-

—_—

ACTA MATHEMATICA VIETNAMICA
Tom 6, No 2 (1981)

SHAPE THEORY IN THE CATEGORY OF METRIC SPACES
' AND UNIFORMLY CONTINUOUS MAFS

NGUYEN NHUY
Pedagogical Instituie of Vinh

INTRODUCTION. In 1968 Borsuk [2] infroduced the notion of shape for
compact metric spaces. Since then the notion of shape has been extended
into several categories [4] [6] [9]. It is known that the interesting basic results
in shape theory which have been proved for compact metric spaces can not
be extended to non-compact métric spaces. However these results can be
extended into the category of metrie spaces and uniformly continuous maps as
shown recently by Nguyen To Nhu [14]. The aim of this paper is to investigate

hshape theory in the category of metric spaces and uniformly continuous maps,

For this purpose we introduce the notions of FANRU —, FARU — and FAEU-
spaces. The basic properties of these spaces are established

¢

L UNIFORM RETRACTS AND UNIFORM NEIGHBOURHOOD RETRACTS

In this section we fix notation and for onvenience in references, wec
formulate some facts needed throughout the paper.

In the sequel write Z > Y iff Z is a melric space contammg the metric
space 'y isometrically and the relation of homotopy beiween uniformly
continuous maps denoted by =. 3

A metric space Y is called an ANVRU — space (writlen. Y& ANRU) [7] iff for
every metric space Z D Y, there exist a uniform neighbourhood U of ¥ in Z
and a uniformly continuous map r (called a aniform reiraction) from U onto
Y such that r(y) = y for every y & Y. :

If we always can take U = Y in the sitnation above then Y is called an
A RU-space. Here U is called a uniform neighbourhood of a subset Y in the
metrie space (Z£,d)if U > B, (Y) ={xeZ:d (2, Y) ¢} for some 0.
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It is clear that every ARU — space is an ANRU -space and every
ANRU-space is complete.

The following is known [11].

1.1. PROPOSITION ([11]). Let Y is an ANRU — space. Then for every
uniformly continuous map f from a subsel A of a melric space inio Y there
exist a neighbourhood U of A in X and a uniformly continuous map?' -7

such lhat)?’ As=f,

A metric spacé Y is called an AEU — space iff for every space X, every

‘uniformly continucus map f from a subset 4 of a space X into Y can be.

extended to a uniformly continuous map f from X into Y,
We have the following [1U]

1.2, PROPOSITION ([10}). A metric space Y « AEU if and only if Y is
an ANU — space and diam ¥ < o= ,

" Given any set D, let 1= (D) denote the Banach space of all bounded real
functions on D withthe supremumnorm, By a theorem of Isbell [7), 1™ (D) «
€ ANRU. Thus by the Kuratowski-Wojdyslawski theorem (see, [11]) and the

‘Katetov theorem [8], we bave the following.

1.3. PROPOSITION, Every metric space X can be imbeded isometrically
into an ANRU-space E. Moreover, if diam X < o then onme can take E ¢ AEU.

1 — 4. HOMOTOPY ‘EXTENSION LEMMA ([14]). Let 4 be a subset of a
metric space X and B be a subset of an ANRU—-_space Y. Let V be a uniform
neighbourhood of B in ¥ and f, ¢ 4 — B be uniformly continuous maps

‘homotopic in B. If f has an extension f: X — 'V then g has an extension

g X - V homotopic to f in Y.

1.5. LEVIMA ([13]). Let A be a subset of a melric space X and B be q sub- ‘

set of -an ANRU-space Y, Let f, g: X— Y be umformly conlinuous maps such
that ]"|4 g|A in B Then {or every umform nezghbourhood Vof BinY there

exists o uniform neighbourhood U hf A'in X such. that fly = glyinV. -
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$ 2, FUNDAMENTAL SEQUENCES AND RETRACTS.

Let X and ¥ be metric spaces lying in ANRU-spaces P and Q respectively,
By a fundamental sequence from X to Y we understand an ordered iriple
f= { 1 X, Y.} 2.0 consisting of X, ¥ and a sequence of uniformly continuous

maps fk : UO -~ (), where U_ is a uniform neighbourhood of X in P, satisfiving
the condition (2—1). For every uniform neighbourhood V of ¥ in ( there esists
a uniform neighbourhood 7 of X in P such that. |

f U = ka [ in V for almost all k.

}

If P=Q then we write f = {f};’ X, }:}P iustead of f = {f,, X, Y}P, P

Two fundamental sequences f = if, . X, Y}P,Q and g = {g,, X, EY}P, o

are said to be homotopic (denoted f = g)iff for every uniform neighbourhood
Vof Y in  there exists a uniform neizhbourhood U of X in P such, that
(2—2) fk]U = g, [U in V for almost all k,

A composition of fundamental sequences. f = {fes Xo Y}, o and
g = {g]l_, Y, Z}Q g is the fundamenial sequence gf = {gk f. X Z}P R
The fundamental sequence iX = {ik ’Xf ‘X}P, “where z'k 1P P k=1, 2,.., is
the identity map is called the fundamental identity sequence,

Let X and Y be metric spaces lying in ANRU-spaces P and  respectively

and let f: X — ¥ be a uniformly co ntinuous map. Since Q ¢ ANRU, there exist
a uniform neighbourhood U, of X in P and a uniformly continuous map

T.U o O such that T (%) = f(x) for every = ¢ X. Setting fr (x) =7 (x)for
! o )
every point x € U, and every k=12... we get a fundamental sequence
f=1{f,XY . This fundamental sequence is called the fundamental
k P,Q q

sequence generated by f.

IetY be a subset of a melric space Q. A sequence of uniform neighbourhoods
{V .} of Yin Q is called complete iff it satisfies the following conditions.
(2.3) Every uniform neighbourhood V of Y in Q' contains Vk for almost
all L. ‘ '
(2.4) V, is a uniform neighbourhdod of V, ., for every k.

The following theorem was proved in [14].
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2.5. THEOREM ({14].) Let X, Y be melric spaces lying in ANRU-spaces P
and {J respeciively and fk : X > Q be a sequence of uniformly continuous maps
Then there exists a fundamental sequence f ={f, X, Y} 2,0 such that

(2.6) f |X=Ff for every k € N. J ,
if and only if there exists a complete sequence of uniform neighbow_'hoods{V k} of
Y in Q such that '

(2.7)f, = ey IV for almost all k.

’

Now let P be an ANRU-space and A ¢ X ¢ P. A fundamental sequence
r= {rk, X, A} P is called a fundamental retraction of X to A in P iff rll(m) =&

for every z € A and k € N.

Let us prove the follomng
2.8. LEMMA. Let P be an AHRU-space and X be a umform ne:ghbourhood
of Ac PinPradr={r, X, A} p be a fundamental refraction. Then there
exist a complete sequence of uniform neighbourhoods {V, } of A in P anda
fundamental retraction r* = {r,, X, A} p such that
2.9 r(z)=z for every z €V,
2.10)r=r.

Proof, By (2.5) there exist a complete sequence {W k} of uniform neigh-
bourhoods of AinP andan indexk such that

req] X 0 W, for every k>k, .

r kl Xe=r
By (1.5) for every k > k_ there exists a uniform neighbourhood V, of 4
in P such that ' .

2.11) r, |V, =idp|V, in .Wk+1'for every k > k .

1

It is clear that {V,} can be chosen to be a complete sequence such that
vV, < X and W, is a uniform neighbourhood of V, in P for every k € N. By
(1 — 4) for every k > k_, there exists a uniformly contmuous map f X W
such that
2.12) f i) Ve mIdP‘V ~and fkgrklxln“

Whence we get
[ =r, [X & | X ssz_u inW, fc_:r eyery k >k,
Put N P . 5 .
2.18) [, () = xfor every & «Xand k <k, .
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By (2 — 5) there exists a fundamental sequence 7' = {rk, X, A} P suca that

(2.14) 'X f, for every k & N.
From (2 — 12) — (2 — 13) we obtain
(2.15) - ri.(x)y=xfor everyx eV cand ka N,

It remains to show that »* = r.

For every uniform neighbourhood V of 4 in P, let U* be a uniform neigh-
bourhood of X in P and %; > k, be an index such that

[

(2.16) T l = rkll w inV for every k> &,
(2.17) r}; l v = inV for every k > k,
W, ,CV

By (2.12) and (2.14) r ,X'"”'k l x in Wk » by (1 — 5) there exists a

uniform nmghboux hood U U’ of X such that
(2.18) | U=r ,|Uin Wk_cV.

From (2.16) ~—— (2.18) we obtain
rk[ U =T I UinV for every k > k.
Thg lemma is proved.

2.19. PROPOSITION. Let X and Y be metric spaces lying in ANRU—spq-
ces P and Q respectively and let h be a uniform homeomorphism of X onto vV
and A < X, B==h(A) C Y, If there exists a fundamental retraction of X to A
in P then there exists a fundamental retracllon of ¥ t6 B in 0. o

Proof. Let r= {rk,X,A} p be a fundamental retraction of Xto Ain P and

let U, be a uniform neighbourhood of X in P such that T is defined on U, for

every k € N, Since P,Q € ANRU, there exist uniform neighbourhoods U,V of X
and ¥ in P and Q respectively and umformly continuous maps ¢: U — Q,
p:V = U, such that

¢ () = k() for every x ¢ X

PY(y) = h-Y(y) foreveryye Y
Clearly we may assume that r : UUy—U for every k € N, Whence the formula

r () =or,p(y) foreveryy €V
defines a fundamental retraction r*=e{r’ Y,B} Qof Ytio Bin Q.

A subset A of a metric space X is called a fundamental retract of X if there .
exist an ANRU - space P ) X and a fundamental retraction r = {r, X.A!p of
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X to A in P. By proposition 2—19, the choice of an ANRU -space P containing
A as a subset, is immaterial.

A metric space Y is called an FANRU -space iff for every meftric space
Z D Y there exists a uniform neighbourhood U of ¥ in Z such that ¥V is a
fundamental retract U. A metric space V is called an FARU -space if one can
take ! = Z for every metric space Z O Y.

It is clear that

(2.20). A metric space Y is an FANRU-space if and only if there exists an
ANRU — space @ DY such that Y is a fundamental neighbourhood reiract ol Q.

(2.21). Every fuhdamental retract of an FANRU-space (res. FARU-space)
is an FANRU-space (res. FARU-space).

REMARK. By an example of Borsuk ([5]) a fundamental neighbourhood
reiract of an FARU-space is not necessarily an FANRU-space.

§ 3. EXTENSION OF FUNDAMENTAL SEQUENCES.

A fundamental sequence f':{f’k,X,Y}P’Q is called an exiension of a funda-
mental sequence f = {fk, A’Y}P,Q where A — X — P, iff f'k (x) = fk (z) for
everyxr € A and k € N.’

The following theorem was proved in [14].

31. THEOREM ([14]). Let f = {f;,4, Y}, andg = {gk,A,Y}P’;Q where
A C X C P, be homotopic fundamental sequences, If f has an eriension .

f'={f’k’x’Y}P,Q then g has an extension g ={g,, X’Y}P,Q homotopic to f°,
Let us prove the following. '

3.2. LEMMA, Let X,Y be melric spaces Iyz'ng in ANRU-spaces P and ()
respectively, A — X and V be a uniform neighbourhood of Y in Q such that ¥

is a fundamental retract of V and f = {fk, 4, Y}pQ be a fundamental sequence.
It there exists a fundamental sequence f= {f ., X V}PQ such that ¥, [A fla
then f has an extension f’ = {f,, X Y}PQ

Proof. By (2. 8) there exist a complete sequence of uniform” neighbour-
hoods {Vk} of ¥ and a fundamental retraction r = {r., V, Y}Q such that

r,(y)=y for every y e V - Since f-= {fk’ A4, o is a fundamental sequence,
we - may assumg that f,_ (4) C Vv, for every k € N.
We pul f* = rf\, to. complete the proof.
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3.3. THEOREM, Let X and Y be metric spaces lying in ANRU-spuaces P.
and Q respectively and A C X. If Y € FANRU then every fundamental sequence
f= {fj,;,'A,Y}P’Q can be ertended to a fundamental sequencef = {f’k, U,Y}P’Q’
where U 'is a uniform neighbourhood of A in X.

Proof. Let V be a uniform neighblourhood of ¥V in Q such that ¥ is a fun-
damental retract of V. Then there exist a uniform neighbourhood U/, of 4 in
P and k, € N such that

flU,=f, [Uin V, for every k > k,.

Clearly we may assume that &k, = 1.

If W is a uniform neighbourhood of 4 in P such that p (W, P\ U) >0
and U = WX, then setting [ (x)=f, (2) for every v € U,and every k €N,

we get a fundamental sequence ?\{ ?k U, v, ]P,Q such that ?k'A - fk]A B
Lemma 3.2 there exisis an exlension f'= { fi.U, Y}P,Q off_—:{ fk’ A Y]P,Q.

3.4, COROLLARY. Let XY be uniformly homeomorphic metric spaces.
If X is an FANRU — space then so is Y.

Proof. Let P and §J be ANRU-spaces containing X and Y respectively and
let f; X — Y bea uniformhomeomorphism. Let g={ gk,Y,X }Q,P be the fun-
damental sequence generated by f—'. Since X'& FANRU by 3-3 there exist a
uniform neighbourhood V of ¥ in Q and a fundamental sequence g’ = [ g;c Vv, X}P, ¢
extending g. .

Let f ={ f. XY }PO be the fundamental sequence generated by f .and put
r=F{g¢g ={ fk g}{, V,Y}Q . Since
r@) =548, @=7f(y) =yforeveryyg?¥

we infer that r is a fundamental retraction.

3.5. DEFINITION. A melric spaceY Ilying in an ANRU-space Q is called
an FEAEU-space iff for every subset A of a metric space X lying in ANRU

space P, every fundamental sequence f | {fk A, Y }P.Q has an extension

f,={fkaX,Y}PQ~ ‘
" It is clear that every FAEU-space is an EARU-space. Theorem 3- 7 shows
that the converse is not true,

Givene > 0 and z, ¢ X, put

U° (zo ) = {a: e X, p(mr) < & }



and define U® (z,, £) by induction

UNxy, €) = { ze X,p (x,y) < ¢ for some y e U1 (a:o,' s)}.

3 . 6. DEFINITION ({1], [7]). A melric space X is called absolutely bounded
Iff for every ¢ > 0 there exist n, € N and x, e X such that X = Uy (Zgs €).
3.7. THEOREM. Every EAFU-space is absolutely bounded.

Proof. Assume on the contrary that Y is not absolutely bounded, Then there
exists an ¢, > 0 sugch that

Y NU” (g,e0) + ¢ for every y ¢ Yandn < N.

Select an arbitrary point y, & ¥ and for every n >> 1 put
(3.8) . Yo € YN\ UP—1(y,_4 ¢,) for every natural number n.

Let A denote the set of all natural numkers and f:A—>Ybe a map
defined by

f (m) =g, for evéry ne A.
It is clear f is unifor mly contmuous Let Pand Q be ANRU—spaces containing
R' and Y respectively and f = {f PYR:R & }P 0 be the fundamental sequence
genelated by f. Since Y & FAEU there exists a fundamental sequence f* =
{f Y }P 0 extending f. In particular we get a unif ormly continuous map
f: Rl such that
(3.9) & — g1 <8 implies p(f (@), /'(y)) < cor
Let 7, > 178 and g =f(‘n,+ %) ke=0,1,0 1,
By (3.9) we get
ak— & Uk_i(yno, go) for every k=12,..,n,
In particular
Ungpy = %, = f(ne + 1) € Ut (0 €0) € U™ (y, 56,
This contradicts to (3—8) and thus the theorem is proved.
3.10 COROLLARY. A metric space ¥ & FAEU if and only if Y is an FARU-
space and dzam Y << oo
Proof. By (3.7) every FAEU-space is an bhounded FARU-space. Assume
that ¥ is an FARU-space and diam ¥ < e, Let
T Gi={zelm @zl <M} C Q=1"(7)
where } = diam Y . By KatStov theorem (8], Q, € AEU.
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Let Abe a subset of a metric space X Iying in an ANRU.space P and
f= i AY bpo 0 be a fundamental sequence. We may assumex that f () CQ

for everyk € N. Letf;t_ : Uy — Qy, where Uy is a uniform neighbourhood of X in

P, be uniformly continuous maps such that fk[ A=f, for every keA.

Since all uniformly continuous maps from P into (); are homotopic, we
infer that f° ={f}c,X, N }P 0 is a fundamental sequence, Moreover ¥ is a

fundamental retract of (1, the result follows from 3.2,

3.11. - COROLLARY. Every bounded FARU-space is absolutely bounded.
By the same argument as in the proof of 3, 4 one shows the following.

3.12. COROLLARY. Let X and Y be uniformly homeomorphic metric

)

spaces. If X is an FAEU-space then so is ¥,

3.13. REMARK. Let us note that the- corresponding statement of 3.4~
and 3.12 for FARU-spaces is not true. Indeed let R! denote the real line and
define on R! a new metric g by ' o .
' o(z,y) = min {[x—y|,1}, |
Then (R, |.|)and (R!, p) are uniformly homeomorphic. Obviously (R, |.|)eFARU
but by 3.11 (R, p) is not. ?

§ 4. CHARACTERIZING FAEU-SPACES

Two metric spaces X and ¥ lying in ANRU-spaces P and @ respectively are
said to be of the same shape (denote Sh X = Sh Y) iff there exist two funda-
mental sequences f= {f, ,X,¥ }P,‘Q and g={g,,7,X }P,Q such that

4.1) fg=zid, and gf = id,.

Let us prove the .foilvowing. 7
*4.2. THEOREM. Sk X does not depend on ANRU-Space P > X.

Proof. Assume that X is contained in both ANP;U-Spaces Pand P, V is
contained.in both-ANRU-spaces Q and ¢’. Then there exist uniform neighbour-
hoods U; U* of X in P, P’ and V, ¥’ of Y in Q, @ respectively and uniformly

continuous maps.

o:U P ': ' - P
. wV-=0 PV s
such that :
L pfx) = o(x)=z for every point x € X
W(y)=v(y)=y for every point y € ¥
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If there exist two fundamental sequences

f=ifp XV and g = {g;, VoXipg
such that - : )
gf=idg and f g == i(z'Ir
then the formulas
: fo=1v/9  andg,=¢gV ,
'define fundamental sequences f* = {f X’Y}P’Q,’ and ¢* = {¢}» Y’X}p",g'
satisfying the conditions
g =idy and f g = idg.

The 'theorem is proved.

If ShX == Sh(a), whére (a) is a metric space consisting of only one point
a then we say that the shape of X is trivial.

It is clear that
(4—3) If Sh X > Sh Y.and Sk X is trivial then Sh'Y is trivial.

A metric space X C Y is called uniformly contraciible in ¥ iff the identity
mapid X is hom0t0p1c in Y to a constant map in X.

Obviously every AEU-space is uniformly contractible in itself.

Let us prove the following

4.4, THEOREM. Let Y be a meiric space lying in an A?\TRU-space Q. Then

the following conditions are equivalent:

a) Y is an FAE!.space.

b) For every uniform neighbourhood U of Y in Q there exists a uniform

neighbourhood U, of ¥ in Q that is uniformly coniractible in U fo a point
aecy.

6) For every uniform neighbourhool U of Yin Q, Y is uniformly contraci-
iblein U. i

dy ShY isirivial. ‘

¢) There exists an AEU-space Qo > Y such that for every uniform neigh-
bourhood U of Y in (Q, there exists a umformly conlinuous map f: Qo-v U such
that f(y) = y for every ye Y. :

1

Proof. Clearly we may assume that ¢ =1 c'°‘(Y').'
a) = b). Let{V, } be a compleié sequence of uniform ‘neighbourhoods of ¥
in Q and r ="{rk, Q, Y}Q be a fundamental retraction satisfying the con-

ditien (2-9).
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Consider now a uniform neighhom‘hood Uof Y in Q. Let k, be an index
such that r, (Q) c U Smce; \V ) ] » we infer that Vk C U. Settiug
: 0

U, = Vko and ¢ (x,t) = rko(f:z.:) for every relU,tel we get a homotopy
¢: Uy X I - U such that ¢(x, 1) = rko(.r) =, ¢{x,0) = r,'(0) = o eV for
everyx e U,

Since ¥ @ FAEU, by 3-7 we may assume that diam U, << ~. Thus @ is
uniformly continuous, that means U, is uniformly contractible in U,

b} = c) is trivial. .

¢) = b). Let U be a uniform nmghbourhood of ¥ in Q. By hypothesis there
exists a point 4@ € Y such that

IdQlY =C Jyint,

where C.‘a: Q — Y is the constant map to a and U, is a uniform neighbourhood

of Y in Q such that p(U,, Q N\ U) > 0. By 1-3 there exists a uniform neighbour-
hood V, of ¥ in @ such thal :
d Q\ VSE'C&IVO in U-
- That means V, is uniformly coatractible in U,

b) = d). Assume that for every uniform neighbourhood U of ¥ in () there
exists a uniform neighbourhood U of Y in @ that is uniformiy contractible in U
to a point a €Y. Putling X = (a) = P and f, (a) = g, 9,(x)=aforeveryreQ,
we get fundamental sequences f ={f,> (a) Y}( y, g 2nd g =1g,, ¥, (a)}Q @

such that f g = idy and g f = id
Thus Sh Y is trivial.

d):> a). Let (a) be a melric space consisting of only one point a and
={fp ¥ ()}, (a) 204 g__{qlt,(a) Y }( ) q be fuudameutal sequences

such that ‘
(4.5) gf = idy

Let A be a subset of a metric space X lying in an ANRU — space P and
h={h,AY p 0 be fundamental sequence. From (4 — 5) we obtain

gf h=h.

Since (a) consisting of only one poini, the map g f & has an. extension
over X. By 3. 1 h has an extension # ={h’,, X, ¥ }P o Thus Y € FAEU,

a)=>e). By 3. .7,. diam Y<oo thus by 1.3 there exisis an AEU-space Q,
containing Y.
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~ Given a uniform neighbourhood U of Y in @, and a fandamental retraction
T=qr., 0, Y} 0, there exists an index k, such that rko(Qu) C U. Since
Tro (y) =y for every y € Y we have e). :

e) = a). Let (, be an AEU-space containing ¥ and {Uk} be a complete
sequence of uniform neighbourhoods of Y in Q, For every k, let r, 1 Qp — U
be a umfmmly continuous map such that r, (y)=y for every y €Y. Let us
show that r = {r , G, Y } 0o is a fundamental sequence.

Since Q, € AEU there exists a uniformly continuous map ¢:Q, X [ - Q,
such that ¢ (y, o) =y and ¢(y, 1) = y, € Y for every point y & Qs.

Given a uniform neighbéurhood U of Y in @, there exists an index k,
such that- U, < Ufor every k. Since

re: rk__C inlU, foreverykeN

wheie Cy : (), —» Y is constant map to y,, we infer that
. 4]

r,=r, inlU for every k > k,.

kT ke
The theorem is proved
4.6 COROLLARY. If Sh X >8hY then X € FAEU implies Y € FAEU.
4 .6 conlains 3. 12 as a special case.

Let us note that for the compacta, 4.4 and 4.6 has heen proved by
Bosruk [3 ], [5].
' By3.7and 4.4 we get

4.7. COROLLARY. If Sk X is trivial then X is absolutely bounded.

§ 5. A CONDITION CHARACTERIZING THE HOMQTOPY OF TWO
FUNDA\IENTAL SEQUENCES. '

It Z is a metric space then by 7 we denote the cartesian product Z x I. For
compacta the following theorem has been established by Borsuk [5].

5.1. THEOREM. Let X and Y be metric spaces lying in ANRU-spaces P and (0
respeclively. Two fundamental sequences [= ’{fk X Y}P 0 and'g= {gk XY }P 0
are homotopicif and only if there exists a fundamental sequence ¢ == { , e Y} >,
such that for every k=1,2,..

(5.2) (pk (=, o) fe (a:) and ¢, (z,1)= gk (:x:)for every zeX.

k Proof. Assume that there exists a fundamental sequence = {q)fc X, Y}P Q-
satisfying the condition (5.2). LetU be a unlfoun neighbourhood of X in P

,.60
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such that ¢, 1is defined on U, x 1for every k. Set £, @y=10, (z,0) and
9 @=9, (x1) for every xeU . L ;
. It is clear that f={f ={f’k, X’Y_}P,Q and g= g’={g’k, XY}

Therefore it suffices to prove that f' =g

PsQ *

For every uniform neighbourhood V of Y in Q. there: exists a uniform
neighbourhood U ¢ Uo of X in P such that

¢, [UXT== cpk_'_llU X I in V for almost all k. In particular
9, (UXI)CV. Whence we get
fr|U=<g, | UinV for almost all k.

Conversly, assume thatf == g. Let P=V, >V, >..beacomplete sequence

‘of uniform neighbourhoods of Y in Q. Let {Un } be a decreasing sequence
of uniform neighbourhoods of X in P and {mn } be a sequence of indexes

l=m; <m, <.. such that frlU, =110, =g, , U, inV, for every
k> m_ )

For every k, there exist n and @ homotopy Py U ~V _ such thatm <«

k(m 1 and that
®) (:r:,o)—- f (zy and ¢, (r,1) = g, (x) for every meU .

Put

¥, ((:1),8) =, (z, (125)) for (xt) eﬁﬂ and sel.

Then we get

¥, ((@.0,0)=¢, @) and v, ((z,0)1) -_f (x) for every point (x,f) € U .
Since f, | U, = f}c+1 | U, in v we obtain

Py | f}; EI;,H ]ff\n Ef;\]ﬁ:l =9, ]/I}\n in V, for every k > m_ where

f, @h="F, @ for x)eT, . |
Setting |

U, =U,V =V fork=m_,m a4 71 we get sequences @, 7} — v,

satisfying the condlhon 2.7 of Theorem 2.5. Therefore there exists a funda—
mental sequence @ —{‘Pl’u el F o 0 such that 7 ok ‘ +=¢, . Itis elear that the

‘condition (5. 2) is satisfied,
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§ 6. STRONG MOVABILITY.

. Let X' be a metric space lying in an ANRU-space. We say that X\ is
sirongly movable in P if{ for every uniform neighbourhood U of X in P there

exists a uniform neighbourhood U of X in > such that for every uniform'

newhbour‘qood W of.X in P the1e exists a homotopy @:Ugx I —~U satisfying .

the following conditions
6.1) ¢z,0) ==z, ¢ (1) €W for every T < U
6.2 (@ ND==aforeveryx & X.
It is easy to see that choice of an ANRU-space /? D X is immaterial.
Lel us prove the follgwing.
63 THEOREM. A metric space X is an FANRU- space if and only if X
is strongly mouvable, )
Proof. Assume that X ¢ FANRU. Let r = {r,,V,X}, be a fundamental

*retraction of a uniform nemhbourhood V of Xin P lo X. Gnen a uniform
neighbourhood £ of X in P, there exists an index kg such that

(6. 4) rk]V == rkol Vin U forevery k > k_

Since r = z'a'P |X' by 1.5 there exists a uniform neighbourhood

ko | X
U, V of X in P sach that ] -
6.5) r ~id |; inU.
©.5) ‘kﬁon Pllo

Let W be an arbitrary uniform neighbonrhdod of Xin P and ky 2> k, be an
index such that r, (V) < W. From (6.4) and (6.5) we obtain '
) ) : :
r == id in U.
k1| L o PI Uu
Thus there exists a homotopy @: Uy X I —U such that ¢ {x, 0) ==, ¢p(z,1)=
= rki (x) e W for every x e U, and ¢ (x,1) = 1"1,{1 () = = for every x ¢ X,

Thus both conditions (6 .1) and (6.2) are satistied.

Now let us assume that X is strongly movable. Then there exists a complete

| sequence of uniform nelghbourhoods {4 .} of X in P such that for every k=

1,2,... there exists a homotopy (Pl. e X I— ‘l 4 {(we let V; = P) such that
(6.6) cpk-(:c,ko) =, ¢, (x.1) & Vk+1 for every .a:-e Vi e
(6.7) @, (z,1) = x for every v ¢ X.
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Let ry {(x) =z lor every x e 1’1 and assume that for every { =1, 2., k,
rit V., ——V, has been defined satisfying the fo'lowing conditions
r; (r) =x forevery r € Xand { = 1, 2,..., k.

rp=r,n Vi——l'

Putting T (r) = ¢, (r, (), 1) for every x ¢ V, we get a uniformly
continuous map Trgq’ Vl — Vk-{-i such that
) (x) =x foreveryx ¢ X
Fpyq S rpin Vk——i'
- |
Let V be a uniform neighbourhood of X in P such that p (V, P\\V,)>0.
Then r == {rkV,X}P is a fundamental reiraction of V to X.

Let us note that for cqmpacta (6 .3) has been established by Borsuk |3].

§ 7. SHAPE INVARIANCE FOR FANRU-SPACES.

3.4 is a special case of the fdllowing.
7.1. THEOREM. If X € FANRU and ShX >»>ShY then Y ¢ FANRU.

Proof. Assume that X € FANRU. Consider X, Y as ‘subsets of ANRU-spaces
- P and (} respectively. Let r = {r G, A} be a fundamental retraction of a uni-

form neighbourhood G of X in P to X. By hypothesis there exist two funda.
mental sequences f ={fy, y y} p ( and g={g, y x} o, ptuch thatf ge=id

7 Since G is a uniform neighbourhood of X in P there exist a uniform neigh-
bourhood V’ of Y in () and an index k, such that
(7.2) g, |V == Igy | V' in G for every k > k.

Let V be a uniform neighbourhood of Y in Q such that p (V,Q\ V") >0,
Let us show that: {fk & gk .V, Y}Q is a fundamental sequence

Given a uniform neighbourhood W of Y in Q, let U/ be a uniform neigh-
bourhood of X in P and Je, >k, be an index such that

73) f U =f,, | Uin W for every k> kg,

Since k; 2> ky, -by (7.2) wé infer that
(7.4) g, |V = g'}m [V’ in G for every k> k,.

Moreover we can assume that k, i3 so large that

(7.5) r, | Gsrk_’3 | Gin U Tor every k> k. _ .
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From (7 .3) - (7.5) it follows that
for.g, | Viefr, 9,1V in W.for every k> ko
Since V' is a uniform neighbourhood of V in Q we infer that

i T8, V,Y}Q is a fundamental sequence.

Let T denote the fundamental sequence r|X = {rk, X, X}P. Let us show
that ’
(7.6) T gmid,
_ . Given a uniform neighbourhood W of ¥ in 'Q, let U be a uniform neigh-
bourhood of X in P such that
@7y f, (0)cWior almost all k.
By 1.5 one can assign to this uniform neighbourhood T a uniform neigh-
bourhood ﬁ; of X such that ‘
(7.8) onmthlU[, in U for almost all k.
Wenow can assign to the un1torm neighbourhood U of X a uniform neigh-
bourhood ¥ of Y in Q such that
(7.9)  g,(V)CUs for almost all k, and that
(7.10) fkgkl‘i/f\:-’:ﬂidgl?inw for almost all k.
From (7 .7)— (7 .10) we obtain _
'fk rg lV gfkgk ]V gfdQ[V in W for almost all_k.
Thus (7 . 6) is proved, ' )
Since {f rkgk,V Y} 0 is an extension of fundamental sequence f r g.
by 3.1and (7 .6), we infer that the fundamental sequence zd is extendable

to a fundamental retractlon rof Vi Y.Thus Y ¢ FANRU and the theorem is
proved.

REMARK. 1) As we have seen in 3.13 the correspondmg theorem of 7.1

FARU — spaces is not true.

2) For compacta, Theorem 7 .1 has been proved by Borsuk [5]: The proof
of 7.1 given here is a slight modification of Boruk’s argument.

§ 8. THE UNION OF TWO FAEU-SETS. -7

In this section we establish a theorem on the. union of two FAEU — gets
similar io that for ANRU — spaces [11] and L — spaces [12].
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Let X; and X, be subsets of a metric space (X, p)suchthat X, =X; n X, -~ .
We say that X; v X, is the uniform union of X; and X, iff the metric d on
X; v X, defined by ’

81 day — 3p (zy)if zyeX,, fori=1.2

inf {p (2.2) + p(y.2): z € X,} otherwise,

is uniformly equivalent to the metric p on X, v Xg.
Let us prove the following.

(8.2). THEOREM. Let. Xo» X1» Xy be FAEU — sels of a metric space X such
that X, = Xy " Xy and X = X; v X, is the uniform union of X; and X,. Then
X ¢ EAElL, . .

The proof of 8.2 is based on the f o!l‘owing

8.3. LEMMA. LetX = X; v X, be a metric space lyiny in a metric space
P.If X=X, v X, is uniform then for every uniform neighbourhood (7, Ug)

of (X;, X;) in (P, P)there exists a uniform neighbourhood V1, V) of (X,, Xp)
in (P, P) such that v, ¢ Ufor i =12 and V;y V, is uniform,

Proof. Put- _ .
- _; ‘}ningp(Xi,P\D'ij. i=1,2f.
m=inf {o (@ )iz, € 4,,i =12}
where A, = {z e X, p(x X1 N X% 5o}
Since X; v X, is uniform we infer that m >~ o. Let

g= min ’c, Ti— m { and put

Vi={zeP:io(® X,) <shi=12
Vo= {xe P:p(, X; N X% < o}
=V vV, i=12
It iz easy to see that Vz' C U; fori=12and V; v V, is uniform

84, LEMMA. ¥ X = X; v Xpis the uniform union of X, and X, then the -
map f: X —+Y is uniformly continuous whenever f ]XI and fX2 are,

Proof. If (x ) C X, and (y,) C X, are sequences such that p (x,.y,) —~ 0
then there exists a sequence of points (z,) C X, such' that o (:vn,zﬂ )
PYpz)—=0. - '

Whence we get '

o @) 1W)) < e F @) FG)) + 0 (z,), £5,)) = 0)
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8.5. LEMAMA. A metric space ¥ lying in an AEU — gpace ) is an EALL -

g

space {f and only if for every uniform neighbournood Uof Y in Q there evisls
a uniform neighbourhood U, of Y inQ such that for every metric space X,
every map umformlj contmuous map of a subset A X info U, can be
extended to a uniformly continuous map from X into U. |
Proof, The sufficiency of the condition fellows from 4.4 e). To prove
the necessity, let given a uniform neighbourhood U of Y in (}, select a uniform
neighbourhood ; of Y in* @ such that p(U,, Q\U) > 0. By 4 —4 e) there

exists a uniformly continuous map ¢: @ -» U; such that ¢ (x) = for every
rel.

. By 15 there exists a uniform neighbourhood Uy of Y in Q such that,
0 on &= idQ | U0 in U,, where U, is a uniform neighbourhood o7 U; in @ such
that p (U,, X \\(U) > 0. By Homotopy Extension Lemma there exits a uni-
formly continuous map r : Q — U such that r | Uy = id-Q | Uyand.r = ¢ inU..

Now let us assame that { is a uniformly continuous map of a subset A of
foa metric space X into UO Since € AEV there existsa unilormly continuous

map;": X — () such that j"v A—=f.We put f* = rfwto complete the proof.

Proof of Theorem 8.2. By 3.7 and 1.3 there exisls Ain AEU — space
P> X. By 4.4 b) it is sull'cient to show that for every uniform neighbourhood
U/ of X in P there exists a uniforin neighbourhood V of X in P such that V is
uniformly contractible inl.

By 8.5 for eveiyz = 1,2 there exists a uniform nexghboulhood U; of X,
in P such that every uniformly conlinuous map with the x‘anﬂe in U, can be
extended to a uniformly continuous map with the range in U7,

Since Xy € FAEU, by 4.4 b) there exist a uniform, neighbourhood UO:of
Xﬁ in P and a homotopy @: Uﬁ X I — U, [} Uy such that
(8.6) @ (x,0) = x and ¢ (x,1) =, € X for every x ¢ b,

By 8.3 there exists uniform neighbourhoods V,, Vz of X, ‘;;2 such that
V;C D for everyl = 12 VN V; - U and V, (J V, is uniform. Put I
Vi Vs. - \
Forevery i =1,2,letf, :V, X {0 1} v VX I— U be a map defined by
8.7 f; v, X {0} = zd

(8.8) VXTI =0 -
(8.9 ]‘I vV, X i} =z .
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It is casy to see that-fl. is uniformly continuous. Let?i : Vi X I—-U be an ex-
tension of fi PutV=ViuvVyand ler f: VXTI >Ubea map defined by
fzt)=f, (x.) i (@) eV, X I
By 84, f is uniformly continuous, From (8.6) —~ (8.9 we obtain.
f(x,0)=x and f(x, 1) = z, for everyxz g V.
The proof of Theorem 8.2 is finished.
8.10. Example. Let A, B, C be three points in the plane R? and put
‘ =[4, B] v [B, C)
X; = [4, B] v [4, C)
YL, =Y nGamdX=XuX,
It is easy to see that X,, X, X, & FAEU but X ¢ FAEU, Thus the assumption.

of the uniform union of X; and. X, is.essential.

Let us ‘note that the corresponding theorem of 82 for FARU-spaces is
not true. We see this by the following example,

8.11. EXAMPLE. In.the plane R®?, consider the set -
Xp = {0,) X {0}V {0} x [0,1]
Xy = {0} X (0] v [00) x {1}
= XynXpgand X = X; v X,

Itis easy to see that X, X,, X, are FARU-spaces (even ARU-spaces) and
X = X; v X, is uniform. Let us show that X is not an. FARU-space.

PutU =lseR® | z— X g_i_f

It suffices to show that there is no unifor mly continunous map f from R?into.
U fixing all points of X.

Indeed, if f:R* > U is any continuous map with f(2) ==z for r ¢ X then
we have

diam f({n} x [0,1]) > 2 (n-—- Tl) + % =2,
Therefore for every n € .¥ there exist points T, € {n} X {0,1] such that
. i _ |
W& =y lls + and (@)~ f@ )1 > 1.
Thus f fails to be uniformly continuous.
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§9. IMAGES OF FAEU-SPACES UNDER R’MAPS.

Adapting the terminology of Toranczyk [8] let us say that uniformly conti-
nuous map [ : X — Y is an rf*map if for every ¢ 2> 0 there exists a uniformly
continuous map g: ¥ — X such that? (f g(y), y) << e for every point y € Y.

9.1. THEOREM. If Y is the image of an FAEU-space X under an r* —
map then ¥ € FAEU,

Proof. Let ¢: X — Y be an r'-map and X € FAEU. By 3.7 diam X < eo,
hence diam ¥ < oo, Since the choice of ANRU-spaces P X and QDY are
immaterial we may assume that.

P={xe I™(X) x| < diam X+ 1}
= {ye I"(Y): |yl < diam ¥ 4 1}

By 8.5 it suffmes to show that given a uniformm neighbourhood V of Y
in Q there exists a uniform nezghbourhood Vo of ¥ in Q such that every
uniformly continuous map with the range in Vo can be extended to a unifermly
conlinuous map with the range in V.

Let U be a uniform neighbourhood of X in P and o: U -» V be a uniformly

continuons map such that ¢ ‘X = ¢. By 8.5 there exists a unlform neighbour-

hood 7Jo of X in P such that every uniformly continuous map with the range
in Uo can be extended to a uniformly continuous mup with the range in U. Pat

o= (LANY)

and let p:Y — X be a uniformly continuous map such that

ly—ou(y)il<e/2 foreveryyeVY.
It is easy to see that there exists a positive number O < ¢ and a uniformly

continuous map Y from Vo= {yeQ:lly~Y | <&} into Uo such t];la[:
1p|Y~_-=1p and ‘

(9.2) ly — CMJ (J) | <e for every po.mt ye Vo
Put , )
={peQ:y—~YII<2s}
and let f be a uniformly continuous map from a subset A of a metric space .
zZ into Vo. Then there exists a umformly continuous map g: Z — U such ‘that
grd = Pf. -
Let us put '
wz) = ¢ g(x) for every x € Z
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Then g(Z) < V and by (9.2)
, ‘ glA=finV, )
Thus by Homotopy Extension Lemma there exists a uniformly continuous

‘map F:X >V such that f |y = f. The theorem is proved.

REMARK. By 3.13, the corresponding statement of 9.1 for FARU- -spaces in
not true.

§ 10, CARTESIAN PRODUCT OF FAEU-SPACES.

Let (X,.p,) bea sequencé of metric spaces. Put X = X, and equip X
' n=1
with the metric p defined by

W01 o ((wy) (9)) = min o, (2, 9,), 27} for (z,), (v, ) €X

10.2. THEOREM. The Cartesian product X = T X, is an FAEU-space if and
. _1 - .

onty if X & FAEU forevery n. | '
Proef, Since X is uniformly homeomorphic to a uniform retract of X,
by (2.21) and (3.12), X ¢ FAEU implies that X is an FAUE-space for every n,
Now let us assume that X, & FAEU for every n. By 3-7 and 1-3 for every

n there exist an AEU-space P, > X, and a fundamental retraction r? =

==[r2, P, Xn]Pn for every n = 1,2,,. . Since P & AEU for ‘everjn € N,

P _nE1PH € AEU. Setting r, (zy = (r}{ (z1); r}zc (22),...) for z == (z,, ‘a:z,...}e‘.
€ P, we get a sequence of uniformly continuous maps r, s P — P such that
| r, (@) = for every = ¢ X.
A straight forward verifiCation shows that risa fundamental sequence. The
theorem is proved.

Since diam X < 1, by 3.10 and 10.2 we get
10—3.___COROLLARY. The Cartesian product X =TI X, of FARU-spaces is
' Dol

not an. AFRU-space if there exvists an index n, such that diam Xno = oo,
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