ACTA MATHEMATICA VIETNAMICA
Tom 6, No 2 (1981)

REPRESENTATIONS AND REGULARITY
OF MULTIVALUED MARTINGALES

BINH QUANG LUU
Institute of Mathematics,

+ -
Haroi.

lINTROD‘UCTION, The theory of Multi-functions and vector-valued Asympto-
tic Martingales (Amarts) has been developed and extentively studied in recent
years by K.Kuratowski and Ryll—Nardzewski C. [9], C. Castaing and M. Valadier
[2], A.Bellow[l], G.A.Edgar .and L.Sucheston [6] among others. One of most
interesting resulis has been shown by F. Hiai and H. Umegaki in [8] that one can
define a conditional expectation for an integrably bounded multi-function with
closed boundeé, non-emplty set values in a separable B-space. This result leads
to the study of some classes of multivalugd amarts in [4], [7] and [5]. In the
present paper we want to give some repfesentation theorems for multi-valued
martingales. In Section 1 we reecall some notations, definitions and basis proper-
ties of multi-functions which will be uszed in the next sections. In Section 2 we
study the existence of martingale selections of a sequence of multi-functions
and at the same time prove some répresentation theorems for multivalued martin-
gales. In Section 3 we present a necessary and sufficient condition for the
regularity of multivalued martingales. In particular some results of [4] and [13]
can be recovered by our results. In Section 4 we prove some invariance
properties of the class of multivalued martingales w.r.t. the set of all bounded
stopping times and some results related to the BN-property in B-spaces.

1. Notations, definitions and basis propertics of multi-functions,

Throughout'the paper B always denotes a separable B-space with some norm
f-1ts L, (B,E) the B-space of all B-valued Bochner integrable functions defined

-
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ort some probability space (S.E.P). We will consider the class X of all closed
bounded non-empty snbsets of B with the usnal Hausdorff s metric 2{...). Thus
| X| = h(X, {o}) is well-defined for all X ¢ K.

DEFINITION 1.1. A funetion X:§ — K is called measurable, if for every
open subset V of B the set {S; X (S) n V + ¢} is measurable. If this occurs, we
write X et (K,E) with S(F)y={f e (BF); f (s) € X (5), a.e.}, where F deno-

X o :
tes always a sub 6-field of E.

PROPERTY 1.1. ([2], theor. II1.9) Let X: S — K. Then X is F-measurable
iff there is a sequence {f (a)) of Se (F)sit. X (s)=cl {f (n,5); ne N}, a.eiin

[i - | -norm, where N is the set of all positive integers. If this occurs then
we write

x A4 f(n) )T @rth)
DEFI‘\IITION 1.2. (see [8]) A function X e 1 (K,E) is called integrably bounded. ‘l‘
If the real-valued function s | — | X (s)[is integrable. If X is integrably bounded
we will wrile X 6 L, (K,E), and dencte

§ X dP ={ §fdP. f &S (E)}

4 A
In t;‘m case, if (f(mMY(Sy (F) and' Sy (F)==¢! {f (n);ne N} in L;-norm, then
we write X & (f (n))" (w.rtF).
o L n=1

Note that, if X 7> ¢f (m) °° then Xl (= '1' -
' n== n=

PROPERTY 1.2 (see [8]) Let X,¥ & L, (K,E). Deline

H (X,Y)= 5 h(X (5) Y (5))dP; K = {4 e K; Ais convex } and K, = {AekK;
A is convex compact}, then (L, (K,E), H) is a complete metric space and
L (K,,E) and L (K sE)are closel subspaces of L, (K.E).

DEFINITION 1, 3. (see [8], theor. 5.1) Let XeL (K E) then there is a uni-
que function E(X,F) of L (K F) s.t.

\ S (F) = el {E(f F); fe s (0 I}

. (L)
* E(X,F} .

Such a function E(X.F) will be called a conditional expectation of X (given F)
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PROPERTY 1.3, (see [8]) Let X ¢ L, (K,, £) and 1" « Lok

. . . : > cer £} then
ECNLE) el“‘,(l'r{i,'_' F) and E(Y.F)'GLJ (ch, F.

For [urther: informations we refer to [2] and [8].

2. Representations of Multivalued Martingales.

In the rest ol the paper, it is supposed that we are given anp increasing
sequence (E(n)) of sub o-fields of E with o(VF(n) = E. & sequence ¢ X(n)}
of multi-functions is said to be adapted to (E(n)) if X(n) is E(ny — measu-
rable for all ngN. Unless othe_r—wise meptioned all our considereg sequences
are assumed adapted to {E(n))

DEFINITION 2. 1. Let X(n) be a sequence of mulli-functions, A sequence
(f(n)) is called a Martingale Selection of“(X(n)) is f(r) & S(E(n}) for all
- o o ' - ' Xtn
ne N and the sequence (f(n)) is a martingale in LI (B,E).( Ii‘ this occurs,
we write (f(n)) e MS (( X(n) ).
DEFINITION 2. 2. A sequence ( X(n) ). is called a martingale in Lz(Kc L)
if X(n) e L (K, ,E(n)) for all n € N and X(n) = E(X(m} E n)) (n > n g N)

Example 2.3. Let ( f(n) > be a maui'tingale' in LB, E) and ()} a
non-negative martingale in Ly(R, E). Define
. X(m)=F(r)+r(n)U - (neN) 2.1)
where U={xeB; x| 1} Then by [10), ¢ X(m) > is a martingale in
LK, , E) with closed ball values. It is easy to see that in the case every
sequence < g(n)> defined by g¢(n) = f(n) + r(n)r for some = e U iz a
martingale selection of { X(n)") ‘Moreover, it has been shown in {10] that
every martingale with closed ball values can be written in the form (2.1).
Thus the natural question arises whether there is always a martingale selection
of a multivalued martingale ? The following theorem, in parlicnlar, give us a
positive answer to this question. o

THEOREM 2.4. Let {X(n)) be a sequence in Li( K, ,E), then the following

conditions are” equivalent :
(1) {X(n) ) is a martingale ‘ .
(2) X(k) = Xk (k+ 1)(keN), where Xr'l (m) = E(X(m), E(n))

(3) S (E(k)) = cliE(g, E(k)); geS (ECk+1)} (ke N)
X'k) X(k+1)

(4) fm (B(k))= el {g(k): {g(n)) e MS ((X(r)})} (ke N)
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Proof. The equivalences (1)« (2) « (3) can be established easily from
theorem 5.3 (2,3) in [8]. The major part of a proof consists in showing laat
equivalence (4) « (3). Suppose first thus that (3) holds. To show (4), we fix
¢e>o0;keNand f(k)eS  (E k). Hence by (3) we can choose

X(k) ,
ftk+1eS (Ek+1) s.t.
Xk+1

E()f (k) — f, (k + t)umgg

Therefore by induction we can constructa sequencé (f(n))n> p 8
Fr) & S(B(r) and B (n) ~f (n+1)1) < (n>k)

It is easy to see that, in the case (f(n))n>.kis a quasimartingale in L; (B, E).
Thus by the same arguments given in a proof of theorem 1. L in [12], we
have. |

lim E (|[f (m) = g(n)f|) =0 for some marhngale (g(n Ny > in L, (B, E).

m—r»0oo

Moreover _
Eif i) — g (bl < <IE (nf(, )~ f; G+ <
But since (f n (m))m ~>p © S (E (n)) and f (E(n)) arel closed (n >» k), then
: X'n X(n) . -
g{n)e § (E(m)(n> If) Now put
X(n)

g(m) = Ef g(k) E(m)) (m < k — 1). Then it is clear that

{g(n)) € MS ((X(m))) and E(j| f(k) — g(k)|}) << c. It completes a proof (3 — 4).

Suppose conversely that (4) holds, and k € N is any but fixed, On the one hand
by (4) we have ’

S (B(R) = el {g(ky: (g(m)) & MS (XM}
x(k) - _ s :

= cl {g, (k+ 1): {g(m)) & MS(X(N}
< el { B(g,-E(K)); g e f (E(k - 1)}

k+1

01; the other hand, if ge$ (E (k-4-1)), then by (4) there is & sequence
C Xk

g (g () >§tj' of MS ({ X .R)» s U
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imE (| gf(k—{—f)—-gﬂ) = 0 hence

!—’DQ

ImE)| g ())-—~E (g Ek)||) =0

[—>0o

But (g’ (k) e § ‘ik()L &) andxikgE (k)) is closed, then

L (g, E (k))eS (E (k).
. X0
It follows that ¢/ { E (g, E(k)): g &S (E (k1) Y} C 8 (E(R)
X(k-+1) X&)

It means that (3) holds. A proof of Theorem 2. 4 is thus complete.

In the connection with property 1.1 given in previous Section we obtain the
following result ; ‘

COROLLARY 2. 5. Let { X (n)}) be a martingale in L(K,, E), then there

is a sequence ; { g% (n)) f of M S((X (n))) s.t.

i=1
_ i
X (k) ———(g' (1) > = (k € N) (22)

Proof, Let (X (n) ) be a martingale in L, (K_, E). Thus in particular in
1 ¢

view of property 1.1 there is a sequence { f% i} a, .

1 . '
X (f) s (o0 . (W. r. t. E (k) (k € N)

But since (ff 1) o, CAS(E (k) then by theorem 24 (4) there is a sequence.
- I

1
ChbbI@) [ of MS((X@))s.t,
iim E (| BEA (fy = fo 1) = 0 (k i N)

I

(o]
3

(BRI (R)) (ke N)

hence X(k)

Finally, if ; { g.f n) );;;’1 denotes the sequence ; ( h%J (n)) fk Qg
R ' 'J:

then (2.2) is automatically satisfied. The proof of Corollary 2.5 is thus complete,
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fn the connection with the considerations pf the RN—property in B — spaces
one can suppose without loss of generality that E is separable (s — generated).
Therefore we give a following corollary which present a martingale in
Ly (Ke» E) in the case. ’ ' :

COROLLARY 2.6. Let (X (n)) be a sequence in L, (K, E) with a separable

E. Then { X (r) ) is a martingale iff there is a sequence ? (gt (n)) i“; of
i=
MS({X (@m)))s. t.

X@E) > (g (keN) - | (2:8)
. L1 ' i=1

Proof. The necessarity can be established from Theorem 2.4 (4) and the
fact that F is separable. The condition (2.3) implies conditlion 4 in theorem 2.4
thus we get the sufficiency ‘A proof of Corollary 2.6 is complete.

3. The Regularity of Multivalued Martingales.

DEFINITION 3.1. Let X e L, (K » E). Define
X (n) = EX, E(@®)) (neN). In view of Property 1.3 and Theorem 5,3 (3)
in [8] such a sequence is a martingale in L 4 (KC, E). We shall call it a regular

martingale.

If (g(n) ye MS(( X (n))) and (g (n)) is regular, then we write
(g (n)) € RMS {({X (n}p) . o

The following theorem gives us a necessary and sufficient condition for the
regular_ity of multivalued martingales. Note that this result is independent of
that given in Section 2.

THEOREM 3. 2. Let (X (n) ) be a sequence in L, (K, E). Then { X (n))
is a reqular martingale iff the following condilions hold : '

(DX ) is L,—bounded o

(@) S (E (k) = cl {g U ; (g () )« RMS (X @M} (3.1

.00 : C

Proof. Suppose first that ( X () ) is a regular martingale in L (K , Ey;ie.
X (m=E (X,E (a))for some X e L (K, E) (neN) then by proposition 4.1 in [7]
condition (1) holds. Further, by delinition 3.1 and 1.3 (1.1) we get (2). Itis
more interesting to show the converse. implicalion. Suppose thus condition (1),(2)
told for some sequence (X (n) ) in L, (K,» E).
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U= Al (B E)Ys (E(f B (my e RIS (X ()

Therefore M is convex closed and decomposable, Hence by (1) and (2)
“bounded and non-empty Consequently,

M = S (E) for some X sL, (K., E) Fin
X

Mis als0
by Theorem 3.1) and Corollary i

ally by (3.1) and definition of

>y we get forevery ke N
S(E@E)=d{E(f, E &) ; feS(E) (= M)}, hence
X(k) X o

by Theorem 5. 1 in /8/ or Definition 1. 3 in Sect
more precisely' X (k)=F (X, E (k) (ks N),
above. A proof of Theorem 3. 9

ion 1, { X (n)) must he regular,

where X has heen coniructed
is complete,

In the connection with Corollary
COROLLARY 3. 3. Let (X
X(k)=E (X,

2. 5.we have the following

(n)) be a regular martingale in Z, (Kc, E) i, e

E (k)) for some X i (£,. E) (ke N) then there is a sequence

{g") 24 of Sy (E) s t,
N R e ; -
Xe—> (' yiS1and X (k) ——ns (E(g , E (&) 1=, (kelN)
Proof. Let (X (n)) be a regular inartingale in L, (Kc, Eyi e,
X(()=EX E (%)) (ke.N) for some Xel, (K,, E) ‘

) On the one hand, by

Property 1. 1 we can 'chooae some sgequence (pi i :
of Sx (E) s. t.

h-h . e
X e {p' Yi=1

On the other hand, by Theorem 3, 2 {2) and the same technique

used in ‘he
proof of Corollary 2. 5 we can contruct a sequence {(qi (W)} j=1
of RMS (X (n))) s.t. : . '
il ;
X (@) ——— (¢’ )y =, (k€y)

Now Iet-qf(k) = E(q/, E(k) (j ke N) for some sequence (/)

J=1

(L B,E). It is
Dot hard to show that in the case (@)

C S, (B),
J=t

. kS oo 3 =] k =3
Thus, if (¢") f==1 =<qj)-=1 U <p D

1 then the sequece (gf>[.zl satisfies
all conditions required in Corollary 3, 3. '

35




COROLLARY 4. 3. Let (X (m)) be a sequence in L; (K, E) with a scparable

E. Then (X (n)) is a regular inariingale iff there is a sequence {(gi (n))j-l.z1
of RMS ((X (i) s. &

(1) {g' ) pen is Li bounded

@) X (k) ———(g" k) 7, (keN)
L:[ 1

Proof. The necessarity can be established from Theorem 3. 2 and the
assumption that E is separable. Conversely conditions (1) and {2) in the Corollary
3. 4 imply conditions (1) and (2) in Theorem 3. 2. Thus the sufficiency is
obtained. -

The following results give ns some sufficient conditions for the regularity
of multivalued martingales.

COROLLARY 3.5 (see [4], p.954)

Let B be a separable B-space with the RN-property. Then for every unifor-
mly in‘egrable and L -bounded martingale ( X(n)) in L, (X, E) there is a

- (unique) function XelL K, E) s.t.
X(n) = E(X, E(n)) (ne N)
In other words, every uniformly integrable and LI -hounded marlingale in
L, (X, E)is regular. '

Proof. It follows immediately from theorem 2.4 (4), in Section 2; Theorem
6in [3] and Theorem 3.2. in this section. Note that by the limit projective method,
A.Costé {[4], p904) has also obtained this result. The author should like to
express many thanks to Doctors N.X.Loc and N.D. Tien for this useful informa-
tion. Although the author has proved and informated this result in one of
seminars of Institute of Mathematics, Hanoi before knowing [4].

COROLLARY 3.6. (see [13], theor. 2)

Every martingale | (X(n)) in L, (X > E) with the f ollowing properfies
(1 X | » is uniformly integrable and LI -bounded.
(2) ¥~ 3 a convex compact subset C of B s.t. - -

V'B>oano E]Aa EE(nO) P(A0)> 1—a Vn}no SVLAEE(H‘)
if Acd, then §X() dp < p(A). € 4 BU
. A .
is regular



Proof. It follows immediately from Theorem 2.4 (4) in Section 2; Theorem 2
of UhL J.r, in [13] and Theorem 3.2 in this section, Note that, using the same
method of A.Costé in [4] and Theorem 2 of Uhl J.r. in [13] one can also prove
Corollary 3.6, | :

4. Invariability of Multivalued Martingales and theRN-property-in B-spaces.

DEFINITION 4.1. A function T:5— N is called a bounded stopping time
wrt. < Em>,if {t=n}<E®) for all ne N and T(s) , n a.e. for some ne N,
If this occurs we write T&T. By n3»¢ we mean m(s) 2> o(s), a.e. For every teT,

we define F(t)={deE; An {T=n}<Bn) Yney}
Then by ([11], p.19-21) < F(t) > is an increasing generalized sequence of sub
- o-fields of E with o-(VE(1)) = o-(VE(n)) = E

Similarly, for t & T, define X(t, 5) = X(1(s), s) (s € ) then X(t) is F(1) —
measurable. The following proposition gives us further informations about it.

PROPOSITION 4. 2. Let (X(n)) be a sequence in (X, E).
¥ - [ S .

Then . X&) " (FU)) 2 (wr EEY  iff

¥ Xy UV fy > = (oot B Hence if

neT rn)«~-----~-----~—x> 1 1=\ ul

(X(n)) is adapted to ( E(n)), then ( X(t)) is adapled to {E(T))

~ Proof. It follows from definitions of (E(1)); (X(v))and property 1.1,

PROPOSITION 4.3. Let (X(n)) be a sequence in L (K, »E) Then the follo-

wing conditions are equivalent ; ,
SgE)(k)) = cl{g(k); (g(n)}) & MS( X(n)))} (k € N) (1)
Xk

S (B() =el {g(n): (g(m)) € MS ( X(m))}
X(m)

=cl{g(n): ({g()) € MS (XN} (e T) (4.2
It follows that, is ( X(n)) is a martingale then so is X(1).

Proof. Let (X(n)) be a sequence in L, (K, ,E). Then by ([11], Prop. 1V.
3 —12) : ¢
{g(m)) & MSK X(n)) iff (9(t)) € MS (( X(1))). Thus (4.1) > {4.2). Suppose. now
* that (X(n)) isa martingale then by Theorem 2.4 (4) in Section 2 we get (4.1), |
hence (4.2)."It remains to show that (X(1))is a martingale, i, e,
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X(o) = EX(n), E(e)) (= Xc() (1 > c e T) (4.3)

Let 1> 0 € T be any but fixed. By Theorem 5. 3 (2) in [8], (4.3)'is equivalent to
S (E(s)) = c{E(g, E(e)); g € S (E() } | (4.5)
x(a) x(m

On the on hand, by (4.2) we have
i(g(ﬂ)) = cl {g(s); (9(r)) & MS X()N}

= ol { g, ()i (g(¥) & MS (X(D)N}
(Y E(gE@©; g € S(E(m }
x()

On the other hand, if g & § (E(n)) then by (4.2) there .
x(n

is a sequence {{ gi (n))}i:1 of MS({X(n))) st

lim E(ﬂg m-—gh)=0 hence

1—bco

EmE (Il ' (o) — E(g, E() 1) = 0

i—roco

1t follc;ws that E (g, E(c)) @ S((;)“' (), hence
Xic .

ol { E(g, E()); g € S (E()} € S (E(9))
x(m) (o) ' |
Therefore (4.3) holds, equivalently, X(7) is a martingale in L (K , E)
The proof of Proposition 4.3 is complete. ‘ — *

By the same technique and using Theorem 3.2 in Section 3 we can prove
the following proposition.

PROPOSITION 4.4. Let (X(n)) be a sequence in - L, (K, E) then the

following conditions are equivalent :

s( )(E (k) == el {g(k), (g(m) € RMS ((X(r))} (keN) @)
X(k

S( ()E(ﬂ)) = cl{g(n), (g(n)) € RMS ((X(H)})}‘

== ol {g(n); {g(t)y € RMS ((X(1))} (veT) (4.5)



Hence  X(k)=E (X,E(k)), “keN iff

X(n) = E(X, Em))ivﬁe'r
In other words (X(n)) in a regular martingale iff (X(1)) is.
THEOREM 4.5. (See (3/, theor.6)

Let B be a separable B-space. Then B has the RN.property iff for every
uniformly integrable and L-bounded martingale (X(n)) in L, (K, .E) thereisa

(unigue) function XeL, (K,,E)

5.t X(1) = E(X, E(t))  (teT) (4.6)
Proof. It follows from Corollar& 3.5 and Proposition 4 4,

THEOREM 4.6. (See [13], Theor. 2)

Let (X(n)) be a martingale in L, (K E)-with properties (1) and (2), given in
Corollary 3.6, then there is a (unique) function X e LK _,E) s.1.(4.6) holds.

Proof. It follows immediately [rom Corollary 3.6 and Proposition 4.4.

At the end we note that, if (X(n)) is a sequence in L, (K, F), and F (n)
" is asmallest sub s—field w.r.t. which every X (k)is measurable for k=1.2,...,,n
Then F = o — (VF (n)) is always separable. Moreover, if ( X (n))is a (regular)
martingale w.r.f, (F (n)), then (X(n)) is also a(reg',ular) martingale w.r.t. (F (r)).
Thus, Gorollary 2.6 and 3.4. can be applied to( X (1)) w.r.t. { F (n)),

Recefved May 27, 1981
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