ACTA MATHEMATICA VIEINAMICA
Tom 6 No 2 (1981)

S Dy

'ON COHOMOLOGY OF HOMOGENEOUS SPACE

PAO VAN TRA

Hanoi University

Let G be a, real connected Lie Group Ieft—actin{,; on smooth manifold X.
For eaeh element g € G there is a diffeomorphism wiich is also denoted by
g: X > X (x-—>gv, a'c X). ‘ _

- Let Q* (X B) be the space of all differential forms on X, Then G is natu-
rally acting on Q* (X, B)by¢: w = go==(g~1)* (»), where ne Q*(X,R) and
(g-%)* is the induced transformation defined by the diffeomorphism g—1. X—X.

DEFINITION: A differential form w ¢ O* (X, RB) is called invariable {or
spherical), if go = o, ¥ge G (respectively if the subspace generaled by all forms
gw, ge G has a tinite dimension). -

We denote the space of invariable differential forms by Q3 (X, R) and the
space of spherical differential forms by (X, R). :

On the other hand if we consider Q*(X, R) with the operator d [1], then it
becomes a cochain complex, and since g'd = dg* Q1(X,R) and Q5 (X, R) are its
subcomplexes.

We shall denote the cohomology groups of these complexes respecting by
H*(X, R), H(X, R) and HY(X, R)." The purpose of this note is to prove the
following result: .

THEOREM I: Let X = G/7, where G is a real connected semisimple Lie
Group and U is a closed connected subgroup of G. Then H(XR) = H(XR),
Moreover, if G is compact, then H (X,R) = HY(X,R) = H'(X,R). .

. For arbitrary smooth manifold X we shall denote the algebra of
‘smooth functions on X by A, and the Lie Algebra of ail differentiations of A
- by 9. Tt is well—known that <% is the Lie Algebra of all smooth vector fields
on X, anditis a A - module. Let AL(Y, A) be the graded A —module of all

A—linear aatisymmeiric functions from % into A+ The operator 3, which is
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. ' n -1 i1
defined usually by (6 ©) (XY, X_,,) = Z(-1) X, T (Y,
' ’ i=1

R ) T

+ 2 (X K L Ko T Xy ) where Toe AT (B, A )
i==j

X.e¥t—1L.,n+41, is a linear map {rom Alyinto AMVI(W, A) satisfying
o = 0. Therefore A;(G?ﬂ,/\) with & will be a cochain complex. We denote the

cohomology group of this complex by H;L("?,l; A). From [2] (Chapter I § 2) we
see that A3(W, A)is exactly Q* (X, R ) and o is exactly d. So, H, (%, A) is
identically H*(X R) in De Rham’s usual mean. Therefore we can consider the De
Rham’s cohomology as the cohomology of the Lie Algebra of smeoth vector
fields with values in the space of smooth functions. This factis very important
for considering properties of exterior differential forms.

2. Eet G be a connected Lie Group, A be the space of smooth funcitions on
G, and 7 be its Lie AlgebHa. If the Lie Algebra of all smooth vector fieldson G
is denoted by @ as in L, and the natural inclusion of 7 into % — by p: 7 — @
then p extends to a A — linear homomorphism denoted also by

, P:A®RF— A

Considering <@ as a /\-module, it is clearly thal p is an isomorphism. S0,

p induces the following isomorphism: '
e AL (U N) > AT A)
where A*(Z, A\) is the graded R-module of all linear antisymmetric functions
from 7 into A. It is well-known that A* (7, A) is a cocham complex [3], [4],
and p* is a cochain isomorphism. Thus we oblain:
Hj (B N) =H*(Z.N)

where H*(2, ) is the cohomology group of Lie Algebra 7 with values in A [5],
[4], [5]. Combining with the remarks of I. we have:

PROPOSITION I: HY(G,R)= H*(Z, )

This proposition is generalised for homoJeneous space X = G[U by the
followmg ‘-

PROPOSITION 2: If U is a closed connecied subgroup of G, and 1 is the Lie
Algebra of U, then we have:

I*(X,R) = H* (Z,u,A) ' -
here H*(Z,u,A) is the relalive cohomology group of .7 accoding io u [3], [5]-

Proof. Let us consider the natural projection
p:iG—->X==GU

~1
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and"the induced map
" Pt (X, R) > Q' (G, R)
Since p is surjective, so p* is injective. Moreover, because £* commutes with
d, P*is a cochain monomorphism,
Let A*(Z, 1, A) be the submodule of A*(Z,A)== 4} (% A) == Q* (G,R) (see 1)
congisting of functions r € A(ZLA) (S = 0,1,..) satisf ying two properties:
D r(Xpe, X)) =0 if 3X; eu

def S
- 2) (6 X)v) Xy, .,Xs ) =Xt (XI,...,XS Y} — Z (XX, Xl. ]...Xs Y= 0
’ i=1

for every X eu and X;,.., X_eZ. ¥

It is easy to check that A*(7,1,A) is a subcomplex of A*(Z A), and it gives
the relative cohomology group H*(Z,u, A) [3.]

Now we will prove the following: p* (2* (Y'R) =~ A* (7, u,

Suppose T = p*w, we Q° (X, R). Then T satisfies two following properties:

a) t(YI, ,X Y} = (p*w) (X1,.., X )=01f3 X, , which is tangent to I (it means
that (X ) eT (U) cT (G), eU _

bYRit=r1, Y, € U (R, is the right tt'anslation corrBSponding to u).

Indeed, a) is directly deduced from the tact that.the differential dp of p
_vanighes on u That is \dp) (X ) = (dp) (dL Xe) = (d ) U((dp) (X)) =0if

Xeu (L.g is the left translation corresponding to g). b) is deduced from
PR =p=R p'=p¥, EU
Let u(f) be a curve in U correspondlng to X ¢ u. Putting u = u(f) into the equa-

tion b) we have:
b) R*u(t) T=1

It is easily proved that the equation h")' is equivalent io the equation
'S(X)'c =-0 for each vector field X ¢ 1\1(._50, T satisfies the properties 1) and 2)
thatis, Ted*(, 1, A). _ N |

Conversely, (f 1ed*(J, u /). then it satisfies 1) and 2), and so, it also satig-

fies a) and b). Because U is connected, T satisfies b). Then by [3] there is a
weQ*(X,IR) such that T = p*w. This means that,
: _ | Q*(X.R) = PYQG.R)) = 4'(Ju, A)
from which: - .
HYX:R) == H*(Ju, A)
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3. Consider the space A of all smooth functions on G. Because G left-acts
on itself by lefi-translations Lg, G naturally acts on A hy:

(9f) (@) = F (Lg~* (g) =F (g7'9) , feA ; g, g€ G.
Pat Ay = {feA: dim [gf: geGlgy <=} and call the elements of A spher-
ical functions. It is obvious that A, is an invariaut subspaée of A. Using the
-semisimplicity of & and the Zorn’s Lemma, we can prove that A, = @L'E :
]
where V, are irreducible invariant subspaces of finite dimeansion.
It is clear that A"(J,\tf,/\o) is a subcomplex of A, z}:/\),

and it gives the cohomology group H*(J, A o)
PROPOSITION 3. The map p* is a cochain isomorphism from’ Q;(X_IR)‘

into A*(J, 1, Aq).
Proof. Suppose that weQ"(X,JR) and let P: G — X = (/[; be the natural

projection It is obvious that for g,gEG we have:

P (Lg(a) = p(g9) = (gg)U = g(gU) = 9(p(g) > P'Lg = g°p = Lglp* = p ¢*
from which: . ‘

p* gy = p* (971 ) (@) = Lg "1 (p* (w)) = gp* (), This means that p*
is a G — homomorphism if Q* (X, R) and Q* (G, R) are considered as
G— modules. .

Suppose » & Q* (X,R) Then T = p'(w) ¢ A*(Z, u, A )is a lpherlcalform on
. So we have an mclusmn

pr (X, R) C & (7 i, A) NQI(G,R), where Q! (G,R) is the

space of spherical forms on G (Here we identifiel A (7, A) with Q' (G, R)
as inl and 2.). :

From proposition 2 and the fact that P* is a G — homomorphism we have
a reversed inclosion:

P (KRN DA (FuA) N Q (G, R)

from which: : .
pe O (X, R) = 4" (Z, & A) N 95 (G.R)-

To flmsh the proof of Proposition 3 we only have to check the following
equation : Q (G, R) =4 (Z Ao

Suppose T & Qf (G,R) then 3t T, &0} (G, R) such that

n P s ’
gt = 3 d(g)r; ,c@eR.

=1
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Put:
' f - (XL”., _Xs )
fi = ’tl (‘X-I’n--, “' )’ [ = 1 ey n

5
where X, X ure arbitrary fixed vector fields from J. We have f, fieA.
Let g and E be two arbitrary elements of G. Then: (o) (,g\,) =f (gr‘1 E) =
= (r (X, X)) = T LT (X (@Lg TN )Y =

=(g0)(X,)y,., = ) =D &, X, N(@

-

Put gt = ci (N1 into the right part of this equation, we have:
~-i=1 '

I-"'

o G =20, XN@O=2d@f@

It signifies that fl.,..., f_ generate the space lgf. g < G]R and € /\_0_
Therefore we have € A* (7 /\y) and Qs (G, RY < A% (U /\0 ).

If conversely T € 4* (£, A,), then f=1 (Xl,___,Xs) e Ny Xy, X, € P
‘Repeating the same argument we obtain:

gf = (@ (X, , Y1 (geh)
Because f & g ,_‘ s0 3.

gy o gne G such thal g, f g f generate space
[of, g € Clg- Then

gf ~Id (9) 9, 1) d' (9) e R
i=1-

Combining these two equalions we have
n . : .
G0 X,,.., ¥) = 2 49 (49 (%, )

This equaltion holds for every X, X & 7 so we get’:
youss

n .
gt =2 d' (g} (g; V)
_ i=1

' Thus © € O (G, R) and 4" (7, A, ) C &; (G, R) from which
@y (G R) =A" (B A )
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It is obvious that
AF o Ag)=2 (Za, A)N A Ay ) =

= & (Zu A) N @ (G, R) = P* (4 (X, R).
We have thus proved Proposition 3.
Corollary 1: H (X, R) = H* (Z, I, A )

4. Consider the cohomlogy group H* (7, u, A,). Because A,=® V. we
i

have : H*(gr, /\0)—-@1‘1* 7 \/)

From the results of Lhevalley and Eilenberg [3] and because G is semi-
simple, we have H* (7, E, VI. ) = 0if the representatfon of G on Vi is not trivial.
Now suppose f € A and gi =f, ¢ € G. Since G is transitive on itself,

so f = constant, It means that there is only one component corresponding to the
trivial representation in A,= & V', . This component contains all constant func-

i

tions. From that we have: H* (7, u, No) = H* (7, . R)-

Combining with Corollary I we oblain:

PROPOSITION4. Hs (X, R) = H* (7, & R)

To prove Theorem I we only have to observe some followings.

From [ 3] we have known that H} (X, R) =1I" (77, u, R) Using Propositien
4 We get: H; (X:, R) = H‘[‘ (X, R). Moreover, if G is compact, then from [3]
too, we obtain H; (X, R) = H* (X, R). Finally, it G is compact and semisimple
too, then Hi (X, R) == H* (X, R) == H* (X, R) nawmely, H; (G/U, R}=
= I (GIU, R) = H* (G,[U R). and with this we compleled the ploot of
Theorem I,

Remark: It is easy to see that our results are also true when R is replaced
by C. ' ’

5. In this part we shall show that if G is not compact, then in general
H; (G/U, R) isnt isomorphic to H* (G/U, R). First we prove

THEOREM 2: Let 77 be a complex semisimple Lie Algebra and u be a para-
bolic subalgebra of . Then

Ho(7, 1 €)=
H' (7, d, C)=0 o Vi1
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Proof. °
Let us remember the definition of /* (7, &, R).

Let A™ (7, C) be the space of all antisymmetric n-linear functions from gy
fnto C. Then 4* (7, C)= Z° A® (7, C)is a cochain complex with differential

n=0
operator &, which is defined as following:

NG5 Ry Xy ) = z (= DI X e, X B X

fe€a (7,0 XnX,, €7)
Let A% (7, i, C) be the subspace of A'_‘ (7, C), containing functions f
satisfying two foliowing properties:
Df (X X)=0 if 3IX ex

def n )
DOX N Epu X)) = If & [X, X X )= 0
- i=1 ) :

where X ¢ E, Xiseus Xn € 7.

Then A* (7, o C) == 20 AR (7, u, C) iz a subcomplex of A* (7, C)and it

n={0
gives us the refative cohomology group H* (7, I, C).
Lei Z/it be the féctor—spa’ce. Then the adjoint representation ad of 7 will
- induce the representation g of @ in 7/ @ -as folloWing:
' def ' -
@ (X)(Y) 4+ W)= ady (Y) 4 u(Y € 2)

On other hand, if we denote

(/\nz)* %An(gt)mgtk/\gt

It
. andA o
(A"(Fruyy = A®(Z[a*) = (Hu) A...A Hay
n .
and A"¢*=¢* A... A p* where Z* and (2/2_1')* are the dual spaces of 7 and £l I

n
respectively, and ¢* is the dual representation of ¢, then we canidentify A% (7, C)
with AR(7*) and A®(Z, u, C) with:
. def . ‘
(A" ()= {F & AT@S* : (A" =0y Xex)




‘Theorem 2 is proved, if we show that
AT (HuY)y =0% n »1
Since nis a paraholic subalgebra, there in a Cartam's Subalgebra f < 2
t=]

1ch that:

n=Ff+Z 7
dezi

there ¥; is a closed subsystem of rooted system Z of f, which contains all
ositive roots from Z¥, and 7, is the root-subspace corresponding to « € I
see [6]). Then

v A n= 27
ﬂEZ\El

For each « ¢ £ we denote aroot-vector corresponding to @ by E, =0,and put
7 — E, - u.ltis obviousthat {Ea 2€Z \ %;} is a basis of Zju. If {Z y

=3

<& E\ 21} is its dual basis in (F/u)", that is

«=Fp
.<Eu’@§> =

1 ja=20p
iher: En is 2 weight-vector of corresponding to the weight — «. Indeed, for each

Hefandp & Z\Z; we have ((p*(H)TEJ*,E y= —(E%, ¢ (H)E,)=
=—p D &, Ep>=~m(H) E ap> <—«(H)fff;,_ Ey=
ot (H) B, =—«(IDE,.

Moreover, we can choose a basis ‘of AR(#/ u).* from vectors in the following

forms:

1
_— d&f _— —
hili?-"'in _ E'GlilA""A’ Emi

e IN\Z; and these «; are different one from another. it is easy
J

n

wheremil, fzin
—_ . .

to see that each Eigg...i, 15 2 weight-vector of weights 3 (uu RN 0

(because «;,my #; € £-). Therefore we have:.
n

(APHEY); =
Thus Theorem 2 is proved.
COROLLARY 2.Let G be a " real non — compact connected SemISImple Lie
Group, and U be a connected parabolic subgroup of G.Then:
HY (Gl » RY = Hy (Gly - R) =R
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Hy Gy, R) = Hj(Gly , Ry =0  ¥ix1
Proof, If is a direct consequence of Corollary 1 and Theorem 2.

Remark, It is true that we have proved a stronger result: There are not
Invariable differential forms on G/ .

To end this note we have to consider a simple example to see the difference
between the compact and non-compact cases.

Example: :
SO (H -+ I/SO(H) =~ SL (H -{—71, R)/Ug S
where
a s %
P

From the obtained results, we have:

H(S0(r+-1)ig00n) » R) == Hy(SO(n + Digpeny » R) = H(S" , R).
and ' .

HYSL(n+1,R)/y . R) = H;(SL (R + L)y, B) = H (5", R).

Received June 25, 1981,
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