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The geometrical shape of the moment space associated with a Tcheby-
cheff system of functions (abbrev., T—system) suggests the formulation of
weaker but still interesting systems of functions. We inlroduce in this paper
the notion of an invariant system of functions (abbrev. I —system. see Def, 1)
and use geometrical and inductive arguments to obtain the description of the
moment space associated with such system (i.e. the canonical representation
for points on the associated moment space). We refer to [1] and [2] for the
literature on the deseription of the moment space associated with a T —system,

Our study of an I-—system was motivated by an attempt to construct
invariant estimators for polynomial regressions on simplexes_(see [3]): roug-
hly. speaking, an I—system can be considered as a finite family of lincarly
independent and continuous functions whose moment space posses a houndary
which is similar to that of the moment space associated with a system of
power polynomials with even order. However from a geometrical point of view
the notion of [—systems is different from that of T—systems in the sense that
mayexist a hyperplane which cuts the curve generated by a given I—system
of order n ut an infinite number of points (see the example in §2).

The paper is divided into two sections. In the first section it is shown
theorems that: Given an I—system of order n, -

— in order to describe the upper boundary of its momenl space it suffi-
ces to know the description of the lower boundary of its (n—1)—th moment
space,

~— in order to describe the lower boundary of its moment space it
suffices to know the description of the interior of its’ (n—1)—th moment
space and, _

— in order to describe the singleton part of its moment space it suffices
to know the description of the whole boundary of its (n—1)— th moment space.

The last section is devoted to the application of the results of the firsi
section to the study of invariant properties of momenl spaces associated with
symmetric sysfems.



1. DESCRIPTION OF THE MOMENT SPACE ASSOCIATED WITH AN I—SYSTEM

Let X = [0, a] be a compact interval of the real line and let C(X) be the
veector space of real continuous functions defined on X, By a syslem of func-
tions of order n we always meanin this paper a set of n lincarly independent
veclors m C(X).

We denote by M'(X) the set of all probability measures on X equipped
with its weak topology. so M'(X) is a compact convex sel. For a given system
of functions U = (ul) we can associate a compact convex set (X} in R™,
which is called the n—th moment space of the system U, by the following way:
The relation '

P
0, € R™!
1 o - .
(1) where p & m'(X) and p(uy = [ u;(l) w(dt) (o < j< n).

defmes a continucus and linear mapping from MYX) into R™' and I'"(X) is
defined to be the image of this mapping. By the same way we can define the

f—th moment space associated with the system Uy = (ul) (o <k<n) by con-
sidering the corresponding image of the mapping: '

P .
v (H(Hl)) 6 R+ Lo < k< m.

Furthermore, for & = 0,,.., 1 FI‘(.X} can be identified with the convex hull of
the following compact curve

b Ui) = ?‘(uj (1))ff, e X (0 <k < n).
In order lo represent points of moment space I'°(X) let us fix a coor-
dinate system (e_i)g in the KHuclidian space R™. Every moment ‘point ¢ =

}Ci)g (= F?X} can'])e wrilien as follows:

n
c = 2 Cifj
) 0
(2) n
' = = pw) e o

O
where p is a probability measure such that u(z) = ¢ (o <i n)

A 'measure p safisfying (2) will be called a representing measure of c.
~ The set of all representing measures of a given moment point ¢ will be den-
oted b‘y V(). |
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Let Py, (0 <L &' <k < n) be-the orthogonal projeclion from the sub-
space span (e; | 0 < j < k) onto the subspace span (¢; | o< j< L) then it is
clear that I'™(X) can be identified with the image of I'"(X) by the projection
Py, Let ¢ = (ci)ﬁ(ogk\gn—l) be a fixed moment point in ['*(X), then by
fiber &, € VE+(X) associated with the given point ¢ we mean the one dimen-

sional compact convex sef
(3) Fe = {p € THX) | Pyuy, 1 (0) = ¢}

Thus &, can be identified with an oriented segment A c] of the (k 4 1) —
coordinate axis. Since I'™*{(X) is a convex body in R**, only two cases ecan
happeu: either [c, c] is a real segment (i, e.c == c) hence both points L':—andg
belong to the boundary oI (X) of Tk+1(X) or [e, ¢] is reduced to the a single
point felicoa singleton) of oT*1(X). In both cases we will call respectively
e 2 fower boundary point and ¢ an upper boundary point of I*%X); with
this convention aF'*!(X) can be divided info two disjoint parts: the lower
boun-dary oI'**(X) consisting of all lower boundary poinls of M*+4X) and
the upper -_boulidary als+1(X) comnsisting of all upper boundary points of
TE+(X). Thus,

AT+(X) = oP* I (X)u ol B+ (X)

(4)
O< k).
Let €: X— |1, 2} be a function such that
' 1 ift=0
) =
<® 2 otherwise,
i . m
then by index of a discrete measure p = Zaiot; in HLX) we mean that: )
m Il
(5 Ind () = = & ().
. ==

The index of a moment point ¢ in ['(X) is by definition,
(6) Ind (¢) = Inf [Ind(u) | p€V(c) and p is diserete|

Note that by the Caratheodory theorem the set of measure p defined by
the right hand side of (6) is always non-empty.

Given a system of funetions |J = (uy in G(X), every clement of the
subspace span(u; | o i<{n) will be called a polynomial or more preeisely an

U - polynomial.



. mial,

DEFINITION I. A system of continuous functions U= (u)h  on Lhe

compact interval X = [0, a} is called an invariant system (abbrev. I — sysiem)

" of order n provided that,

1 U is linearly independent and the constant function 1 is an U—polyno-

2) Every moment point of index smaller or equal (0 n must belong lo
the boundery oI'*(X),

: m ‘
3) If p = >aibdl; is a represenling measure for some point ¥ of index n
0

and if a” is a real such that, a’ = sup {t | uy(t) = uyty) for a 0 < j<< mja'<ca

then the open interval |7, M[where M=(Ui(a'))2 is contained in the interior of
tke moment space associaled with the restricted system (u; | [o, a” )2,

' 4) If ¢ is an upper bbundary point of I'*(X) and if w & V(c) then the

support of p must contain the point a.

¥

Remarks. : ' : 1

1) The condition 2) of the above definiton can be stated analytically as

-follows: Precribed points (t:)5'S [0, a] are zeros of some non negative poly-

v

nomial of the system provided that 3 & (t;) < n.
. I .

2) Intituitively the condition 3) means that the lower boundary aI'™(X)
must not be locally flat, we will give a carefull treatment of this question in
the next lema 1. '

3) Although the condition 2), 3) and 4) of the definition 1) are verified .
by any T—syslem of oder n, however, there exist I—systems which are not
T—systems (see the example in §2)

4) It is clear from the geometrical characterization of a given T—system
defined in the interval X, say, V= (vi)g, that for every 0<Za'<{a the res-

tricted system Va'z(vi[Xa’)g where Xy = [0, a’] turns out to be also a

T—system. It is worthwhile to nole that this fundamenlal property of
a T—syslem is not true in general for an I—system and that it seems to be
interesting to ask whether one can determine the sel of all points o<<a’< a

such that the restricted system V,' = (v;] Xa')g will be al so an 1-—sysiem.
Definition 2. A system of continuous functions U = (ui)g defined on the

compact inlerval X =o, a] is called a complete I—-system if Uy, = ui)l; is
I ~system of erder k for each k = 0,1...., n.
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i
Forie [0,1 n} let us define an equivalent relation ~ on ths interval
[0, a] as follows: :

i
bt Aff ) = uy()

. i :
We denote by A;(t) the equivalent elass w.r.t. ~ which contains the point t.
Assume that U= ()] is a complete I-system such that u,= 1 then,

(7) Aih=2 Aat) Vi€ [o, a] CLign).

In fact let t and t" be two points in [o, a] such that uy(t) = uy(t’), from
the condition 3) of the definitipn 1 both points (1. uy(t), ua(t)) and (1, uy(t),
u,(t’)) must belong to.the boundary oI'%X). From the condition 4) of the
definition the two above mentionned points must coincide with the lower
boundary poiat of the fiber &, assoeiated with the point ¢ = (I, uy(t)) ==
(1, u(t’)), thus ug(t) = us(t) or in other words Ay(t)> Ayt for all t€lo, al.
(7) can be obtained by the same arguments,

"Note that the set Ay(a) = jt &€ X | u(l) = uy(a)} must be reduced to the
point set {a}, otherwise it is possible to oonstruct a reprenting measure | for
an upper boundary point ¢ & I'’(X) such that sup P(w)Z [a] and this contra-
dicts the condition 4) of the definition [.

Dcfmition 3. Let U= (ul) be an I —system on the compact interval

X =[o,a] and let P “’.Z oi1; be an U — polynomial, if t, € [o, a[ is a zero of
O

P then the set A (t)) will be called an equivalent class of zero for P.

According to (7) if t € Ay(t,) where t, is an zero of P then t is also a
zero of P thus the zeros set Z(P) = [t | P(t) = 0] of P is divided into disjoint
equivalence classes of zeros, y

LEMMA 1. Lel U = (ui)g be an | —system, then U satisfies the three equi-

valent propertices:
n

a) Let an U—polynomial, P = = ou; be non negalive on the interval

‘ 0

[0, a’] (2’ <Ca) if P admils m disjoint equivalence classes of zeros Ayt (1<{i<{m)
m

such that = € (1) =n then these classes are the unique equivalence classes of

- 1

zero of P,
o .
b) If w == By is a represeniing measure for some point ¥ & al'™(X)

1 ) .

m

of index’n and lef a" be ajreal such that a’ = sup {U At} <a< a then the-

re is no hyperplan which al same- time supporls the moment space I'(Xy) and
contains the line TM, where M = (u; (a"))



¢) Under 1he same hypoiheses as in b) then the open mterval 1TM[ is
confained in the interior of T™(X,).

Proof. We first remark that the assertion e¢) is ‘noihing else than the
condition 3) of the definition 1. Let us prove that (a) 1= (b) |= (¢) = (a).

(a) = (b): suppose that b) is false, then there is a hyperplane
n .
H=jm= (mi)’;| = oim; = 0] which at same time supports the convex set
. Q
I'"(X,) and contains the line YM. Since the index of 7 is n, this boundary

point can be represented by a probability measure §=-~_2 ap 8y
such that (t)1 < lo, 2 € (t)) = n and that Al(i)n Ay (t)=g(1 ig=] < 1),

m
Consequently the polynomial P == o; u; is on the one hand muon
(]
negalive on X' = [0, a’] and on the other hand pnssesses (m 4 1) disjoin!s

classes of zero [(A,(ti))g‘. Ay(a”)}, but this- contradicts (a).

(by = (c): Let ¢ = (ci)f)l be any arbitrary point of th.e open interval 1 7, M [.

In order to prove that ¢ € Int (I'"(X,")) it suffices to show that any hyper-
plane H passing through the point ¢ should determine two open halfspaces
which both_contain points of I'*(X;"). Only two cases can happen:

—IfH cioes not contain the line Y™ then it is clear that 7 and M are
two points of ['™(X,”) whmh belong respectively to the two open halfspaces
determined by H, \

~ If H contains the line TM then since I does not support the moment
space I'"(Xy') there always exist points of I"*(X,”) which lie on both sides of H.

(¢) =®: Let e = (ci)g be a point of 17, M [ then by hypotﬁeses ¢ is an inte-

. n :
rior point of I'*(X,"). Thus, for any polynomial P = = @i u; which is non

4]

u .

negative on X, = [o, a’] the form C (P) = = ai ¢ is strictly positive (sec
. P

for instance [2], Chap. II). Suppose that a) is false then there is = polynomial

» n . '
- P(t) = = a; w; (t) which on the one hand is non negative on [0, a’] and on

o

. _ N

the other hand admits (m - 1) zeros, say, t; <Cty <C... < ty.; such that S €)=
' 1

n and such that At N At =@ (1 < j=i<<m + 1). Now let a” be a real
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'
m

suqh that sup { UAl(t‘,-)] < a’ and that a” € A (tm,) and let 7 = (Ti)g be the
1

momeat poin! in I““(};a»-') which has a representing measure of the form % 8ibyj.
; 1

Choose a point ¢ = (ci)z € 17, M{, where M = (ui(tm“))g. thus ¢ can be repre-

sented as,

e=pT+(1—p M 0<<p<<)
or equivalenlly,

¢ =BT+ (I —p) my

(8) -
= ,B(%: §; 0 (1) + (1 — B) ui (s (O i ).
On the other hand if we compute c(P), then \
CPy = 2 aies = 2 o (B 85w (1) + (1 = B) s (fm i)
¢ 1

n

=826 (= ot (1) + (1 =B) (= @i U (tmar)) = 0
1 0 [1d

a'nd this is absurd, since
e € int (T*Xa™)). |
. Q.E.D.

Consider the moment space T'*(X) assomaled with an 1- -system U = (up)}
defined on X = [0, a] and put:
F“(}x) =lve v™X) | lndy) = n}
(9) brn(h) ={v € ™X) | Ind(v) <C n}
' Ar(X) = oY" (:x)\[j TX)UaP1(X)]

[

Nole that by the definilion of an [-system EF“(X) and a’To((X) are two dis-
joint subsels of aI'’*(X), hence (9) forms = partition of #7%(X) into three dis-
Joint parts This partition will be justified later oh since we will identify in
the next corollary 3 Lhe setj“F(X) UsPT2(X) (resp. ‘SF“(X)) with the lower
boundary ;3_“1"(}{) (resp. the upper boundary oIy (X). For any o<Ca'<Za let us

denote by U, = (u; | Xa')g' the restricted system of the givén I-system on the

interval ‘X’ ={o, a’]. The moment space associated with U,” will be denoted
by I'"(Xy") and by using the partition (% for I'* (¥X,) we can alse divided its
boundary 2°I'(X.") into three disjoint parts.

THECREM 2. Lef U = (’ui)f)n'l'l (6,1...y be¢ a complele I-system defined
on X = [o, a] and let n be an arbitrary fixed number such that o < n << m. For
_edch moment point v-& Iy ™(X)) lel G, = [c, ¢] be thé fiber in T"+(X) asso-
ciated with Lhe point v, lhen: B



(2) @ measure w € V(v) is a represenling measure of the upper boundary

poinl ¢ provided that Ind(p) = n+-2 and that supp (u) 2 {a}, furthermore the
sel of the just mentionned measures is not empty,

(h) @ Imeasure p & V(v) is a represenling measure of ihe ‘lower boundary
point ¢ provided that nd (#) = n+1 and that supp(p) 2 {a] furlhermore the
set of the just mentionned measurés ts not empiy,

(¢) for any given interior point ¢’ & lc, clithere is a measure p' € V()
which represents ¢ such that Ind (p') = n4-2 and supp (W) > {al,

Proof. The proof will be treated induetion. Without loss of generality
We can assume that uo=I and préve the theorem only for lhe case n = m,

First let m = 0 and consider the system (ui)ol- The corresponding mo-
ment space associated with the system (u,) and fug, ur} are respectively-the
one point set {A | and the compact interval [By, A;] (see fig. 1).

fe1 A;

(a)
0 A, =1~ .
_—_J—‘—‘_-—\——-——u—)cr) 0 . A. —
eo
TO(X) =1A,]}
F Ug(b) o .Bg
TY(X) = [B/A]]

(Fig. 1)

. Hence in the considered case the given point v can only be chosen to
- be the point A; and the fiber &, is identified with the interval [Bi. A;]- Since
IUn- U1] is an I—'—sysl'em the assertions a) b) and ¢) of the theorem can be
essily verified. It should be poted that By = (1, uy(0)) and that A1, uy(1)). Now

suppose that the theorem is true for the system (ui)z with k=0,1,..., m—1
and let us prove that the theorem is also true for k = m.

@ Letpg Viy) such that Ind (w)==m + 2 and that supp (x) > faf then s
can be wrilten as: .

(10) f b=pp+(l—ps. OB
‘ Wher_ye w em(X) such that Ind (p') = m and that supp (0')2 {a}.
Bythe inductive hypotheses the point Pa(p’) = ¥ must belong to the boundary
oT™X) of I'™(X). Hence if we put A, = Pn(s,) and draw the open half-line

I/

Anv then since ErePresents v the point T must be identified with the uni-

que intersection point of Apv. with al'™(X) (see Fig, 2).

10
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Furthermore ¥ must belong to the lower boundary oI'™(X). Indeed
suppose that T € ?Fm(X) then by the inductive hypotheses this point admitsa
representing measure p” such that Ind () = m + 1 and that supp (&™) > fal.
it follows that the measure ILH—-BQ.”—}—(I — B) 8, belong to V(v). But on the
other hand since Ind (rL) =Ind (") =m 41 and since supp (p) > {a] the

point v, by the inductive hypotheses, turns out to belong lo aF”(X) This
contradicts the fact that v < Int (I'™(X)).

Let us now draw the closed half-line A_.e where Ap. = Pu,i(82).
Since T™+(X) is a convex body the intersection of this moment space with

]

"Amyic musl be a compact interval, savs [Ann ?]—. I say that the fiber in

['m+(X) associated with the point T must be reduced Lo the singleton {?} (see
Fig. 2). In fact suppose that the projection of Y into I'"X) is a point o € |7, v]
then ?belongs to the fiber &, ¢ I'*YX) associated with the point » and

furthermore it follows from the condilion 4) of the definition 1 that T is not

the upper point of this fiber. Let p* € V(w) be a representing measure of the
upper pdint of &, and put:

(11) ¢* = pPuu@®) + (1 — B) Ay

then it is clear that ¢* is.one moment point in I'"™+YX) which lies on a strie-
tly higher position than ¢ in the fiber &, and this conlradicts the faet
¢ € 2™+YX). Thus we proved that the fiber &y in I'™(X) associated with 7 -

contains the point T. On the other hand if w & V() then it is necessary that

supp (1) 2 fa} otherwise since v is interior point of I'™(X) it can be shown
that ¥ is also an interior point of the convex body I'™X) and this is absurd.

Thus by the condition 4) of the definition 1 the fiper Fo has no upper point
hence it must be reduced to the singleton j?] Consequently:

— for every p € V(_?:) the measure Bp + (‘1 —pré. € V(¢) and, a fortiori,
this fact must also true for the measure p’ given by (10),

(Fig. 2)
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— the index of 7 must be equal to m otherwise it cun be easily show
that v will be a boundary poiat of T™(X) and this is absurd.

Thus the assertion (a) of the theorem is proved for k = m.
(b) Lel y & V(v) sueh that Ind(w)=m+1 and Supp() 2 {1| then by the
ondition 3) of definition ! g represents a boundary point of fiber &, = [e, c].

By (a) p must represent the lower boundary point c.

Now sinece v & Int(v™(X)) it follows from the inductive hypotheses that
there is a representing measure_g,_a_for v such that

Ind (1) = m+1 and
Supp (W) 2 fal

From what we just say g turns out to be a representing measure for c.

(¢) Let v €[e, ¢ ] then v’ = (vi)gn'H is clearly an interior point fo

I™+4(X), There is a real o<Ta’<a such that v’ is siill an interior point of
'™+(Xa"). For the proof of this facl we refer to the Lemma 5.1 ([2], Chap. IV).
Let a, be the infimum of the set of all real numbers a’ & fo, a] for which

v & Int(M™+4(X,) then v' & I(X,,).
Let M, bc the moment point in T™+{(X)- of the Dirac measure 6a° then

the open halfl line Mgv' will cut the boundary $T'™+'(X) af an unique point A
We have

az V=BT +(1-pM, O<B<<D.
Since ¥ & 7™ (Xq,) it can be shown that ¥ € T™+!(Xa,), henece by the

condition 4) of the definition I ¥ must be a lower boundary point of I'™+(X),
By the part (6) we have 1nd(1) < m+ ! and thus only three cases can happen:

1) If Ind(¥) = m+-1 then by the Lemma 1 the open interval J7, M, [ is
contained in the interior of ™+4(X, ) and consequently v & Inil™(X_ ) Now

it is not difficult to sce that there is a real?f such that a <H::<a(, and that

v & Inl(Fm+1(X;3), but this fact contradicts the definition of the number a, itself.

2) if Ind (Y) <<m then by (12) we see that the index of v’ is smaller than
(m + 2) and it follows from the condition 3) of the definition 1 that v’ must
be a boundary point of aI"™™+(X) which is absurd.

3) there remnins only the possibility that Ind (T) = m and it follows
from (12) that there is a probabﬁlily mea:scre-p.’ = V(v)—such that

Ind (') = m+2
Supp (w) o {a}
R € V(v)
Q.E.D.

It follows imediately from the proof of the above theorem that

12



COROLLARY 5. Lei & = w)?"" be a complete I — system defined on

X = o, a]. For o < m we have:

"a) The sel o T'+4X) (resp. ELF“?KX)U o' T1+(X)) can be dentified with
the upper boundary aI''+"(X) (resp. Lhe lower boundabry of a['"+1(X) of the
moment space T(X). '

by The upper boundary aT+HX) is « surfac-re generaled by lhe openl
segments 17, Aua[; where A = (ul(a))’+1 and where 7 is running through

Lhe curve of singletons of index I. In oiher words :
aTHX) = [Ad + (1 =M T1o<A<!and Ind (1) = {},
c) If I is even the subset 2 (X)) of the lower boundar'-y B IHX) s

1dem‘zﬁed wil hthe surface generafed by the openinterval ] o, T [ where o = (u; (o))'l"“1

and where. 7 is running through the curve of singlelon of mdex L. Inother words.

—~—

2V HX) = A0 - (1 —A) Tl o<<A<<1and Ind (1) = I}

2. APPLICATIONS TO THE DESCRIPTION OFI THE INVARIANT PART
OF THE MOMGNT SPACE ASSOCIATED WITH A SYMMETRIC SYSETEM

We apply in Lhis section the results of the previous-section to describe
the invariant moment points of a symmetric system defined on a compact sym-
- melric inteval S, = [—a, a]. 3, is identified as an one ‘dimensional simplex,
thus its symmetric group G consists only of the symmetry through the origin
and the identity map, i. e., G = S, id}. Let #'(S,) be the set of probability

measures on S, then the sel ./%ilnv(Sa) of all G—invariant probability measures

- ean be written as follows,

ﬂil.n\v(sa) = 3 P-—(-)‘I' ;(SO()) ' [ EJfll(Sa)f .

Obviously ﬂt:ﬂv(sa) is a compact, convex subset of MYS,) if both sets
~are equipped with the weak topologys. .

Now consider a system Uy = (fi)gl_ of linearly independent and continu-

ous.functions on S, and denote by I'™(§,) the moment space associated with
the given system. The invariant moment space associated with U, denoted

13



by FE}(S,) is by definition the subset of I"“(S;) which is the image of

1 e
A (Ss) by the projection

. @m
Bl - (P-(fl))gm

. . . . 1 oy
Since P, is conlinuous, it is clear that Jﬂim(hﬂ) is a compact convex sub-

set of I'™(S)-
For instance if we suppose furthermore that m = 2n and that the
function fy{0<i<;2n) is even or odd aceording as its index is even or odd

then since p(faxn) = 0 O0<KSn—-1), v XS Jf!ilm(Sa)the invariant momentspace

?;(S.) is isomorphic to the moment space .associated with the system (fgk);‘
on the compact interval X = [0,a].In the remainder part of the paper we will
consider only systems of functions with the above hypotheses,

The mdex of an invariant measure p & m (S) dnd the index of an
invariani moment point ¢ & F (S) will be defined as follows

Ind(p) :[Supp(p) | , where |A] denotes the cardinal of the set A}
Ind (¢) = Inf {Ind(pw)] p is discret and peE Vil

where V= ne Jiilnv (Sa) | Paa(e) = cl.

All other definitions and terminologies used in the first section such as
the upper boundary, the lower boundary can be transiated words by words
here to the invariant moment space.

Definition 4. A sytem TJH = (f-)an of (2n + 1) linearly independent and
- continuous functions defined on S = [—a, a] called a symmetric system of
order 2n provided that,

iy f, .
ii) the functiom fi (o <1 2n) is even or odd accdrding as iis 1ndex
i(fo i< 2n) is even or odd, :

jiiy the even order subsystcm U= (ng) defined on X = [o, a] is an

I— system.

~

“Definition 5. A system Us = (fv)2n will be called a complete symmetric

system if for k = 0, 1, ..., n the truncated system Uy = (f) is a symretric
system of oder 2k(o € k g n) on the same interval S,. '

Lef us give now an exemple of a symmetric system. Consider an arbi-
trary continious and odd function g(t) defined on S, such that | g(t)! atiains its
maximum only at the points —a and a.

\
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Put '
& =g i =0, 1, .., 2n)
where t € 5,

PROPOSITION 4. Under the above mentionned hypolhése {(g) } is a
complete symmeiric system.

Proof. For the cases n = 1, 2, the proof is straightforward.
Let n > 2 and put:

X = p?m(sq) = [o, Ag] where A, = fg(zi). Then it is not difficult to see

that the moment space I‘ (Sa) is isomorphie with conv {(x‘) le e X ].s

Since (a:) is a Markov—system on X it is easily verified that (gg]) s a
complete I— system and this completes the proof,

[E3

Example: Let S; = [—1. 1] and let(xl)o be an given sequence of real

points on [0, 1/2]. Construct an odd and continuous function g(t) on [ —1, 1]
such that,
? g(t) attains the maximun only at t=+41

g =owte|txlt=12 ..}
Put @t =[gI =01, ..2n), te[—1,1]

“ Then by Proposition 4 (gi(t))in is a complete symmetric system on S; and

the restricted system (g2 1 [o, ﬂ)n defined on [0,1} is a complete I—system.

Note that the zero set of the polynomial ga(t) is exactly the given se-
sequence of number [4-x; | (i'= 1, 2, )}

The following representation theorem for invariant moment spaces is
an immediatl corollary of Theorem 2:

THEOREM 5. Let (fi)in be a complete symmelric system defined on

Sa = [~a, a] and let k be an arbitrarylfixed number such that 0 < k < n— 1.
For c e Inf(I‘%}{v(Sa)) let &, = [i_a C l"i2u(\15+“ (Sa) be Lhe fiber associaled with
¢ lhen we have :

1) There exists al least one invariant probability measure p MW /. (.S,.)
such that,

i) »€ Ve

ii) Ind (p) = k 42

iii) Supp () o j—a, al
Furfhermore, @(qkﬂ)(p.) = ¢ holds for all measures ‘v salisfying i), i)

and iii),
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2) There exisis al leasl one invarianl probability measure.p € b (Sa)
such that, 4 ' .

iv) p € Vo) '

v) Ead(i) =k+1

vi) Supp(e) > {2, 4] |

1<'urthcr.rr_1;re_ @z(kﬂ)(ﬁ) =c¢ holds for all measures p satis]'ging iv),
) amd pi), _ ' ‘

¢) For an arbilrary ¢ & F.\ {c, ¢} there exists one measure p’ such lhat

vii) w' € V{(c)

viii) Ind(p) = k+2

ix) Supp)Df—a. al

X Py B = ¢
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