‘i]
B (Zp [V] Ua -+ Zp Vb Us up modulo (zy)) ® &, [vP] vP-!
p—2

B (= Z, u, + Z, u, up, modulo (zy, Bay) @ Zp["‘] i,
i=1

- Here we remind that zy = v, + 0, Uy, and Bzy = VU — Uplp §F L = 3, Zy =
= — vpu, if n > 3. [hexefore '

By = — vpu, () n > 3.

W

So the computation of E; is similar for every n 2>
Proof. We write H = H"*(C -2 X C ). Clearly, Anny(g) = 0, so we oblain

the formula for E; To compute E, Wc- first note that the hs{ assertion-is true
smce we have
Bug = v, if n = 3, and Bu, = 0 if n > 3,
Next, we show
(i) Annmy(za) Bzm) = Zp [ve] s D Zp [ve] uaty  (2y),

(i) (Bzan) Hf(zm) = Zp[ve] Volla @ Zp[vola] vpuup (7

(iiiy Annm/(zy) (Bza)/(Bzn) = Zpu. Zyuauy (2 Baa).
~ These results can he ohtalned casily by a direct compulation. From 1.5 follows

the lemma.

LEMMA 2.4‘.‘E4 = By = ,.. = Eapoi. .
Preof. Fromm Lemma 2.3, Ei’ F=0 if jis odd. Hence, we have dgx = 0, and
50 By = E2k+1 for k > 2, NOW we prove dgg.q = 0 for k<p—1 by induclion.
Suppose Ly =... = Eun. If 1 < j<<K, 2L-|-—1>md\,~ (1,- 2j + 1), so dy,

9 w1 2F y = s i, 2j i+ak+1 20j—k)
1=2.¢1 2k+1) 0. If k<< j<{p, doku (h21\+1) C E‘>L+1 0 since i+2k+

Therefore, we need only to consider dogir (0, @ V) and day.y (uau, ® vE) =
= — Uplorsr (U2 @ Vk)
Cle‘u]y vpdogr (U, @ v¥) = 0 because u,vy @ vF = 0 in Esg 1. However,

b;;\,—!-l = zpv ® 1 (zu, Pzn), SO Vlaier (Uy Qv = vl,(mvk‘f‘l @)= mv1‘+2®1——

with m & Z,. Ilence m = 0. The lemma follows

LEMMA 2.5, dgp_l (Vbua®vf'—‘) = (.

Proof. Following P. May [5; 3.4], the Kude’s iransgression theorem can

be applicd to the H—S speetral sequcnce GRS Eg’gk is transgressive, and if
¥y E Em"['1 s given so that dyyu (1@ x) =y @ I, theny @ 27" € L

and d2p(p g Y @ 227y = —pPly ® 1.

hlp—1)+1
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Using “this theorem to our ecasc: o = 1 ®v, y=—pzy® 1, we have
d2[,_1 (BZM @ Vp"l) = BP!BZ_\[ ®R 1. Clearly,

. D .
BPEBZ},[ = VEVh - V%}Vn

== uauhvg (Zar, Pzu)

1 \
= - uy(upv) vl (Zy Bz

Thercforeﬁ, dopi (P2 ® vP-ly = 0, But, as readily .seen ir Lemma 23,
Bz @ vI-1 = Vil ® vP in By = (Bs_ by 2.4). The lemma follows.

LEMMA 2.6. Eyy1 = Figp = Eypuy = E_.

Proof, By means of Lemma 25 and the argument in provmg 2.4, we have
dap_t (U, @ vP~1) = 0. From. this follows 1mmed1a1elv dap_1 = 0, and so Eap_1=Eoy.
Further, we have seen in the proof of 2.4 that Eyp = Eapr. Now it is clear
that we need only to prove dops i (1 @ VP) = —p Bzy @ 1 == 0 (zn, Bza) We have

.. p=1
Plﬂzn = - VEUQ == .\:E (vela) = 0 (zy, Bzu).
"The lemma follows.

Combine the above lemmata, we have reach to the following

PROPOSITION 2.7. In the H — 8§ spectral sequence for lhe exlension (M), we
have E,=E (HM(p"). Moreover, the algebra E(H*(AM(p"p is gener ated by Lhe fol-
lowing elemenls
WLl el vi®l 1IQv?, Levil < i< p—1).
Remark. We have proved Proposition 2.7 by using only the H — S spectral
sequence for (M). If we remark also to the extension
09— <a>—1 \/I(pn)—><b> -1,

the lemma can be obtained also by the fact that this cxtension is split, S0
clearly Z,{v.]®%Z, in the H — 8 spectral sequence for (M) never can ]30 hitted.

§ 3. COHOMOLOGY ALEBRA n¥*(mM(p"))

According to Proposition 2.7, Lhe algebra H¥(M(p") is géneraled by the |
following elements
(3.1) . gy Uny Vs V(zp); Zaslaess Zoap-1
where w, = inf(M(p"), Cp"~* 3 Cpyw, with w=u, v and x =a, b; v(2p) is any
element of H*(M(p™)) which restricts to H¥Z) equal Lo vy and z.i{l < 1 < p--1)
are certain clements of FH(M(p™) such Lhat

zaq € FHM(@") —— 1, @ V' €EM™, 1 < i < p-1

We shall show how to choose the elements z,,; and formulate the alﬁebm '

H*(M(p )) in terms of the system of the generators 3.1.
First we note that u,, u, € H{M(p")) = Hom(M(p"), Z,) arc by definition

the canoni.cal generators of IIY(M(p")) with respect to the generalors a, b of
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the group M(p") (see the definition of u,, u, at the beginning of the seclion .2}

Let A =Ker u, and B=Ker u,. Then A and B are obvmusly two maximal
subgroups of M(p").and we have ’

(3.2) A=<l b>=Tp"2X Cp B=<a>= Cp™ !
+ ANB=<al>,
p—!
Mp™ = AB = U AalA,
i=0
Set a’ = aP.Let u,, € HY(A) with u.,(a’) = 1, u,, (b) =0

and let va,_ Bu 211 » where u . € HYA, Zp"?) is defined sumlarly as u,,.Lel

Res(S,G): H¥(G)— H*(S): and (G, S)H*{S) — H(G)

denote the restriction and the transfer respectively for 8§ ¢ G as usual, We
shall eonsider tlie elements ,

(3.3) Zai = HM(p"),A)(ug, Y;.), lei<cp=3,i=p—-1
= t(M(p"), A)(l;a, v;,) 4 pn-d tlg\rg_2, i=p—2.
LEMMA 3.4. For | <\ i, i< p—1, we have -
1 Rés(B, M®P™) 2o, = uav;; 80 Zy,; are non zero;
2) Res(A, M(p")z,: = 0, ‘ 1 i p-2
= p"¥(upv. — uavb)vg_z, ' i==p—1;
3) Za,i € FIHHM(P®)) — mu, @ v € E¥ wiih m; <=0
4) UaZayi = 05 ViZo; = 0, § < p—2; Zaia,; = 0.
Proof. 1) Frbm 3..2, according 1o the double coset formula, we have

Res(B,M(p"))za,; = t(B,B N A) Res(Bn A A)(u,, u;») 1

= t(B,BA A)(u,, v;,) (with some abuse of nofation)
= t(B,B N A)(ua, Res(B N A,A) vy

= (t(B,B Fal A)ua'))v:1 ~ (Frobenius® formula)

i
== Ua ¥y,

Here, ¢(B,B N A) u,, = u, can be easily obtained by a direct computation, for
instance, using the formula in E. Weiss [7; 2.5.2].

2) From 3.2 and the double coset formula; we have

¢

. . . op-l IR
Res (A, Mip") t(M(p™), A) (u, v;.) = > adg (u, v;, = 2 (U — kp"* )
* k:o =

(Vay — kP"‘S V)
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since Lthe operation of a on A defined by the conjugation is as follows: a’i—a’,

‘b —ba P B . If n> 3, the assertion is obvicus. We suppose n.= 3. By a direct
computation, we have

Res (A, M(P™) L (M(p™), A) (1, v1) = o, i<p-3
= — uwg_g, ' i=p-2
= (Up Vy" — Uy Vi) VEH i=p-—-1

%

The assertion follows from 3.3.

3) From Lemma 2.3 and Proposition 2.7, we have
H2H (M (p")) = Zpﬁhvij B Zp Za. i

for I<i< le where ;;,i is an element such that

i € F‘H"‘(M(p N-ou v e E1 A

By comnsidering the vesirictions of the elements u, va and z,,; con H¥B), we are

ready to see that z,,; can not be expressed only interms of uhvli) . 3) is provecf\.
4) We have
UaZa, ; = U, t{M(P™), A) (uy’ ua') = H(M(p™), A) (Res(i‘x M{p™)yu,.u, v )

since Res (A. M(p")) u, = o. Similarly we have z,,; z,,; = 0.

Finally, we consider v.z,,;. From 3), we have oo

VaZa.; € F'HAS (M(p™) 1> 0 € Eg'“l

if i<p — 2. From the proof of the assertion 3), we have immediately
Vb Zg, i = Mty VL_H. Resirict two sid\es on B, we have m = o. The lemma is
‘proved.

Proposition 2.7, the algebra structure of E, = E_, in 2.3, and Lemma 3.4
resuli the following

. l §
THEOREM 3.5. The alqebfa O*Mp™)) is a commulaiive algebra generaled bg

the elements
WUy, Hp, Vi, V(2p)9 Zas {5+ oy Zas pral

and il has the algebra siruclure as follows.
1 As a module,

H(M(P") = Zp [y, Vo, v2D))/Up) [ 1, 20,y
D Zy iub’ V(EP)]/(ui) { Uay Za, 1yeees Zapz ) -

-~ 2) The mulliplication is given by the relations:

UaVy =Zg,1 Za,j = Ug Za,i = Vpia,k = f}



~where 1=<i, j==p—1, k<p-2 ‘
Here R j:r:, Y., 2} means the free R—module generated by ihe free gene-
' rators x, Y., 2. :

Remark 3.6. As it is well known, there are only two non abelian groups of
order p?: E(p®) and M(p®. Here E(p* is the group isomorphic to a Sylow
p — subgroup of the general linear grop GLy(Z,). The integral cohomology ring
H*(E(p?), Z) has been also delermined by Lewis, and the mod p algebra H*(E(p®)
has L.ecen computed in Huynh Mui [3]. As in the integral case, the computation
of H*(E(p®) is more complicated, however it is very illnstrative of the algebra
* structure for the mod p cohomology of finite p — groups.

Received April 10, 1981 .
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