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INTRODUCTION. Interior Mapping Theorem and Inverse Mapping Theorem
for locally lipschitzian mappings in finite .dimenticnal spaces were obtained by
many authors by different methods, (see in Clarke [3], Pourciaa [5]). Halkin in
[4] gave a Interior Mapping Theorem for cont!nuous mappings alter giving a
notion of Screen, ‘he also showed that the theorem is not trne in the case 'of
infinite-dimentional spaces,

In this paper we present the Interior Mapping Theorem and the Inverse
Mapping Theorem for locally Lipschitzian mappings from a Ranach space into
another omne. In the case of finite-dimentional spaces these theorems give us
wellknown (larke’s and Pourciau’s results. For other essential results
concerning the problem in question we can refer to Ioffe {10} and Aubin [11}

Some goncepts of approximations of locally lipschitzian mappings are glven
in the first part of the paper and main resulis — in the remaining one,

We first give some preliminary definitions and properties.

1. SOME DEFINITIONS AND PROPERTIES,

Throughout this paper X,Y will denote real Banach spaces, L{X,Y} — the
Banach space of linear continuous mappings from Ii into Y with the norm | . |
defined by

N4l =sup {| 4z | jze¥, || < 1},

where A is an element of L(X,Y).
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If ¢ is a positive real number and, if T (respeciively g, ) is an element of X
(resp. Y,L¢X,Y)), we denote by B(z,c) (resp. S(y.c), G(4,s))the open ball of X
(resp., Y,L(X,Y)) with the centre at T (resp. ¥, 4) and with the radmsa, i. e.

BZ,x) = {reX/ | x—Z | < ¢} . ’

The closure of B(T,c) is denoted by B (7).

If -4 is an arbitrary set in a Banach space, then N, (-4) denotes the c-neigh-
borhood of ¢ which is equal to |J B(a,). :

aeA

DEFINITION 1. 1. A mapping f from X into Y is said to be locally lipschit-

zian at a point T in X if there exist a neighborhoodU of Z and a positive real
number « such that

If(a:)—f(ac )!<¢I-’1¢1-=r |

for every z,x,eU.

+

DEFINITION 1. 2, [1]. We shall say that a closed convex set ACL(X.Y) is
approximating a mapping f ‘at a point Z € X if for any positive real number ¢
there exists a neighborhood U of & such thatif x,,x,e U there exists an

element AeA satisfying the following condition 4
() — f(x)—Afz, — ) | < la,—a, 1.

DEFINITION 1. 3, [2]. A closed convex set ACL(X,Y) is called a Shield
for the mapping f at a point ¥eX if for any positive real number ¢ there exists
a neighborhood U of T such that if X,y € U then there exists an element

AN 3(."1\) satisfying the following condition
f(w,) — N(my) = &z, —,) .
From Haln-Banach Extension Theorem we easily see the following

PROPOSITION 1. 1. For every xsX, x <=0, and for every y & Y there exists
an element A € L(X, Y ) such that:

Az =g, and|A]|'= | yi/[=z|

REMARK 1.1:

1) Proposition 1. 1 shows that a set A C L(X,Y ) is approximating f at z iff
it is a Shield for f at z. We denote a Shield for f at = by a f(x).

2) Proposition 1.1 also shows that a mapping f is locally Lipschitz continuous
a point x iff there exists a bounded Shield for f at . Throughout this paper, -
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if the mapping f is locally Lipschitz continucus at x, then we always suppose
that Af{z) is bounded. It is easily seen that & (0, «) is a Shield for f at x if f is
locally Lipschitz continuous at 3 with Lipschitz constant «.

3) Definition 1. 2 implies that a mapping f is strongly differentiable at a
point x iff there exists a Shield for f at Econsisting of one element. (For the .
definition of strong derivatives, see [3], [5]).

4) Pourciau’s Generalized Derivative is a particular example of Shield. Indeed,
this fact is easily implied from Semi-Upper-Continuity of the generalized deriva-
tive and the Mean Value Theorem in [5].

5) The Generalized Jacobien and the Generalized Gradient in the sense of
Clarke are also particular examples of Shields. (see {1]).

The demonstration of the next three propositions is trivial and hence is
omitfed.

PROPOSITION 1.2: If f. g are mappings from X into Y and af(z), Dg(x)
are their Shields at a point x € X, then the closure of the set (Af () + Ag(x))
is a Shield for the mapping (f + g¢) af .

PROPOSITION 1.3: If Y., Y, are Banach spaces, if f, is a mapping from
Xinto Y, (i=1, 2), and if A f, (2)isaShield of f, at xr, then the closure of the

Cartesian product Af, (x) X af, (x) is a Shield for the mapping f = (fy, f2):
X — ¥, X Y, af the point’ x. ‘

PROPOSITION 1.4: If af(x)is a Shield for f: X =Y at apoint = € X, then
- for every real number ) the set \Af(%) is a Shield for the mapping Af at Z.”
The simple resulis below will prove to be very useful in the subsequent

section. ?

PROPOSITION 1.5: If @ mapping f : X —Y islocally Lipschitz continuous at
z e X, if g is a mapping from Y to a Banach space Z, which is si‘ronglg differen- .
liable at the point y = f (z), if aAf(z) is a Shield for f atx, and if A & L(X,Y)
is the derivative of g at y, then the closure of the set A. A f(E)z{A.A_’/A’eAf(:_v)}
is a Shield for the mapping F: X — %, defined by F(x) == g(f(x)), at T.

Proof. We denote by « the Lipschitz constant of the mapping f on some
neighborhood U of z. Since A is the strong derivative of g at g, then for every
€ > 0 we can find a neighborhood V of y (V  Y) sach that for arbitrary Yy,

Y, € V the following inequality is hold

[

‘ l9();) — 9ly,) — &y, — gII< a1 Yl
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Oz the other hand, by the definition of Af thore exists a neighborhood
Iy of (U, CU) with f(U,)ZV such that for every T2, 0, there exits an

element A’€af(z) satisfying

€

“"(131) - f(a:2) - A(II — 332)] < E—HA—”“IxI - xgl >

Therefore,
lg(f(z ) — g(f (x, ) — A, — z,)| < gl — @]
It means that the closure of A,Af (z)is a Shield for g.f at .

PROPOSITION 1.6: If X is reflexive, if a mapping f : X -~ R is locally
Lipschitz conlinuous at a point x€X, if f (x)<f(z) for every z in some
neighborhood U of z, and if Af (x)is Shield for f af =, then OEAf(;)_

Proof. Suppose that this is not the case, i.e., O:Af () . Then we can find +
an element 2, in X with foo]=1 and a number & >~ 0 such that

(@ x*) <8 < 0 for every 2* €Af (). For every real number ¢ < &, we can
find a neighborhood Uy of x (U, U) such that for every x GU there exists

x GAf () satisfying
‘ @) — @ —(a, z—z)|<e |z~ .

Consequently, for all positive ¢ closed enough to 0, we can find 2" €Af(X)
satisfying the following condition :

[f(x + txy) — f (T) — (x*,lxo‘)]g.eltx()[:gt,
and hence .
f(?+zxo)—f(z) Clahtxy) et —8t4et<0

This contradicts the minimality of zelU and concludes the proof of
Proposition 1.6. -

2. MAIN RESULTS.

The following lemma will be need in the sequel:

LEMMA 2.1: Suppose that A is an element of L (X,Y), that Y, r are

pdsitive real numbers (r < 1), and that
8(0,Y) < A[B(O,r)]
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Then,
S(O, ( ) = A[F(0r)) for each AeG(4, =)

. This lemma is not new. The reader will have no difficulty making his own
proof for it. For example, it may be established by using Nadler's fixed point
theorem (see [6])." i '

As an easy consequence of lhe preceedmd Lemma, we have the following
result.

COROLLARY 2.1:

I Aisa nonempty compact subset of L(X,Y), the two following conditions
are equivalent :

(i) 0 € int A [B(0,1)] for every A & of
(i) 0eint | A[BO,D]
Aep

Throughout this section we shall suppose that X, Y are reflexive. It is known
(see [7]) that every reflexive Banach space has an equivalent norm which is
strongly differentiable at every nonzero point. Assume in what follows that Y is
endowed with such a norim.
THEOREM 2, 1 (Interior Mapping Theorem).
Suppose thatl the mappmgf from anr open set Uc X info Y is locally ltps-
chitztan at a pomt a.- :
" If for epery a belonging fo some nez‘ghborhood of the point a there exists a
Shield Af(x) for f at x satzsfymg the following condztzons
(1) The set-valued mappmg .:C-;Af(.r) is semi- upper -continuouys at the_
point a, '
(2) Oegint N A4 [3(01)].
. A€Bf(a) L
{hen f@eintJ()).
' REMARK 2, 1: if Af(a) is compacf then condltton (2} is equwalent to the
following condmon
@) everyAinAf(a)isa sur_,'ectwn, because of the above Corollary.

Proof of theorem 2.1:

For some positive real number r < 1 we have B(a, 1) C U,

“From condition (2) we can find a positive real number vy such that
SO2NC A[B (,1)] for.every A € A f (a).
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By the upper-semi-continuity of the mapping Af (.) we choose a number
8 > 0 such that ‘

Af{xz)y Ny (AF (a)) for every x ¢ B (a, 6) ’
and by Lemma 2. 1 we conclude that .

S(O Y) C A[B(0,)] forevery Aed,
where A={A4/AeAf(x),reB (a8} Ny (Af (a).

If we denote the transpose of 4 by A4* we then have that for every
AeAf (z)and every z € B (, 8) the lnequnllty

_ I A*y* | > (1)
is hold for every y=e¥*,|y*| =1,,(where Y* stands for the dual Y=
of Banach space Y), since |fA*y*| = sup (A*y*z)= sup {y*, Azx) >

, *€R(0,1) T€B (0,1

> sup (y*.y) > v.
yES (G,v)

Now we claim that
f(a)eint f (B(a,r)) .
Indeed, assume the contrary, then we can choose a sequence {y,} Y such that:
y.4f(B(a,r))  for every n, and y, —>f(a), )

li—r0o

For every number n we difine the function ¢ (z)= ly, —f (@)].

Note that ¢(a) < inf ¢ (z) 4 g, —-f(a)[, and that B(a,r) is a complete metric
x€B(a,r)

lSpace, from Ekeland's variational principle we can assert that: for the positive
real number e ==|y — f(a)] there exists a point v eB(a, r) such that

(i |v,,-—al<Vs,, _
(i) 0@ )<oe@— Ve |lz—v |, for every xe B (a,r) ®)

If n is large enough we shall have Ve "< r, because of (2), and hence

v €int B(a,r), and (3)- (ii) means that the function F(z }=q(z )+ Yo Vo—v_ |

is actually minimized atv, over-a full neighborhood of v+ and by Proposition
1. 6 we conclude that
0eAF(v, ).

From Propositions 1. 2, 1. 5, and Remark 1. 1 we have that
Oe A*f(.vn)y; -+ V;:B’ N 4
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~where A*f (v, ) stands for the set {A%/AeAf(v )}, y% Tor the derivative
of the norm].|in space Y at the point (y, — f(v )) and B’ for the
ball {z*eX*#/| x* | el} in the dual X* of Banach space X.

Since (y,— f(un)) == 0, because of (2), we ilave-l g =1,

In n is large enough v belongs to B(a,3), and from (1) we can assert that
A*gﬁ | > vy for every AeAf(v, ) .

But on the other hand y% B’ isinfinitely small when n tends to mflmty,
that contradicts .

The proof is thus complete.

REMARK 2. 2, If X,Y are finite-dimentional spaces, if f:X—Y is a locally
Lipschitz continuous funetion, and if Af(z) sands for af (x), where 3f(z) is
either a generalized gradient in the Clarke’s sense [3], or a generadlized deriva-
tive in the Pourciau’s sense [5], then the condition (1) of Theorem 2. 1 is satisfied
and hence we have Theorem 2. 1 as Interior Mapping Theorem for generalized
gradient and for generalized derivative.

It should be noted that our method in the proof of Theorem 2.1 can be
applied to any concept of approximations for which Propositions 1.2, 1. 5, 1.6
are valid. For example it can be applied to the case of the Warga’s derivative
container [12].

THEOREM 2.2 (Invers¢ Mapping Theorem)

If under the assumption of Theorem 2.1 the condition (2) is replaced by the
following condition :

(2°) every mapping AeAf(a) has an inverse mapping A-1 and the set
{A-1] AeAf(a)} is bounded,

then there exist a neighborhood Uy of the point a, and a neighborhood V ; of the point
f(a) and a locally li pschitzian mappingg : V4 — Uy such thal fog is the identical
mapping on V.

REMARK 2. 3: 21If Af(aj is compact then the set {A~1 AeAf(a)}
is bounded because the function A — |} 4~I[[ is continuous. -

PROOF OF THEOREM 2. 2. Suppose¢ that A f (a) is bounded by some positive
real number . From the condition (27) and theorem 4 in[9]it follows that for

every pogsitive real number ¢ <T —2-1—B— the set N, (A f (a)) consists of only inver-
tible elements.
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By Definition 1. 3 we can find a neighborhood U of the point a such that
for every x;, x ¢l there exists an element AeN (Af(a)) satisfying the
foHowmg condition .
e fE) =t —g,). |

By the invertibility, of 4, f(x1)+f (z,) if », + %,. Condition (2’) means
that there exists a positive real numherﬂysuch that | A~ 7| <y for every 4 eAf(a).

It is easily seen that

®
@

S(O,—j—)cA[B(O, n] forevery AéAf(a) .

Applying Theorem 2.1 we can find a neighborhood U, of the point a
{4 1CU%) and a neighborhood V, of f(a) such that v.cf ;)

Now we have that for every ye V there exists an unique element 2 ¢ U, such

that gy —= f (x). The mapping g: V, U, defined by g ==, where f (x) =y, is .

satisfying the following condition fog = E, where E stands for the Identical
mapping on v,.

To complete the proof it remains to show that g is locally lipschitzian
Take Yys Yp€V,, we have that T, =g(y, ) i = 1,2, belong to U1 s 80 We can
find an element 4 e N, (Af (a)) such that

f(z)—f(z, )=A(z,—z,) ,ie.
¥, — yg—A(g(tfj)—g(qz)) .
Takmg AeAf(a) such that h4—2) < e we have that .
1—92=A(9(91—9(y2))+(z4-—A)(9(91)—9(92))-
Therefore

9(y)—9(y,)=4" 1(9*1 gp)—A~ I(A A)(g(y,,)—g(y,))
and hence
[9Cy)—9(y )< Ylyi—ygl+vsl9(91) —g(u)} .

If ¢ is small enough ( £ << —) we shall have that
Y :

Y
gty —9(y,)l < Ty (94— Y,
as it was to be shown.
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REMARK 2.4: if f and g are the mappings which are in theorem 2.2 then

the closurc of the convex hull of the set {4 ¥/ deaf(a)} is a Shield for g
at the point f(a).

Indeed, for every positive real number ¢ we can find a neilghborhood U of

“the point a such that for each =, x,&l’” there exists an element Aeaf(a) satis-

fying the following condition -

|f($1) - f(mg) — A(.’L' - xg)l - |$ xgls

where « is the Lipschitz constant of g on some neighborhood V of the
point f(a).
7 Tak'%ng a neighborhood ¥* of f(a) such that V’CVﬂf(U’) we can assert that
for each y,, y,&V" there exists an element Aeaf(a) satisfying the condition
g(y,) — 9y) — A Ty — y,)I<ely — y,) -
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